首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
利用气相色谱质谱仪(GC-MS)对广东罗非鱼主要养殖区水体及罗非鱼肌肉中16种优控多环芳烃(PAHs)的含量进行检测,并用美国环保局(USEPA)推荐的健康风险评价模型对罗非鱼食用安全进行健康风险评价。结果表明:水体中16种多环芳烃总量为272.53 ng·L-1,范围为53.55~679.97 ng·L-1;罗非鱼肌肉PAHs残留含量范围为182.66~717.20 ng·g-1,平均含量为355.28 ng·g-1;多环芳烃的组成以低环为主,在水体及罗非鱼肌肉所占比例分别为69.64%~97.09%和59.70%~74.46%;罗非鱼经食用所含6种致癌PAHs造成个人年致癌风险值范围为2.87×10-6~1.56×10-5a-1,低于国际辐射防护委员会(ICRP)推荐的最大可接受风险水平(5.0×10-5a-1),但存在一定的致癌风险,8种非致癌PAHs有害污染物对人体的总非致癌风险为2.51×10-10~1.54×10-9a-1,低于国际标准值,健康风险较低。  相似文献   

2.
建立并利用凝胶渗透色谱净化后气质联用法,测定食用植物油中美国环境保护局(EPA)16种优先控制多环芳烃的含量。结果表明,16种多环芳烃在0.5~50μg/kg范围内线性关系良好,r2值达到0.997 1以上;植物油中16种多环芳烃的检出限范围为0.07~0.2μg/kg,定量限达到0.2~0.5μg/kg;在添加1μg多环芳烃标样时,16种多环芳烃平均加标回收率为80%~101%,对加标样品6次独立测定的RSD范围为1.2%~9.9%。该方法可用于食用植物油中多环芳烃的检测。  相似文献   

3.
肖琴  池月云 《现代农业科技》2012,(23):282-283,285
将加速溶剂萃取(ASE)与分散液相微萃取(DLLME)相结合,并与气相色谱/质谱法联用,建立一种快速、灵敏的测定熏制食品中多环芳烃的方法。对熏制食品中的多环芳烃先进行ASE萃取;再利用DLLME进行富集浓缩,最后取沉积相进行GC-MS分析。在优化的条件下,15种多环芳烃呈良好线性关系,相关系数为0.990 0以上,检出限为0.44~214.07 pg/mL,相对标准偏差为4.28%~14.56%。检出熏火腿样品中多环芳烃的总含量为0.58μg/g,熏肉样品多环芳烃的总含量为0.70μg/g,2种样品中苯并[a]芘均未被检出。该方法简便、快速、灵敏,适用于熏制食品中多环芳烃的检测分析。  相似文献   

4.
焦化场地PAHs污染土壤的电动-化学氧化联合修复   总被引:7,自引:2,他引:5  
焦化场地土壤多环芳烃(PAHs)污染严重,目前的修复技术都存在不同程度的弊端。通过研究化学氧化、电动及其联合技术对焦化场地高浓度多环芳烃污染土壤的修复效果,比较了两种技术组合方式对修复效果的影响。结果表明,单一技术及联合技术对焦化场地PAHs均有一定的去除效果。在单一技术处理中,电动处理、芬顿和活化过硫酸钠对多环芳烃的去除率分别为24.86%、10.27%和22.19%;在联合技术处理中,活化过硫酸钠-电动组合、电动-活化过硫酸钠组合、芬顿-电动组合和电动-芬顿组合对多环芳烃的去除率分别为49.65%、41.73%、36.72%和31.39%。电动-化学氧化联合技术对PAHs的去除效果较单一技术提高了6.53%~27.46%。两种技术的组合方式及氧化剂类型均对联合处理效果产生影响,化学氧化-电动处理的多环芳烃去除率较电动-化学氧化处理高5.33%~7.92%,其差异主要由化学氧化去除率差异所引起;应用活化过硫酸钠试剂的组合对多环芳烃的去除率高出应用芬顿试剂的组合12.93%~10.34%。经联合处理后,污染物的残留量及毒性当量浓度均有不同程度降低,说明电动-化学氧化联合技术是一种有效的预处理方法。  相似文献   

5.
以提高测定数据精密度为目的,在实验室条件下对供试土壤样品的前处理条件进行系统优化,以改进水稻土中痕量多环芳烃的分析方法。以V(正己烷)∶V(丙酮)=1∶1混合溶液作为溶剂进行超声提取,采用C18固相萃取小柱和8 m L V(正己烷)∶V(二氯甲烷)=7∶3的洗脱溶液净化提取液,在20℃条件下氮吹浓缩洗脱液,利用气相色谱-质谱法对水稻土中痕量多环芳烃进行定性和定量分析。结果显示,利用该方法测定的16种多环芳烃在10~1 000μg/L质量浓度范围内的线性相关系数为0.999 0~0.999 9,方法检出限为0.022~0.470μg/kg,平均加标回收率均在70.2%~110.8%之间,方法相对标准偏差(n=5)为1.8%~9.8%。以上结果说明,该方法较为准确,灵敏度高,重复性好,同时能减少有机试剂的用量,适用于水稻土中痕量多环芳烃的分析测定。  相似文献   

6.
建立分子印迹固相萃取结合超高效液相荧光法测定螺类中15种多环芳烃的方法。样品经正己烷提取,用MIP-PAHs多环芳烃专用固相萃取小柱(SPE)净化,荧光检测器定量检测。15种多环芳烃在方法线性范围为1~100 ng·m L-1,相关系数大于0.999,在不同的添加水平(5、10、20μg·kg-1)下,PAHs各组分的平均回收率在73.07%~108.06%,相对标准偏差为0.6%~9.2%。检测浙江省内部分地区螺类中15种PAHs总含量值范围为17.20~107.26μg·kg-1,螺类样品的PAHs优势组分为三环结构,六环结构的PAHs未检出。  相似文献   

7.
建立一种基于液相色谱荧光检测(liquid chromatography fluorescence detector,LC-FLD)快速测定污泥样品中多环芳烃的分析方法。将污泥样品经乙腈提取后,用硅胶、PSA净化,提取液吹干后用流动相复溶即可进行液相色谱分析。分析时采用Acquity BEH C18色谱柱,以水相和乙腈作为流动相进行梯度分析,荧光检测器检测,其中激发波长为260 nm,发射波长为280~520 nm,外标法定量。本方法在10,50,100和150μg·kg-1的添加水平下,多环芳烃平均添加回收率为80.1%~95.3%,变异系数为2.8%~6.9%。本方法对9种多环芳烃的检测限为0.19~9μg·kg-1,定量限为0.6~30μg·kg-1。  相似文献   

8.
[目的]建立固相支持液液萃取气相色谱-质谱联用测定电子烟液中的16种多环芳烃的方法。[方法]电子烟烟液样品中加入少量水,振荡均匀,充分分散在硅藻土固相支持液-液萃取柱中,用环己烷萃取,萃取液浓缩后,采用气相色谱-质谱联用仪实现电子烟烟液中16种多环芳烃的测定。[结果]试验表明,16种多环芳烃在0.02~1.00 mg/L范围内线性关系良好(R20.999),加标回收率在91%~101%,日内精密度(RSD)在2.74%~6.54%,日间精密度(RSD)在3.04%~7.56%,检出限(LOD)为0.012~0.133 ng/g。[结论]与传统方法相比,该方法检测时间显著缩短,有机溶剂消耗较少,更符合绿色分析的要求,并可降低分析成本。  相似文献   

9.
地表水体中多环芳烃污染的研究进展   总被引:4,自引:2,他引:2  
陈宇云  朱利中 《安徽农业科学》2010,38(15):8148-8153
介绍了近年来地面水体中的多环芳烃的研究进展,重点综述了国内外河流、近海海域和湖泊等地表水体中地表水和沉积物中多环芳烃的污染现状。  相似文献   

10.
针对某焦化厂内高浓度多环芳烃污染土壤,以烷基苷(APG)、十二烷基苯磺酸钠(SDBS)和曲拉通X-100(TX100)为表面活性剂代表物,采用静态平衡法和高效液相色谱分析,探索采用单一及混合表面活性剂清洗修复多环芳烃污染土壤,并考察生物柴油对多环芳烃去除效果的影响。结果表明,单一表面活性剂对土壤中多环芳烃去除率顺序为SDBS>APG>TX100。APG/SDBS混合处理及TX100/SDBS为9∶1混合处理提高了土壤中多环芳烃去除率,而APG/TX100混合处理没能提高多环芳烃去除率。生物柴油对TX100及TX100/SDBS去除多环芳烃效果没有明显提高,对APG及APG/TX100去除多环芳烃略有提高。当APG/SDBS为9∶1时,生物柴油可以使多环芳烃去除率从(63.3±2.0)%提高到(75.6±2.0)%。单一表面活性剂、混合表面活性剂、及表面活性剂-生物柴油乳液对多环芳烃各组分去除率比较类似,对菲的去除率最高,茚并[1,2,3-d]芘次之,其余相对较低。因此,建议采用APG/SDBS+生物柴油的混合体系对高浓度多环芳烃污染土壤进行修复。  相似文献   

11.
模拟酸雨作用下红壤中多环芳烃的释放及纵向迁移特征   总被引:1,自引:1,他引:0  
以USEPA优先控制的16种多环芳烃为研究对象,通过酸雨的土柱淋溶试验模拟实际降水过程,分析了不同酸度的模拟酸雨淋溶后红壤中多环芳烃残留量的变化及不同性质多环芳烃在土柱中纵向迁移特征。研究结果表明:不同酸度模拟酸雨淋溶后红壤中多环芳烃残留量均较淋溶前减少,pH2.5酸雨淋溶后红壤中多环芳烃含量较淋溶前减小的幅度最大(52.08%),pH5.6酸雨淋溶后减小的幅度最小(21.55%);酸雨破坏土壤微结构,使土壤胶体分散,粘粒下移,与土壤粘粒结合在一起的多环芳烃也一起向下迁移,酸雨pH值越小,多环芳烃在土壤中的纵向迁移能力就越强;酸雨对土壤中不同性质多环芳烃的纵向迁移影响不同,对低环多环芳烃(环数≤4)的迁移影响较大,对高环多环芳烃(环数4)影响较小,主要是由于不同性质多环芳烃在土壤中结合的物质不同而引起的。该研究结果为了解酸雨作用下多环芳烃在土壤介质中的稳定性及其对地下水潜在污染的风险评价提供理论依据。  相似文献   

12.
以金韩蜜本南瓜为材料,采用高效液相色谱检测其根、茎、叶、花、果实的多环芳烃(PAHs)含量,探讨南瓜各器官中多环芳烃的分布、迁移和积累。结果表明:南瓜雄花和嫩叶中仅有3种多环芳烃,幼果中有11种;南瓜器官中多环芳烃含量均值为994.11 μg/kg,其中营养器官中的为1169.59 μg/kg,生殖器官中的为854.11 μg/kg;南瓜器官中屈的含量为607.28~953.75 μg/kg,明显高于其余15种多环芳烃的含量;南瓜器官中的多环芳烃主要以2环、3环、4环芳烃为主,其中4环芳烃的含量为7364.27 μg/kg,占多环芳烃总量的81.18%,5环和6环芳烃含量为339.27 μg/kg,仅占3.74%。不同器官中多环芳烃总量与含水量呈正相关。  相似文献   

13.
为了建立复杂样品中痕量多环芳烃准确的定量分析方法,采用溶剂热法制备了一种具有双孔径尺寸的共价有机骨架(异孔COFs),使用扫描电镜(SEM)、X射线衍射仪(XRD)、傅里叶变换红外光谱(FTIR)和孔隙率分析仪(BET)对材料的形貌和结构进行了表征。将所制备的异孔COFs材料作为固相萃取剂对水体样品中的16种多环芳烃进行吸附和富集,同时结合气相色谱-质谱联用法(GC-MS)对多环芳烃进行了定量分析。结果表明:异孔COFs不仅具有高的结晶度、优异的比表面积和高的孔隙率,且同时拥有两种尺寸(微孔和介孔)的孔径。此异孔COF材料可用于快速吸附环境水样中的16种多环芳烃,15 min内即可达到吸附平衡,富集倍数可达40倍。在0.25~50 μg·L-1浓度范围内与色谱峰面积具有良好的线性关系(R2>0.99),检出限为0.04~0.08 μg·L-1,加标回收率为82.3%~110.1%。此方法简单快速、成本低廉、检出限低、重复性好,适用于环境水样中痕量多环芳烃准确定量检测。  相似文献   

14.
为实现环境中多环芳烃(PAHs)污染物的快速检测,制备了抗多环芳烃多克隆抗体,用于多环芳烃免疫学检测试剂盒的研制。采用活性酯法将半抗原芘丁酸(1-PBA)分别于牛血清白蛋白(BSA)和卵清白蛋白(OVA)进行偶联,获得PBA-BSA和PBA-OVA偶联物,以PBA-BSA偶联物免疫新西兰大白兔,获得针对多环芳烃的抗血清。以PBA-OVA偶联物为包被原,间接ELISA法检测抗血清,效价为102 400,经纯化后得到多克隆抗体。采用间接竞争ELISA法绘制了针对芘的标准曲线,得到该方法的IC50值为0.06 mg/L,检出限为0.01 mg/L。与16种多环芳烃的交叉反应实验结果表明该抗体对高环PAHs的亲和力较高。反应体系中添加低于40%的甲醇对ELISA结果无影响。该抗体的制备及特性鉴定对后续多环芳烃酶联免疫试剂盒的开发奠定了技术基础。  相似文献   

15.
[目的]以秘鲁鱿鱼为研究对象,探究加工工艺及壳聚糖处理对鱿鱼加工过程中多环芳烃生成的影响。[方法]探究了不同时间(2、3、4、5 min)、温度(120、140、160、180℃)、食用油种类(棕榈油、花生油、菜籽油、大豆油)、烹饪方式(煎、烤、炸)、鱿鱼皮去除与否以及2 g/L壳聚糖和羧甲基壳聚糖溶液浸泡处理对鱿鱼中多环芳烃生成的影响。[结果]随着加工时间的延长和温度的升高,鱿鱼中多环芳烃总量及苯并[a]萞含量也逐渐增加;经不同的食用油加工鱿鱼后,多环芳烃的生成量从低到高依次为棕榈油、大豆油、菜籽油、花生油(P<0.05)。采取烤的方式所生成的多环芳烃总量最低,苯并[a]芘含量在煎的方式下最低;去除鱿鱼皮能够有效降低加工过程中多环芳烃的生成量(P<0.05);壳聚糖处理组的鱿鱼经2、3、4、5 min加工处理后,多环芳烃总量较CK显著降低(P<0.05),下降率分别为30.28%、28.17%、19.37%、5.77%;苯并[a]芘含量也显著下降(P<0.05),下降率分别为32.35%、41.03%、45.45%、69.52%;羧甲基壳聚糖处理组鱿鱼经2、3...  相似文献   

16.
[目的]建立索氏抽提、固相萃取净化、气相色谱-三重四极杆串联质谱法同时测定土壤及沉积物中16种多环芳烃(PAHs)的方法。[方法]对萃取、净化及仪器分析条件进行了优化。[结果]优化条件为:1+1的二氯甲烷+正己烷提取16 h,硅胶净化或不净化方法,PAHs浓度在0.25~5.00μg/mL时线性相关系数(R2)为0.990 3~0.999 9;PAHs方法检出限为0.002~0.020 mg/kg;加标回收率为61.2%~117.0%。[结论]试验结果为土壤中多环芳烃的测定提供了理论依据。  相似文献   

17.
采用加速溶剂萃取-串联色谱质谱联用法测定土壤中多环芳烃。土壤样品与无水硫酸钠混合后,用丙酮、二氯甲烷(体积比1∶1)在加速溶剂萃取仪上以10.3 Mpa、80℃提取5 min,用串联质谱检测器进行分析,土壤中16种多环芳烃的回收率在81.6%~106.0%。该法分离效果良好,线性关系和灵敏度较高。  相似文献   

18.
通过增溶实验和土壤洗脱实验,研究了一种生物表面活性剂--皂角苷(saponin)对多环芳烃-重金属复合污染土壤的洗脱作用及机理.结果表明,皂角苷对菲、芘等多环芳烃有极强的增溶作用,当皂角苷浓度为0.04%时,菲、芘在液相中的表观溶解度分别增大了约22倍和128倍,因而皂角苷能显著增强多环芳烃污染土壤中菲、芘的洗脱,洗脱效率最大分别可达84.1%和81.4%,增大了约2倍和17倍.皂角苷可与重金属离子形成水溶性的络合物,从而增强洗脱重金属污染土壤中的Zn2+和Cd2+,在皂角苷浓度为0.4%时,Zn2+、Cd2+的洗脱效率分别可达93.0%和79.4%,增大了约75倍和8倍.皂角苷可同时洗脱多环芳烃-重金属复合污染土壤中的菲、芘和Zn2+、Cd2+,洗脱效率分别达87.6%、83.5%和92.3%、78.6%,重金属的存在略增大了皂角苷对菲、芘等多环芳烃的洗脱效率,但多环芳烃对Zn2+、Cd2+的洗脱效率没有明显影响.皂角苷可同时增强洗脱复合污染土壤中的多环芳烃和重金属,从而为多环芳烃-重金属复合污染土壤的修复奠定基础.  相似文献   

19.
宁波土壤中多环芳烃的健康风险评价   总被引:6,自引:2,他引:4  
以宁波地区土壤中多环芳烃的含量调查结果为基础,采用美国能源部风险评估信息系统的暴露量化方法和美国环保局健康风险评估手册的风险表征方法,评估了土壤中16种多环芳烃对户外劳作者的健康风险。结果表明,宁波户外劳作者由于土壤中多环芳烃引起的平均非致癌危害指数为1.09×10-5,平均致癌风险值为3.17×10-7,可判定对人体健康的危害较小。宁波地区致癌多环芳烃含量最高暴露点致癌风险值为1.45×10-6,没有超过致癌风险水平上限(10-4),说明致癌风险尚在可接受范围内。多环芳烃中苯并(a)芘对综合致癌风险贡献最大,贡献率高达65.6%,应注意防范土壤中该污染物引起的健康危害。宁波户外劳作者受到的非致癌危害和致癌风险主要由直接摄入途径和皮肤接触途径贡献,两种途径对非致癌危害和致癌风险贡献率分别达到89%和100%,呼吸摄入引起的非致癌危害和致癌风险则相对较小。  相似文献   

20.
为研究上海市金山区罗氏沼虾养殖环境中多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的污染水平、来源和评估其食用健康风险,采用高效液相色谱(HPLC)检测环境中16种优控多环芳烃,结果表明:养殖区内,大气干、湿沉降中多环芳烃总含量及沉降通量分别为5.52~9.45 μg/g、47.99~100.42 ng/L和3.75~6.42 μg/(m2·d)、83.32~174.36 ng/(m2·d),干沉降中以高环为主,湿沉降中以低环为主;水体中多环芳烃总含量为342.76~1 520.83 ng/L,以低环为主,对比国内其他养殖区,研究区水体多环芳烃污染处于中等水平;土壤与沉积物中多环芳烃含量分别为1 000.45~2 138.46 ng/g和1 763.70~3 656.97 ng/g,高环多环芳烃含量远高于低环,相比于其他养殖区处于较高水平;浮游动物与浮游植物中多环芳烃总含量分别为46.18~134.63 μg/g和26.13~145.39 μg/g,均以4环多环芳烃为主;罗氏沼虾在幼虾期、成长期、育成期体内多环芳烃平均总含量分别为63.09 ng/g、111.89 ng/g、148.77 ng/g,存在生物富集现象,虾肉中3、4环多环芳烃含量相对较高,相比于其他养殖区水产品,研究区罗氏沼虾体内多环芳烃处于较低水平。采用比值法和主成分分析法进行污染来源分析,结果表明:养殖区大气沉降为多污染源并存,其中湿沉降中污染源主要为石油源;干沉降中污染源主要为煤炭、木材的燃烧源;水体主要污染源为石油源;土壤中主要为煤炭燃烧源;沉积物中污染源与土壤中类似,以煤炭燃烧和化石燃料不完全燃烧为主。食用风险评价结果表明:罗氏沼虾终身致癌风险为1.89×10-8~1.37×10-6,在可接受范围内,正常食用不会对人类健康产生危害。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号