首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了明确人参不同部位对人参核盘菌的敏感性,在温室分别对人参芦头部和须根部接种病菌,观察不同部位发病情况,并对人参不同部位细胞壁降解酶活性及寄主防御酶活性进行测定。结果表明,人参菌核病芦头部发病时间早于根须部。人参芦头部多聚半乳糖醛酸酶(PG)、果胶甲基半乳糖醛酸酶(PMG)、果胶甲基反式消除酶(PMTE)活性在侵染过程中大于根须部,而多聚半乳糖醛酸反式消除酶(PGTE)活性在侵染中期及羧甲基纤维素酶(Cx)、β-葡萄糖苷酶活性在侵染后期出现芦头部小于根须部的现象。人参根须部过氧化氢酶(CAT)、过氧化物酶(POD)活性在侵染前期,超氧化物歧化酶(SOD)活性在侵染中期大于芦头部。可见,人参芦头部对菌核病较根须部敏感,可能主要是芦头部在病菌侵染前期细胞壁降解酶(PG、PMG、PMTE)活性较高,而防御酶(POD、CAT)活性较低造成。  相似文献   

2.
为优化出芒果细菌性角斑病菌细胞壁降解酶酶活性的反应条件,采用3,5-二硝基水杨酸法(DNS法),分别测定以1%羧甲基纤维素钠(CMC)、0.5%CMC+0.5%果胶和1%果胶为诱导底物的细胞壁降解酶活性,并从温度、时间、pH等方面优化酶活性测定条件.结果表明:在3种主要细胞壁降解酶中,羧甲基纤维素酶(Cx)以1.0%CMC作为底物诱导效果最好,多聚半乳糖醛酸酶(PG)和果胶甲基半乳糖醛酸酶(PMG)以1.0%柑橘果胶作为底物诱导效果最好.Cx和PG的最适反应温度分别为60℃和50℃,最适反应时间分别为60 min和20 min,当pH分别达到4.6和6.6时,Cx酶和PG的酶活性最强.  相似文献   

3.
马铃薯干腐病菌侵染过程中切片组织细胞壁降解酶的变化   总被引:4,自引:2,他引:2  
【目的】探讨干腐病菌(Fusarium sulphureum Schlechlendahl)侵染过程中马铃薯切片组织主要细胞壁降解酶(cell wall degrading enzymes, CWDEs)活性的动态变化。【方法】陇薯3号马铃薯块茎组织切片接种F. sulphureum后,不同培养天数取样测定并比较分析主要CWDEs活性变化。【结果】F. sulphureum侵染的组织均能产生多聚半乳糖醛酸酶(PG)、果胶甲基半乳糖醛酸酶(PMG)、纤维素酶(Cx)、β-葡萄糖苷酶、多聚半乳糖醛酸反式消除酶(PGTE)、果胶甲基反式消除酶(PMTE)、果胶甲基酯酶(PME)、果胶裂解酶(PML),但PG、PMG、Cx、β-葡萄糖苷酶活性显著高于其它酶。在侵染前期(1-3 d) PMG和Cx出现高峰,PG在后期(4-6 d)活性增高,而β-葡萄糖苷酶在整个侵染过程中活性一直呈上升趋势。【结论】CWDEs是F. sulphureum侵染和扩展过程中主要的致病因子,且各种CWDEs在致病中发挥作用的时期不同。  相似文献   

4.
活体外黄芪根腐病菌细胞壁降解酶产生能力比较   总被引:2,自引:0,他引:2  
利用细胞壁降解酶(CWDEs)是镰刀菌(Fusarium sp.)侵染寄主的主要手段之一,不同种类的镰刀菌在致病过程中起主要作用的降解酶种类有所不同。以山西省黄芪(Astragalus L.)根腐病的优势病原菌锐顶镰刀菌[F.acuminatum(Ellis et Everhart)Wr.]、腐皮镰刀菌[F.solani(Mart)Sacc.]和尖孢镰刀菌(F.oxysporum Schlecht)为研究对象,对其活体外诱导培养产生的主要细胞壁降解酶(多聚半乳糖醛酸酶、聚甲基半乳糖醛酸酶、多聚半乳糖醛酸反式消除酶、果胶甲基反式消除酶、内切1,4-β-D葡聚糖酶、β-葡萄糖苷酶)及其变化规律进行了比较。结果表明,3种根腐病菌均能产生多聚半乳糖醛酸酶、聚甲基半乳糖醛酸酶、多聚半乳糖醛酸反式消除酶、果胶甲基反式消除酶、内切1,4-β-D葡聚糖酶和β-葡萄糖苷酶6种CWDEs,但不同的致病菌产生各种酶的活性大小和变化趋势具有明显差异。该结果为深入研究CWDEs在根腐病菌侵染黄芪过程中的致病作用奠定了基础。  相似文献   

5.
苹果炭疽病菌对苹果果实致病机制初探   总被引:1,自引:0,他引:1  
对活体内外苹果炭疽菌产生的细胞壁降解酶进行活性分析,初步明确了聚甲基半乳糖醛酸酶(PMG)和羧甲基纤维素酶(Cx)在该菌侵染苹果过程中的作用.结果表明,活体外PMG活性随培养时间增加呈上升趋势,Cx活性则先升后降.活体内,无论抗感品种接种后,均先出现PMG活性高峰,后出现Cx活性高峰;抗病品种的细胞壁降解酶活性要低于中感和感病品种,但酶活高峰出现较早.此外,未接种的健康苹果果实中也检测到细胞壁降解酶,但活性较低.  相似文献   

6.
葡萄酸腐病近年来在中国主要葡萄产区发生普遍而严重,造成葡萄近成熟期果穗大量腐烂,直接影响葡萄的产量和质量.[目的]为了明确引起葡萄酸腐病菌的致病机制,对一株强致病性菌株sf-19(Hanseniaspora uvarum)进行细胞壁降解酶及其致病作用的研究.[方法]采用紫外分光光度计法和3,5-二硝基水杨酸法(DNS)测定该病原菌产生细胞壁降解酶的种类和活性.[结果]结果发现:菌株sf-19可以在诱导培养基上产生多聚半乳糖醛酸酶(PG)、果胶甲基半乳糖醛酸酶(PMG)、纤维素酶(Cx)、果胶甲基反式消除酶(PMTE)和多聚半乳糖醛酸反式消除酶(PGTE),其中,PG、PMG和Cx的活性较高,且最适培养时间分别为6、4、2d,最适宜产酶pH为5.另外,菌株sf-19的菌悬液及其产生的细胞壁降解酶可引起葡萄果实腐烂,扫描电镜观察可见葡萄果皮内侧的组织和结构出现空洞及崩解,但果皮表面无明显组织和结构的变化.[结论]结果表明Hanseniaspora uvarum 产生的细胞壁降解酶是引起果实腐烂的重要原因之一,且符合其不能直接侵入的特性.  相似文献   

7.
水稻纹枯病菌胞壁降解酶的产生及致病作用   总被引:5,自引:0,他引:5  
水稻纹枯病菌(Rhizoctonia solaniKühn)在改良的Marcus培养液中能产生多聚半乳糖醛酸酶(PG)、纤维素酶(Cx)、果胶甲基半乳糖醛酸酶(PMG)、多聚半乳糖醛酸反式消除酶(PGTE)和果胶甲基反式消除酶(PMTE)5种胞壁降解酶,其中PG、Cx和PMG活性较高,而PGTE和PMTE活性很低。病菌产生胞壁降解酶的最佳条件是:在pH5培养液中28℃下静置培养6 d。病菌接种水稻叶鞘后也能显著产生PG、Cx和PMG等胞壁降解酶,并且病斑外侧褪绿部酶活最高,平均为对照(健康部)的3.4倍;其次是褐色部,酶活总量平均为对照的2.9倍;病斑中央枯白部酶活较低,但明显高于对照。这一结果提示,在病菌侵染和扩展过程中胞壁降解酶起重要作用。果胶酶(PG、PMG)和纤维素酶(Cx)无论是单独处理还是混合处理,对水稻叶鞘都具有显著地损伤细胞膜和浸渍组织的作用。  相似文献   

8.
芦笋茎枯病菌细胞壁降解酶活性的测定及条件优化   总被引:1,自引:0,他引:1  
为明确芦笋茎枯病菌细胞壁降解酶的活性及测定条件,利用3,5-二硝基水杨酸法(DNS法)测定7种常见细胞壁降解酶的活性,比较不同底物对3种主要酶的诱导作用,并从温度、时间、pH值等方面优化酶活性的测定条件。结果表明:7种细胞壁降解酶中,多聚半乳糖醛酸酶(polygalacturonase,PG)的活性较高,其次是果胶甲基半乳糖醛酸酶(polymethylgalacturonase,PMG)和β-1,4-内切葡聚糖酶(endo-β-1,4-glucanase,Cx),其他4种酶活性较低。在3种主要细胞壁降解酶中,Cx以1%羧甲基纤维素钠盐(CMC)作为底物的诱导效果较好,PG和PMG以1%柑橘果胶(pectin)作为底物的诱导效果较好。Cx的最佳反应温度是50℃,PG的最佳反应温度是50~60℃,PMG的最佳反应温度是60℃;Cx的最佳反应时间是50 min,PG和PMG的最佳反应时间是60 min;Cx和PG的最佳反应pH值是4.0,PMG的最佳反应pH值是8.0。  相似文献   

9.
细胞壁降解酶是植物病原菌主要致病因子之一。提取活体内、外辣椒疫霉菌(Phytophthora capsici)产生的细胞壁降解酶(cell wall degrading enzymes,CWDEs),对其种类及活性进行分析。结果表明:辣椒疫霉菌在活体内能产生多聚半乳糖醛酸反式消除酶(PGTE)、果胶甲基反式消除酶(PMTE)、多聚半乳糖醛酸酶(PG)、果胶甲基半乳糖醛酸酶(PMG)和纤维素酶(Cx)5种CWDEs;在活体外产生PG、PMG、PMTE和PGTE等4种CWDEs;pH值为5,温度为30℃和反应30min是PG和PMG活性的最佳反应条件,PGTE和PMTE酶活反应的最佳条件分别是pH值为8和9,温度为40℃和50℃,反应时间均为10min。  相似文献   

10.
黑粉病菌对薏苡生长及其细胞壁降解酶活性变化的影响   总被引:1,自引:0,他引:1  
为了解薏苡黑粉病菌的致病性机制,对种子接种黑粉病菌后的发芽率和幼芽生长抑制作用、黑粉病菌在薏苡不同生长期的侵入危害及接种黑粉病菌后薏苡种子分泌产生的角质酶、果胶甲基半乳糖醛酸酶(PMG)、多聚半乳糖酸酶(PG)、β-1,4-内切葡聚糖酶(Cx)和β-葡聚苷酶的活性变化进行测定。结果表明:黑粉病菌对种子的发芽无抑制作用,对幼芽的生长有一定的抑制作用;接种黑粉病菌孢子后,种子发病率为75.7%,而叶片和穗部的发病率都低于10%;病原菌处理种子后,角质酶的活性在6h和12h出现峰值,略高于对照,其余时间角质酶活性与对照差异不明显,且角质酶的含量和活性均较低;细胞壁降解酶的活性测定发现,种子接触黑粉病菌后,果胶甲基半乳糖醛酸酶(PMG)活性与对照的PMG活性差异不显著,且活性的变化率相同;多聚半乳糖酸酶(PG)、β-1,4-内切葡聚糖酶(Cx)和β-葡聚苷酶的活性在24h内迅速升高,达到峰值,之后迅速下降,与健康植株(CK)的活性差异不显著,且变化规律相同。  相似文献   

11.
对茄科作物致病尖孢镰刀菌番茄专化型(Fusarium oxysporum f. sp. lycopersici,FOL)、茄子专化型(F.oxysproum f. sp. melongenae,FOM)和辣椒专化型(F.oxysporum f. sp. capsicum,FOC)细胞壁降解酶多聚半乳糖醛酸酶(PG)、果胶甲基半乳糖醛酸酶(PMG)、多聚半乳糖醛酸反式消除酶(PGTE)、果胶甲基反式消除酶(PMTE)及纤维素酶(Cx)进行比较。对3个专化型分别在寄主植物体内细胞壁降解酶活性测定表明:发病茄子和番茄体内酶活性从高到低依次为PG、PMG、PGTE、Cx 和PMTE,发病辣椒体内酶活性从高到低依次为PG、PGTE、PMG、PMTE 和Cx。体外诱导试验发现,FOC所产生的PG活性比FOM和FOL高,而FOM所产生的PGTE比FOC和FOL高,3个专化型的PMG、PMTE和Cx活性没有显著差异。通过PG同工酶薄层等电聚焦电泳分析,FOL、FOM和FOC分别产生5、5、3个PG同工酶,各有1条特异的PG同工酶条带。推测此3个专化型PG同工酶的差异可能和病原菌的致病作用和寄主专化性差异有关。  相似文献   

12.
热处理对冷藏茄子果实细胞壁代谢的影响   总被引:1,自引:0,他引:1  
研究热处理对冷藏茄子果实细胞壁物质含量和细胞壁降解酶活性的影响。结果表明:与对照果实相比,热处理可有效抑制冷藏茄子果实冷害指数(CI)的上升,保持较高的硬度,延缓果胶甲酯酶(PME)、多聚半乳糖醛酸酶(PG)、纤维素酶(CX)和β-半乳糖苷酶(β-Gal)活性的上升,抑制离子结合型果胶(ISP)、共价结合型果胶(CSP)、半纤维素和纤维素含量的下降。结果说明热处理减轻冷藏茄子果实冷害与抑制细胞壁代谢有着密切的关系。  相似文献   

13.
本文以美国西芹为试验材料,研究西芹鲜根蒸馏水、80%丙酮、80%乙醇浸提液处理后黄瓜枯萎病菌菌落直径以及病菌所分泌的细胞壁降解酶(果胶酶、纤维素酶、β-葡萄糖苷酶)活性的影响。结果表明,浸提液处理可以显著抑制病菌菌落直径及细胞壁降解酶活性的变化,其中丙酮浸提液处理抑制效果最佳,分别较丙酮对照下降了31.16%、43.87%、13.05%、27.19%。说明西芹鲜根浸提液中含有的物质可以抑制黄瓜枯萎病菌菌丝的生长及其分泌的细胞壁降解酶活性。  相似文献   

14.
植物病原真菌在侵染植物的过程中会分泌细胞壁降解酶来破坏植物细胞壁,以达到成功入侵寄主的目的。研究表明,病原菌分泌的细胞壁降解酶中的纤维素酶、果胶酶、木聚糖酶、几丁质酶、酯酶均参与了植物细胞壁的降解和病原菌致病的过程,但是对于细胞壁降解酶中的裂解多糖单加氧酶在病原菌侵染植物过程中的功能研究较少。根据近年来辅助活性酶类以及属于辅助活性酶类中的裂解多糖单加氧酶的研究进展,综述了辅助活性酶的分布、种类、功能以及裂解多糖单加氧酶植物病害中的作用研究,旨在为辅助活性酶类在植物病害中的功能研究和病害防控提供参考和依据。  相似文献   

15.
韭菜对香蕉枯萎病菌两种细胞壁降解酶活性的影响   总被引:1,自引:0,他引:1  
通过室内培养香蕉枯萎病菌(Fusarium oxysporum.f.sp.cubense)产酶,测定了不同浓度的韭菜汁对香蕉枯萎病菌4号生理小种(F.oxysporum.f.sp.cubense race 4)细胞壁降解酶中多聚半乳糖醛酸酶和纤维素酶活性的影响.结果表明,随韭菜汁液浓度的增加对该菌两种酶活性的抑制作用增强,φ(韭菜汁)=50%时抑制效果最好;两种酶的活性随香蕉枯萎病菌培养时间的增长先增强后减弱,培养72 h时达到最大.  相似文献   

16.
采前乙酰水杨酸处理对厚皮甜瓜果实后熟及软化的影响   总被引:2,自引:0,他引:2  
刘耀娜  王毅  毕阳  李生娥  姜红  朱艳  王斌 《中国农业科学》2017,50(10):1862-1872
【目的】研究果实发育期间乙酰水杨酸(ASA)4次喷施处理对厚皮甜瓜果实采收及贮藏期间后熟和软化的影响及作用机理,为采后调控提供参考。【方法】以‘玛瑙’厚皮甜瓜为试材,采用1 mmol·L-1 ASA分别在甜瓜幼果期(花后2周)、膨大期(花后3周)、网纹形成期(花后4周)及采前48 h四个时期连续喷施处理,测定果实采收及冷藏期间(7℃,RH 55%—60%)的呼吸强度和乙烯释放量,硬度、细胞壁组分以及细胞壁降解酶活性的变化。【结果】采前乙酰水杨酸处理可有效降低甜瓜果实采收时的呼吸强度和乙烯释放量,使果实贮藏期间呼吸和乙烯跃变峰的出现时间推迟1周。ASA处理提高了果实采收时的硬度及原果胶、纤维素、半纤维素和富含羟脯氨酸糖蛋白(HRGPs)含量,延缓了原果胶向可溶性果胶的转化,维持了较高的纤维素、半纤维素和HRGPs水平,有效保持了贮藏期间的果实硬度。采前ASA处理显著降低了采收时和贮藏期间甜瓜果实细胞壁降解酶的活性,主要抑制了果实果胶甲酯酶(PME)、多聚半乳糖醛酸酶(PG)、纤维素酶(Cx)和β-葡萄糖苷酶(β-Glu)的活性。相关性分析表明,处理果实的乙烯释放量和呼吸强度与多聚半乳糖醛酸酶(PG)活性呈显著正相关,与β-葡萄糖苷酶(β-Glu)活性呈极显著正相关;处理果实的硬度与果胶甲酯酶(PME)活性、原果胶和半纤维素含量呈极显著正相关,与纤维素酶(Cx)活性和可溶性果胶(WSP)含量呈显著正相关,与乙烯释放量和呼吸强度均呈显著负相关。【结论】采前ASA处理可促进甜瓜果实发育期间细胞壁物质的合成,有效抑制甜瓜果实采收及贮藏期间的呼吸强度和乙烯释放,降低胶甲酯酶(PME)、多聚半乳糖醛酸酶(PG)、纤维素酶(Cx)和β-葡萄糖苷酶(β-Glu)等细胞壁降解酶的活性,阻止细胞壁物质的释放,有效维持了冷藏期间的甜瓜果实硬度。  相似文献   

17.
以病原真菌香蕉枯萎病菌4号生理小种为材料,建立了多聚半乳糖醛酸酶和纤维素酶的平板检测方法.多聚半乳糖醛酸酶的最佳产酶和检测条件为:诱导底物为果胶,接种孢子终浓度为1×104mL-1,培养时间为3 d.37℃时检测的多聚半乳糖醛酸酶活性最大;纤维素酶的最佳产酶和检测条件为:诱导底物为羧甲基纤维素,接种孢子终浓度为1×105mL-1,培养时间为3 d,37℃时检测的纤维素酶活性最大.在此基础上,筛选已获得的香蕉枯萎病菌4号生理小种致病力减弱突变体,获得了2株多聚半乳糖醛酸酶和纤维素酶酶活性显著降低的致病突变体.  相似文献   

18.
灰葡萄孢胞壁降解酶对番茄植株致病作用的分析   总被引:2,自引:0,他引:2  
灰葡萄孢(Botrytis cinerea)是一种寄主范围多达200多种植物的病菌,其在致病过程中能产生多种胞壁降解酶,包括多种果胶酶和纤维素酶。用果胶酶和纤维素酶处理番茄叶片,产生相似于病害症状的水渍状腐烂斑,能破坏细胞超微结构,使叶绿体、线粒体等细胞器解体;分生孢子萌发和菌丝生长中能产生多种酶类,其中多聚半乳糖醛酸甲基水解酶(PMG)活性较高,且分生孢子萌发60 h后该酶仍具有活性。在番茄植株不同部位形成的病斑中均能检测到PMG,病斑褐色部位的PMG活性明显高于黄色部位。纤维素酶活性除了在分生孢子萌发阶段和果实病斑中未能检出外,在菌丝培养液和叶片病斑的褐色部分均能检测到该酶活性。病菌果胶酶和纤维素酶活性与病菌致病力的相关性测验表明,两类酶与致病力均为正相关,相关系数分别为0.362 3和0.105 7。根据上述结果分析,果胶酶和纤维素酶均能对寄主植物造成伤害,在病菌致病过程中有增加病菌毒力的作用。  相似文献   

19.
半乳糖醛酸酶抑制蛋白(Polygalacturonase inhibitoryprotein,PGIP)是位于植物细胞壁的糖蛋白,能够抑制真菌半乳糖醛酸酶(Polygalacturonase,PGs)对细胞壁的降解,从而达到抵御病原菌侵入的目的。经高盐法提取和凝胶过滤层析,获得相对纯度为18.9倍的PGIP,保留活性分别为100%和51.6%;经SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)分析表明,相对纯化的白梨PGIP的分子量为29~42 kDa;用径向辐射法和还原糖法试验表明,PGIP活性受pH影响,但对提取液中KCl的浓度及提取时间不敏感;PGIP抑制活性对温度非常敏感,在85℃处理20 min,PGIP失去85%~90%的抑制活性,在100℃下,PGIP活性全部丧失。  相似文献   

20.
以辽细辛精油为材料,以黄瓜灰霉病致病菌灰葡萄孢菌为靶标,利用紫外可见分光光度计,采用比色法在离体条件下测定了辽细辛精油对灰葡萄孢菌细胞壁降解酶活性的影响.结果表明:辽细辛精油对果胶甲基半乳糖醛酸酶(pectin methylgalactuionase,PMG)、胞内果胶甲基反式消除酶(pectin methyltrans-eliminase,PMTE)、果胶总酶、胞内1,2-β-D葡聚糖酶(C1酶)、胞外羧甲基纤维素酶(Cx酶)和蛋白酶均主要表现为激活作用;对胞外PMTE酶和胞内C1酶表现为抑制作用;激活/抑制作用与精油浓度之间不成比例关系.这说明辽细辛精油对灰葡萄孢菌细胞壁降解酶活性的影响不是抑菌作用的主要机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号