首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
不同灌溉方式下土壤中氮素分布和对棉花氮素吸收的影响   总被引:5,自引:0,他引:5  
[目的]研究滴灌和漫灌下不同施肥量对棉花氮素吸收的影响.滴灌和漫灌不同灌溉方式在不同施肥处理(N 240、360和480 kg/hm2)下0~100 cm土层土壤NO3--N分布及棉花氮素吸收.[方法]通过网室土柱模拟实验,研究滴灌和漫灌在不同施肥处理(N 240、360和480 kg/hm2)下,0~100 cm土层土壤NO3-N分布及棉花的氮素吸收.[结果]滴灌各施肥处理硝酸盐主要积聚在40~60 cm土层,漫灌各施肥处理主要积聚在60~80 cm土层.棉花氮肥利用率相对较低为16.47;~28.37;;不同施肥量下土壤0~100 cm土层硝态氮残留量较高为60;~81;,且N240和N480施肥处理漫灌残留量均高于滴灌;氮肥总回收率比较高,各处理均达到87;以上.[结论]滴灌、漫灌下作物氮素吸收量差异不显著.  相似文献   

2.
通过田间试验方法研究了日光温室长期不同灌溉施肥模式(漫灌施肥和滴灌施肥)和有机物料管理(单施有机肥、有机肥+玉米秸秆和有机肥+小麦秸秆)对土壤剖面矿质态氮(硝态氮+铵态氮)、速效磷含量和累积特性的影响.结果表明,漫灌模式下,0~300 cm土层矿质态氮累积量达1391~1881 kg/ha,虽然滴灌模式下土壤表层(0~20 cm)硝态氮含量显著高于漫灌施肥模式,但在0~300 cm土壤剖面中,漫灌施肥模式硝态氮累积量较滴灌施肥模式显著提高了57~108%;施用秸秆显著增加土壤硝态氮累积量,滴灌和漫灌模式增幅分别为511~518 kg/ha和445~488 kg/ha,但秸秆对铵态氮累积量无影响.  相似文献   

3.
为了解滴灌施肥是否能够提高水氮利用效率、降低环境污染风险,总结山东寿光设施番茄长期定位试验9季的试验结果,系统分析传统漫灌施肥和滴灌施肥对番茄产量、水氮利用效率、土壤硝态氮残留和经济效益的影响。与传统漫灌施肥相比,滴灌施肥每季氮肥和水分投入量分别降低78%和46%,氮肥偏生产力和灌溉水利用效率则分别提高5和2倍,番茄产量和经济效益分别提高6%和22%,且产量年际变异显著降低。传统漫灌施肥0~90cm土层硝态氮残留量平均高达819kg/hm2,滴灌施肥降低50%的土壤硝态氮残留。与传统漫灌施肥相比,滴灌施肥栽培体系是一个低投入、低环境代价和高效稳定的生产体系。  相似文献   

4.
[目的]研究不同灌溉方式、施肥方式对马铃薯产量及耕层土壤水溶性盐迁移的影响。[方法]通过田间试验和土壤检测,分析水溶性盐分在土壤中的移动规律。[结果]漫灌处理,4层土壤总水溶性盐总量从上到下依次递增,各层土壤水溶性盐量漫灌施肥处理均高于漫灌不施肥处理;滴灌的2个处理,0~60 cm水溶性盐总量从上到下依次递增,60~100 cm明显降低;土壤各层水溶性盐总量滴灌基施均高于滴灌追施;0~100 cm土层水溶性盐量滴灌基施高于漫灌基施。[结论]不同灌溉施肥方式以滴灌+追肥效益最高;漫灌土壤盐分从上向下淋溶明显,滴灌土壤盐分淋溶不充分,盐分在20~60 cm有积聚作用;同等条件下,施肥量越高土壤盐分残留量越大,土壤次生盐渍化与施肥量关系密切。  相似文献   

5.
不同灌溉方式下设施土壤硝态氮的积累特征及其环境影响   总被引:6,自引:0,他引:6  
以不同灌溉方式下设施土壤及番茄为研究对象,采用田间试验与室内分析相结合的方法,对连年采用沟灌、滴灌和渗灌灌溉方式的设施土壤硝态氮、全盐含量、pH及番茄果实硝酸盐含量、水分生产效率进行了研究。结果表明:三种灌溉方式土壤硝态氮、全盐含量均呈现出明显的表聚现象,0~20 cm土层范围内,滴灌处理硝态氮含量和全盐含量明显低于沟灌和渗灌处理;不同灌溉方式土壤的pH值均随着土层加深而升高,在0~30 cm土层范围,土壤pH值滴灌高于沟灌,沟灌高于渗灌。沟灌和渗灌番茄果实硝酸盐含量显著高于滴灌,沟灌和渗灌番茄果实硝酸盐含量差异不显著;渗灌和滴灌水分生产效率明显高于沟灌。土壤硝态氮含量与土壤pH值呈极显著负相关,与全盐含量呈极显著正相关。总之,设施土壤硝态氮积累与土壤全盐含量、pH值、番茄果实硝酸盐含量关系密切;与沟灌和渗灌相比,滴灌更有利于抑制土壤退化。  相似文献   

6.
施氮模式对番茄氮素吸收利用及土壤硝态氮累积的影响   总被引:4,自引:0,他引:4  
采用田间小区试验,以番茄为指示植物,研究不同施氮模式:农民习惯施肥(N-farmer)、减施化肥氮26%(74%N-farmer)、减施化肥氮26%结合调节土壤C/N(74%N-farmer+S)、减施化肥氮26%结合调节土壤C/N和采用滴灌(74%N-farmer+S+D)、减施化肥氮45%结合调节土壤C/N和采用滴灌(55%N-farmer+S+D)的集成模式对设施番茄氮素吸收利用及土壤硝态氮累积的影响.结果表明,55%N-farmer+S+D模式下番茄产量最高为108 349 kg·hm~(-2),产投比最高为26.1;与N-farmer模式相比,74%N-farmer、74%N-farmer+S、74%N-farmer+S+D和55%N-farmer+S+D模式的氮素利用率和氮素农学利用效率均有增加,其中55%N-farmer+S+D模式的氮素当季利用率为9.56%.氮素农学效率为43.67 kg·kg~(-1),均显著高于N-farmer模式(P<0.05);氮肥生理利用效率在各施氮模式间没有显著差异,55%N-farmer+S+D模式的效率最高为598.06 kg·kg~(-1);55%N-farmer+S+D模式的氮素果实生产效率和收获指数分别为493.81 kg·kg~(-1)和53.84%,均高于N-farmer模式.氮平衡结果表明,N-farmer模式的表观损失最高,55%N-farmer+S+D模式显著低于N-farmer模式;相同土壤剖面中不同模式硝态氮含量随番茄生育进程均呈先增高后降低的趋势;番茄盛果期和拉秧期,74%N-farmer+S、74%N-farmer+S+D和55%N-farmer+S+D模式在0~100 cm剖面累积的硝态氮含量均低于N-farmer模式,拉秧期N-farmer模式累积的硝态氮含量最高达705.24 kg·hm~(-2),74%N-farmer+S+D模式累积的硝态氮含量最低为453.75 kg·hm~(-2);番茄在3个不同生育期,土壤硝态氮多累积在0~40 cm土层,硝态氮的相对累积量约为50%.综合以上分析结果,集成模式55%N-farmer+S+D具有明显优势,能够提高氮肥的吸收和利用效率,减少土壤硝态氮的残留.  相似文献   

7.
研究滴灌施肥和沟灌施肥对保护地番茄产量、氮素吸收和土壤Nmin(硝态氮和铵态氮)残留的影响。试验结果表明,相同施肥水平下,滴灌施肥较传统的沟灌施肥可以提高番茄的产量,同时促进番茄地上部分对氮、磷、钾养分的吸收量,在0~40cm土层中滴灌施肥方式土壤Nmin残留量明显高于沟灌施肥土壤Nmin残留量(P〈0.05),说明滴灌施肥方式可以减少浅层土壤中的氮素淋失。  相似文献   

8.
以京郊番茄为对象,研究了聚合物包膜控释肥不同用量与有机肥配合施用对设施生产体系产量和品质、硝态氮淋洗和N2O排放的影响。试验设对照(CK)、有机肥(N 134kg·hm-2,OM)、控释肥低量(控释N300kg·hm-2+有机肥N134kg·hm-2,N1)、控释肥中量(控释N 450 kg·hm-2+有机肥N 134kg·hm-2,N2)、控释肥高量(控释N600kg·hm-2+有机肥N134kg·hm-2,N3)、习惯施肥(速效N600 kg·hm-2+有机肥N 134 kg·hm-2,N4)共6个处理,用土壤溶液提取器测定淋洗液硝态氮浓度,静态箱法测定N2O排放。结果表明,与习惯处理(N4)相比,3个控释肥处理(N1、N2、N3)氮素淋洗损失明显减少,60 cm和100 cm土层的提取液硝态氮平均浓度降幅分别为15.4%~24.0%和17.8%~30.0%,拉秧后0~100cm土壤剖面硝态氮残留降低21.0%~59.8%。各处理N2O平均排放通量为60~144μg N·m-2·h-1,实际排放量为2.47~5.33kg·hm-2,施肥造成的N2O排放损失率为0.08%~0.39%;与习惯处理相比,控释肥处理平均减排38.1%~47.0%。番茄产量介于113~132 t·hm-2,N2处理产量最高,但处理间未见显著差异;N4处理的番茄硝酸盐含量最高,与对照差异显著。与习惯处理的多次施肥相比,控释肥与有机肥混配一次性基施显著降低了硝态氮淋洗量和N2O排放损失,控释肥高氮水平下氮素损失风险有增加趋势。试验结果显示施用中低量控释肥为协调番茄高产、高效与环保的较好选择。  相似文献   

9.
不同水分处理对滴灌春小麦水分利用效率及产量的影响   总被引:1,自引:0,他引:1  
研究不同水分处理对春小麦滴灌水分在土壤中的分布状况、水分利用效率(WUE)及产量的影响。结果表明,不同水分处理对滴灌小麦土壤水分的分布有很大影响,同一土层0~20cm土壤含水率在灌溉前后具有明显的变化;0~40cm土层土壤含水率整体趋于平缓,总体表现为W1处理(150mm)〈W2处理(300mm)〈W3处理(450mm)〈W4处理(600mm);40~60cm土层距离滴灌带不同远近的土壤含水率变化不明显。W3处理的WUE最高,漫灌的WUE最低。滴灌小麦和漫灌小麦不同水分处理的产量间差异达显著水平,同一水分处理不同行之间由于灌溉量的不同也表现差异性;两品种产量均随灌水增加而增加,灌水过多而降低的趋势。  相似文献   

10.
吉林省半干旱地区春玉米连作体系氮素平衡研究   总被引:12,自引:0,他引:12  
【目的】为吉林省半干旱地区春玉米科学施用氮肥提供指导。【方法】2004~2005年,在吉林省西部半干旱地区进行2年田间试验,研究不同施肥方式(推荐施肥、农民习惯施肥、一次性施肥)对玉米产量、吸氮量及氮素效率的影响,同时对该地区土壤氮素平衡与运转情况进行评价。【结果】一次性施肥处理受年际间降雨量影响较大,易产生后期植株脱氮现象,玉米产量及氮肥利用率年际间不稳定;农民习惯施肥处理基肥施用量过高,造成氮肥表观利用率降低;一次性施肥处理和农民习惯施肥处理下,氮肥表观残留率较高,达到了50%左右;这2种施肥方式下,0~90 cm土层土壤残留Nmin分别为201和278 kg/hm2,会对地下水体产生潜在威胁。推荐施肥处理下,玉米产量、生物量和吸氮量均较稳定,同时氮素利用率(REN)、氮素生理利用率(PEN)、氮素农学利用率(AEN)、氮素偏生产力(PFPN)均较高;在两季玉米连作后,0~90 cm土层土壤残留硝态氮为128.5 kg/hm2,可以在环境友好的前提下获得较高的产量。【结论】在吉林省西部半干旱地区,一次性施肥与农民习惯施肥会导致土壤中无机氮高残留,使氮素损失增加,对该地区的生态环境造成一定威胁,而推荐施肥是较合理的施肥方式。  相似文献   

11.
【目的】冬小麦-夏休闲是旱地重要的轮作模式之一,随着氮肥用量的增加,一季小麦收获后土壤中残留的硝态氮含量不断增加,夏季休闲期间集中降水的特点是否会导致硝态氮淋溶损失,这一问题值得关注。【方法】连续3年(2013—2015年)采集黄土高原南部长武和杨凌两地夏季休闲前后0—200 cm土壤剖面样品,测定土壤硝态氮含量,研究不同降水年和不同施氮量下黄土高原旱地夏季休闲期间土壤剖面硝态氮累积及淋溶特性。【结果】小麦收获后,长武0—200 cm土壤剖面硝态氮累积量在97—328 kg·hm~(-2),平均193 kg·hm~(-2);杨凌施氮量为120kg N·hm~(-2)及240 kg N·hm~(-2)时,土壤剖面硝态氮累积量分别为156 kg·hm~(-2)及366 kg·hm~(-2),增加施氮量土壤剖面累积硝态氮量显著增加。不同降水年夏季休闲前后硝态氮在土壤剖面的淋溶与降水量密切相关,长武降水量高的丰水年2013年(296 mm)休闲前位于40—60 cm深度的硝态氮累积峰在休闲后到达80 cm以下,淋溶作用明显。而降水量少的欠水年2014年(157 mm)休闲后土壤剖面未发生硝态氮的淋溶。降水量一般的平水年2015年(200mm)休闲后在0—100 cm土壤剖面会发生硝态氮向下淋溶,但是迁移深度不大。在降水量高的2013年夏季休闲后100—200 cm土壤剖面增加的硝态氮累积量是0—100 cm的2.5倍,而2014年夏季休闲后土壤剖面增加的硝态氮累积量主要出现在0—100 cm土壤剖面。杨凌2013年试验期间降水量低(仅220 mm,属欠水年),休闲后两个施氮处理的土壤剖面硝态氮累积峰甚至出现轻微上移;同为欠水年,2015年降水量有所增加(288 mm),休闲后0—100 cm土壤剖面中发生硝态氮下移达到20—40 cm。而降水量更高的2014年(346 mm,平水年),休闲后土壤剖面中硝态氮累积峰较休闲前下移了60—80 cm。相比休闲前,降水量低的2013年夏季休闲后土壤剖面增加的硝态氮累积量主要出现在0—100 cm土壤剖面,淋溶作用弱。而降水量高的2014年施氮处理100—200 cm土层硝态氮的累积增加量显著高于0—100 cm土层,其中施氮240 kg N·hm~(-2)处理0—100 cm土壤剖面硝态氮累积量显著下降,有大量硝态氮被淋溶到100—200 cm土层。【结论】黄土高原旱地小麦收获后0—200 cm土壤剖面硝态氮累积量高。夏季休闲期间降水量是影响黄土高原旱地土壤剖面硝态氮淋溶的关键因素,降水量高的年份土壤剖面硝态氮淋溶作用明显。夏季休闲期间长武遇上丰水年土壤中硝态氮淋溶风险大,而杨凌遇上平水年就会出现硝态氮淋溶风险。  相似文献   

12.
猕猴桃园氮素投入特点及硝态氮累积和迁移特性研究   总被引:1,自引:1,他引:1  
为指导果园科学施肥及合理评价施肥对环境的影响,2014年对该区域的陕西省周至县俞家河小流域氮素投入状况进行了调查,并采集猕猴桃园土壤样品进行测定,评价了猕猴桃园土壤硝态氮(NO_3~--N)累积及降雨对坡地猕猴桃园NO_3~--N迁移特性的影响。结果表明:该区域猕猴桃园氮素投入量过高,盈余量高达1195 kg·hm~(-2),0~200 cm土壤剖面NO_3~--N累积量高达827kg·hm~(-2),且52.1%的NO_3~--N累积在100~200 cm土层;对于坡地猕猴桃园,坡下部0~200 cm土壤剖面NO_3~--N累积量明显高于坡上部,在经过一个雨季后,0~200 cm土壤剖面NO_3~--N发生明显的向深层土壤淋溶现象且坡下部与坡上部0~200 cm土壤剖面NO_3~--N累积量差异增大。俞家河小流域猕猴桃园大量氮素盈余,造成土壤NO_3~--N过分累积,在集中降雨条件下,NO_3~--N出现明显的向深层土壤淋溶且可能存在顺坡向下迁移的趋势,不仅造成氮肥的损失,而且对地表及地下水环境构成潜在威胁。  相似文献   

13.
控释氮肥对洋葱-棉花套作体系产量及土壤氮含量的影响   总被引:3,自引:1,他引:2  
2012—2013年在济宁市鱼台县,通过大田试验研究了速效氮肥和控释氮肥在0、100、200、300 kg·hm-2 4个氮素水平下对洋葱-棉花套作体系产量及土壤氮素含量变化的影响。结果表明:氮素用量200、300 kg·hm-2时,速效氮肥和控释氮肥处理棉花产量显著高于氮素用量100 kg·hm-2处理;氮素用量100、200 kg·hm-2时,控释氮肥棉花产量较速效氮肥处理分别显著增加17.3%和7.7%;施氮200 kg·hm-2的控释氮肥处理较氮素用量100 kg·hm-2的控释氮肥处理的籽棉显著增产14.5%,但与施氮300 kg·hm-2的控释氮肥处理相比差异不显著。控释氮肥较速效氮肥更能提高0~20 cm土层NO-3-N的含量,但对土壤中NH+4-N含量无显著影响。施用控释氮肥能够提高洋葱和棉花产量,施氮量为200 kg·hm-2的控释氮肥处理为本试验条件下的最优施肥处理。  相似文献   

14.
过量施肥及盲目灌溉导致宁夏引黄灌区水稻种植中氮素淋失严重,氮肥利用率低下.探索能够在保障水稻产量前提下减少氮素淋失、提高氮素利用率的环保型施肥技术是该区域实现农业可持续发展的现实需求.本研究在前期研究的基础上,就不同施肥技术对灌区水稻生育期内氮素淋失、氮素利用率及水稻产量的影响效果进行比对,旨在为后续工作中技术筛选及推广提供依据.试验共设置4个处理,分别是(1)无肥对照(CK):不施氮肥;(2)常规施肥(FP):施用氮肥300 kg N·hm-2, 60%作为基肥,分蘖和孕穗期各追肥20%;(3)侧条施肥(SD):施用水稻专用控释肥120 kg N·hm-2,水稻插秧时将肥料一次性施入;(4)育苗箱全量施肥(NB):施用水稻专用控释肥,用量为120 kg N·hm-2,育秧时一次性全量施入育秧盘.结果表明,采用SD和NB在氮素用量较FP降低60%的情况下,水稻产量都不会下降.SD可以显着降低稻田氮素淋溶损失,FP水稻生育期内可溶性总氮(TN)、硝态氮(NO3-N)和铵态氮(NH4+-N)淋失量分别为39.89、26.22 kg·hm-2和5.49 kg·hm-2,SD和FP相比,TN、NO3-N和NH4+-N的淋失量分别减少18.97、11.18 kg·hm-2和2.27 kg·hm-2;同时SD可以显着提高宁夏灌区水稻氮素利用率,较FP提高21.4%. NB和FP相比,TN、NO3-N和NH4+-N淋失量分别减少14.36、10.14 kg·hm-2和1.84 kg·hm-2,氮素利用率亦提高15.7%,但是TN、NO3-N和NH4+-N淋失量较SD处理分别增加4.61、1.04 kg·hm-2和0.43 kg·hm-2,同时氮素利用率亦减少5.7%.综合考虑水稻产量和环境效益,SD更适合在宁夏灌区水稻种植中推广应用.  相似文献   

15.
节水减氮对温室土壤硝态氮与氮素平衡的影响   总被引:9,自引:1,他引:8  
【目的】针对日光温室蔬菜生产中肥水超量施用问题,以提高氮肥利用率和实现温室菜田可持续利用为目标,研究节水减氮在温室蔬菜生产中的增效潜力,推荐适宜水氮用量。【方法】采用当地典型种植茬口冬春茬黄瓜-秋冬茬番茄,在沟灌方式下设计农民习惯灌溉(W1,>100%田间持水量)和减量灌溉(W2,75%-95%田间持水量)2个灌水水平;农民习惯施氮(N1)、较农民习惯减氮25%(N2)、减氮50%(N3)和无氮(N0)4个氮肥水平,对应黄瓜季施氮1 200、900、600和0 kg·hm-2,番茄季施氮 900、675、450和0 kg·hm-2,共W1N1、W2N2、W2N3、W1N0和W2N0 5个水氮用量组合处理,3年6季定位研究蔬菜关键生育期0-100 cm土体硝态氮动态变化,分析氮素平衡和经济效益,推荐合理水氮用量。【结果】农民习惯水氮管理W1N1处理土壤硝态氮积累明显,并向土壤深层迁移。节水减氮W2N3处理3年0-60 cm土层硝态氮供应保持在相对适宜水平,平均硝态氮含量为53.3-80.9 mg·kg-1;0-100 cm土体硝态氮未出现明显积累,平均含量较W1N1处理下降13.9%-31.1%;氮素表观损失下降56%,氮肥利用率提高2.4-3.3个百分点,并保持较高的经济效益。依据0-20 cm土层硝态氮含量与产量之间的显著回归关系,获得最佳产量土壤硝态氮含量黄瓜为37.4-72.9 mg·kg-1,番茄应低于90 mg·kg-1。根据蔬菜氮素需求量和关键生长期适宜的土壤硝态氮含量,结合根区土壤水分监测,推荐与供试条件相近的温室,沟灌冬春茬黄瓜产量160-180 t·hm-2下灌水450-550 mm配合施氮600 kg·hm-2较适宜,秋冬茬番茄产量70-80 t·hm-2时灌水170-200 mm配合施氮250 kg·hm-2较适宜。分析水氮减施增效原因为:节水20%-30%使土壤硝态氮趋近根区分布,节氮50%降低土壤剖面硝态氮积累,节水20%-30%配合减氮50%将根区硝态氮供应维持在适宜水平的同时,降低进入损失途径的氮素,从而实现增效。【结论】华北平原沟灌温室黄瓜-番茄农民生产现状节水减氮潜力较大。优化水分管理是实现氮肥减施增效的关键,在合理灌水量下,推荐适宜的施氮量是水氮减施增效的有效措施。较农民习惯管理节水20%-30%配合减氮50%,能有效降低氮素损失,提高氮肥利用率,保持较高经济效益。  相似文献   

16.
为研究清液肥对滴灌棉田氮素气态损失的影响,试验共设5个处理:不施氮肥(N0)、常规化肥施氮300 kg·hm-2(TN300)和240 kg·hm-2(TN240)、清液肥施氮300 kg·hm-2(LN300)和240 kg·hm-2(LN240)。结果表明:施用氮肥会显著增加滴灌棉田土壤NH3挥发和N2O排放,各施氮处理NH3挥发总损失量较N0处理增加1.7~3.8倍,N2O累积排放量较N0处理增加1.8~2.7倍。常规施氮水平下,LN300处理较TN300处理NH3挥发损失降低42.4%,N2O排放减少14.1%;同一减氮水平下,LN240处理NH3挥发损失和N2O排放分别减少29.5%和18.9%。等量氮肥投入下,施用清液肥可显著降低土壤NO3--N和NH4+-N含量,土壤脲酶活性和反硝化酶活性也显著降低。相关性分析表明土壤NH3挥发总量和N2O累积排放量与0~20 cm土壤NH4+-N含量、NO3--N含量、土壤脲酶活性和硝酸还原酶呈显著正相关,与土壤亚硝酸还原酶和羟胺还原酶无显著性相关。与常规化肥施氮相比,TN240、LN300和LN240处理棉花籽棉产量较TN300处理分别增加12.6%、9.1%和24.5%,LN240处理棉花籽棉产量较TN240处理提高10.6%。综上,清液肥施氮240 kg·hm-2可显著减少滴灌棉田氮素气态损失,提高棉花产量,是一种值得推荐的施肥措施。  相似文献   

17.
滴灌施肥水肥耦合对温室番茄产量、品质和水氮利用的影响   总被引:43,自引:3,他引:40  
【目的】水肥是限制作物增产的两大因子,不合理的灌溉与施氮不仅难于增加产量,还会增加土壤剖面硝态氮累积、降低作物品质及水氮利用效率。针对西北半干旱地区温室蔬菜灌水和施肥存在的问题,通过滴灌施肥水肥耦合对温室番茄产量品质和水氮利用的影响,研究滴灌施肥条件下温室番茄高产优质高效的灌水施肥制度。【方法】通过温室番茄小区试验,设常规沟灌施肥(100%ET0,N240-P2O5120-K2O150 kg·hm-2)以及3个滴灌水量(高水W1:100%ET0、中水W2:75%ET0、低水W3:50%ET0)和3个施肥水平(高肥F1:N240-P2O5120-K2O150 kg·hm-2、中肥F2:N180-P2O590-K2O112.5 kg·hm-2、低肥F3:N120-P2O560-K2O75 kg·hm-2),共10个处理,分析番茄生长产量、品质、土壤硝态氮分布以及水氮吸收利用对不同灌水量和施肥量的响应规律。【结果】与常规沟灌施肥相比,滴灌施肥增加番茄产量31.04 t·hm-2、干物质量3 208 kg·hm-2和总氮吸收量73.13 kg·hm-2,增幅分别为46.9%、54.0%和82.4%,同时增加果实中维生素C(Vc)含量61.8%;降低土壤中硝态氮含量;水分利用效率(WUE)和氮肥利用率(NUE)分别增加46.4%和76.5%。滴灌施肥条件下,W1F2处理总干物质量最大(9 248 kg·hm-2),产量和植株氮素吸收量均与灌水量和施肥量正相关,增加施肥量带来的增产效应大于灌水,且W1F2处理产量和氮素吸收量增加幅度最大。增加灌水量,降低施肥量,WUE逐渐下降,NUE逐渐上升,W3F1处理WUE最大(47.7 kg·m-3),W1F3处理NUE最大(65.6%),且W3F2处理的WUE和W1F2处理的NUE增加幅度明显大于其他处理。土壤中硝态氮含量受灌水、施肥以及水肥交互效应影响显著,随灌水量的增加呈先增大后降低的趋势,随施肥量的增加逐渐增大,在滴头正下方没有明显累积,在湿润土体的横向边缘产生累积,W1F2处理土壤中硝态氮含量较小,分布更均匀。增大灌水量显著降低番茄Vc、番茄红素和可溶性糖含量以及营养累积量;增大施肥量,品质含量以及营养累积量呈先增大后降低的趋势;W3F2处理获得最大的Vc和番茄红素含量及营养累积量,最大的可溶性糖含量及较大的营养累积量。【结论】温室番茄滴灌施肥技术能够达到高产优质和高效的目的,当追求产量和氮肥利用率时,高水中肥(W1F2:100%ET0,N180-P2O590-K2O112.5 kg·hm-2)处理能获得较高的产量和NUE以及较低的土壤硝态氮含量;当追求品质和水分利用效率时,低水中肥(W3F2:50%ET0,N180-P2O590-K2O112.5 kg·hm-2)处理获得最大的维生素C、可溶性糖和番茄红素含量以及较高的水分利用效率。  相似文献   

18.
在宁夏引黄灌区的青铜峡稻田,通过4年的田间定位试验研究了长期配施有机肥对水稻籽粒产量、氮素吸收利用和氮素淋失特征的影响。试验共设置5个处理:不施用氮肥(T1)、常规化学氮肥300 kg·hm-2(T2)、优化化学氮肥210 kg·hm-2+有机肥氮肥90 kg·hm-2(T3)、优化化学氮肥240 kg·hm-2(T4)、优化化学氮肥195 kg·hm-2+有机肥氮肥45 kg·hm-2(T5).用稻田退水采集装置收集20、60 cm和100 cm深度的淋溶水,计算氮素淋失量。试验结果表明:在常规施氮和优化施氮水平下配施有机肥,水稻籽粒产量没有降低,氮肥利用率分别提高了5.2、1.9个百分点;配施有机肥可以显着降低田面水中的总氮浓度和土体中氮素淋失量,20 cm土层中总氮淋失量分别降低了9.99%和6.02%,100 cm土层中总氮淋失量分别降低了17.9%和9.3%;氮平衡特征计算结果表明,同等施氮水平下配施有机肥氮素表观损失量分别降低了12.1%和12.5%.与常规只施用化肥比较,配施有机肥可以显着降低氮素的淋洗损失,优化施氮水平下配施有机肥(T5处理)为协调水稻产量和环境安全的合理选择。  相似文献   

19.
渭北旱地冬小麦监控施氮技术的优化   总被引:13,自引:1,他引:12  
【目的】氮素是限制旱地小麦增产的主要养分因子,不合理施氮不仅难以增加小麦产量,还会造成土壤剖面硝态氮累积、氮素损失增大和氮素利用效率降低。优化氮肥用量推荐方法、解决旱地小麦不合理施氮问题,对旱地小麦可持续生产有重要意义。【方法】基于平衡土壤氮素携出,以稳定作物产量、培肥土壤和调控硝态氮残留为目标,对现有的土壤硝态氮监控施氮方案(施氮量=作物目标产量需氮量+肥料氮素损失量+收获/播前土壤硝态氮安全阈值(55.0/110.0 kg•hm-2)-环境氮素投入量-秸秆还田带入氮素量-种子带入氮素量-生长季土壤氮素矿化量-收获/播前1 m土壤硝态氮)进一步优化,得出公式:施氮量=作物目标产量需氮量+收获/播前土壤硝态氮安全阈值(55.0/110.0 kg•hm-2)-收获/播前1 m土壤硝态氮。应用这一方法在西北典型旱地冬小麦种植区渭北旱塬两年6县30个地块布置田间试验。【结果】在该区域由于不合理施氮或没有规范的氮肥推荐方法,不同试验地播种前1 m土壤累积硝态氮积累量变化较大,介于34.2-708.4 kg•hm-2,平均为165.2 kg•hm-2,其中有17块在小麦播种前超过110 kg•hm-2。优化后的监控施氮技术确定的小麦氮肥用量介于30.0-247.3 kg•hm-2,平均为128.4 kg•hm-2,较农户习惯氮肥用量(171.6 kg•hm-2)减少25.2%。监控施肥和农户习惯施肥的小麦籽粒产量平均分别为5 658和5 489 kg•hm-2,籽粒氮含量为20.8和20.3 g•kg-1,两者均无显著性差异。监控施肥能够显著提高氮素利用率和氮肥偏生产力,较农户习惯施肥分别提高24.0%(由46.3%提高到57.3%)和130.1%(由34.9 kg•kg-1提高到80.3 kg•kg-1)。收获时,农户习惯施肥0-100 cm土层的硝态氮残留量介于17.4-203.4 kg•hm-2,地块间变幅大,平均为70.6 kg•hm-2;而监控施肥介于15.6-113.9 kg•hm-2,平均为51.4 kg•hm-2,稍低于预期的55 kg•hm-2的目标。在降水较多的夏闲期,优化的监控施氮技术可使0-100 cm土层的硝态氮淋失减少47.9%。【结论】优化后的旱地冬小麦监控施氮技术可以方便地确定和有效调控氮肥用量,稳定小麦籽粒产量,提高氮素利用效率和氮肥偏生产力,降低土壤硝态氮残留和淋溶。  相似文献   

20.
滴灌施肥条件下土壤水分和硝态氮的分布规律   总被引:5,自引:0,他引:5  
用硝态氮含量为258 mg/L的肥料溶液在土上进行滴灌施肥试验,研究不同滴头流量(2,4,6L/h)、不同灌水施肥量(8,16,24 L)条件下,水分和硝态氮在土中的运移分布规律。结果表明,灌水施肥量为8 L时,随滴头流量增大,滴头周围地表积水区半径增大,水分径向运移距离增大、竖向入渗水量减小;当滴头流量为2 L/h时,随灌水施肥量增大,水分径向和竖向运移距离增大,径向运移距离增大幅度较竖向明显。滴灌施肥条件下硝态氮在土壤中的运移受对流作用控制;湿润体内土壤硝态氮含量随距滴头径向距离增大而减小,随距滴头竖向距离增大而增大,在竖向湿润锋附近有硝态氮累积现象;随滴头流量增大,硝态氮在土壤中的径向运移距离增大,0~25 cm土层滴头径向25 cm范围土壤硝态氮平均含量增大;随灌水施肥量增大,滴头径向15 cm范围0~15 cm土层土壤硝态氮含量增大1、7.5~30 cm土层硝态氮含量减小,过度增大灌水施肥量会导致土壤湿润锋附近硝态氮淋溶下渗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号