首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
林分密度对水曲柳人工林碳储量的影响   总被引:3,自引:2,他引:1  
为了解林分密度对水曲柳人工林碳储量的影响规律,在黑龙江省帽儿山地区,选择不同造林密度(2 200、2 500、4 400、10 000株/hm2)的13年生水曲柳人工林,采用样地调查的方法在每种密度处理各设置3块样地,进行了林分碳储量与乔木层年净固碳量的测定。结果表明:水曲柳林分密度增加,其乔木层、凋落物层、土壤层以及生态系统碳储量均随之增大,而林下植被层碳储量随林分密度的增加而减小。其中不同密度林分的乔木层、林下植被层、土壤层以及生态系统碳储量差异均显著(P<0.05),而凋落物层在各密度之间差异不显著(P>0.05)。4种密度水曲柳林分碳储量的空间分配均表现为:土壤层>乔木层>凋落物层>林下植被层,土壤层和乔木层碳储量分别占生态系统总碳储量的79.6%~82.4%和14.1%~17.0%,是人工林碳库的主要组成部分。此外,水曲柳人工林乔木层的年净固碳量随林分密度的增加而增大,造林密度为2 200株/hm2林分的年净固碳量明显低于其他密度林分(P<0.05)。上述结果说明提高造林密度对增加幼龄林分碳储量具有显著作用。   相似文献   

2.
滨海沙地不同树种人工林生物量及凋落物碳氮养分归还   总被引:1,自引:0,他引:1  
基于福州市滨海后沿沙地上营造的人工林的调查,以9年生尾巨桉(Eucalyptus urophylla×E.grandis)、木麻黄(Casuarina equisetifolia)、纹荚相思(Acacia aulacocarpa)3种主要人工林为对象,采用Monsi分层切割法(乔木层)和样方收获法(草本层、凋落物层)获取这3种人工林的生物量,研究其生物量分配格局及凋落物碳氮养分归还。结果表明,尾巨桉乔木层地上部分生物量为49.950t·hm-2,地下部分生物量为15.270t·hm-2,分别占生态系统总生物量的62.08%和18.98%;草本层生物量为0.698t·hm-2(0.87%);凋落物层生物量为14.539t·hm-2(18.07%)。木麻黄乔木层地上部分生物量为51.630t·hm-2,地下部分为20.270t·hm-2,分别占生态系统总生物量的62.65%和24.60%;草本层生物量为0.017t·hm-2(0.02%);凋落物层生物量为10.488t·hm-2(12.73%)。纹荚相思乔木层地上部分生物量为51.130t·hm-2,地下部分为13.760t·hm-2,分别占生态系统总生物量的64.43%和17.34%;草本层生物量为0.093t·hm-2(0.12%);凋落物层生物量为14.369t·hm-2(18.11%)。3种人工林地上各器官生物量均表现为:树干>树枝>树皮>树叶。这3种人工林生态系统总生物量与乔木层生物量排序相同,表现为木麻黄(82.40t·hm-2)>尾巨桉(80.46t·hm-2)>纹荚相思(79.35t·hm-2),且生物量分配格局均为乔木层>凋落物层>草本层。3种人工林的净生产力表现为木麻黄(16.21t·hm-2·a-1)>尾巨桉(14.00t·hm-2·a-1)>纹荚相思(12.51t·hm-2·a-1)。凋落物碳氮养分年总归还量表现为木麻黄(3.953t·hm-2·a-1)>尾巨桉(3.329t·hm-2·a-1)>纹荚相思(2.751t·hm-2·a-1)。  相似文献   

3.
采用Komiyama红树林异速生长模型,对海南清澜港杯萼海桑生态系统的植被生物量、碳密度及其空间分布特征进行研究。结果表明:杯萼海桑植被层总生物量为(177.89±14.36)t·hm-2,碳密度为(80.35±6.92)t·hm-2,其中,乔木层生物量为(176.52±14.23)t·hm-2,碳密度为(79.69±6.86)t·hm-2,占林分植被层总碳密度的99.2%。杯萼海桑生态系统总有机碳库密度为(536.91±54.99)t·hm-2,其中0~105 cm土壤碳密度为(456.56±48.07)t·hm-2,占总碳贮量的85.0%,植被有机碳密度占总碳贮量的14.85%,林下植被层和现存凋落物层仅占0.15%。  相似文献   

4.
选取贵州黔东南地区3 种典型林分为研究对象,通过外业调查和室内测定,研究常绿阔叶次生林、马尾松和 柏木人工林的碳储量差异及在乔木层、林下层和土壤层的分布规律。结果表明:1)常绿阔叶次生林、马尾松和柏木 人工林乔木层碳储量分别为42.31、30.82 和8.34 Mg/ hm2 ,林下层碳储量表现为常绿阔叶次生林显著大于柏木人 工林和马尾松人工林,常绿阔叶次生林土壤层有机碳密度为112.60 Mg/ hm2 ,分别是马尾松和柏木人工林的1.8 和 4.8 倍。2)林分碳储量分布均表现为土壤层(0 ~30 cm) 乔木层 林下层,土壤碳储量占林分总碳储量的66% 以 上,乔木层碳储量占林分碳储量的26%以上。3)较少受到干扰的植被常绿阔叶次生林碳储量为155.87 Mg/ hm2 , 显著高于马尾松和柏木人工林,表明研究区植被恢复有较高的固碳潜力。研究区植被恢复应以马尾松人工林为 主,适当辅以乡土常绿阔叶树种,将有利于当地森林碳汇效益的增加。   相似文献   

5.
柳州市马尾松、杉木、桉树人工林碳储量及其分配   总被引:1,自引:0,他引:1  
对广西柳州市杉木(Cunninghamia lanceolata)、马尾松(Pinus massoniana)和桉树(Eucalyptus sp.)人工林生态系统碳含量、碳储量进行了研究,结果表明:不同发育阶段马尾松、杉木、桉树人工林林下植被含碳率变化幅度为40.06%~47.71%,枯落物含碳率为35.81%~44.71%.0~~60 cm土层含碳率变化幅度为0.32%~ 1.26%,0~20 cm土层含碳率表现为杉木>马尾松>桉树.马尾松、杉木、桉树人工林生态系统碳储量分别为180.7、124.8、68.5 t/hm2,马尾松和桉树人工林生态系统碳储量均表现为随林龄的增加而增加.马尾松、杉木、桉树人工林乔木碳储量分别为122.54、54.8、32.29 t/hm2,分别占其总碳储量的67.8%、43.91%、49.01%.马尾松、杉木、桉树人工林下植被碳储量表现为马尾松>桉树>杉木.马尾松、杉木、桉树人工林枯落物碳储量分别占其总碳储量的3.21%、3.73%、5.11%.马尾松、杉木、桉树人工林土壤碳储量分别为54.06、67.33、41.22 t/hm2,0~20 cm土层碳储量成为土壤的主体,马尾松0~.20 cm土层碳储量占其土壤总碳储量的48.6%,杉木占44.7%,桉树为41.37%.  相似文献   

6.
[目的]探究桂西北马尾松人工林的碳汇功能,为合理评估其生态效益提供依据。[方法]以广西南丹县26年生马尾松人工林为研究对象,采用野外调查和实验室分析方法,研究马尾松人工林生态系统碳含量、碳储量及其空间分布格局。[结果]马尾松平均碳含量为489.3 g·kg~(-1),不同器官碳含量依次为:树叶干材干皮树根树枝;林下灌木层、草本层和凋落物层碳含量分别为453.0、425.6和433.8 g·kg~(-1);林地土壤有机碳含量变化范围为6.20~32.15 g·kg~(-1),随土壤层深度增加而降低。马尾松人工林生态系统碳储存量为232.13 t·hm~(-2),其中乔木层、灌木层、草本层、凋落物层和土壤层分别为92.67、1.36、1.12、2.49和134.49 t·hm~(-2),依次占整个生态系统碳贮量的39.92%、0.59%、0.48%、1.07%和57.94%。马尾松人工林乔木层年净生产力为10.83 t·hm~(-2)·a~(-1),年净固碳量为5.41 t·hm~(-2)·a~(-1),年净吸收CO_2量为19.83 t·hm~(-2)·a~(-1)。[结论]桂西北马尾松人工林具有较高的碳汇功能,为该区域碳汇林业的经营提供了依据。  相似文献   

7.
赣南马尾松天然林不同生长阶段碳密度分布特征   总被引:3,自引:2,他引:1  
目的通过对赣南马尾松天然林碳密度的分析, 为其区域尺度上森林碳储量的准确估算以及开展碳汇林业的科学经营提供参考依据。方法基于标准地调查与碳含量的测定, 采用单因素方差分析和LSD多重比较法, 分析不同林龄、层次及不同组分碳密度的分布特征。结果(1) 林分总碳密度为129.00 t/hm2, 表现为成熟林(185.41 t/hm2)>近熟林(140.54 t/hm2)>中龄林(114.21 t/hm2)>幼龄林(75.83 t/hm2); 各层碳密度为土壤层(80.02 t/hm2)>乔木层(43.81 t/hm2)>林下植被层(4.60 t/hm2)>凋落物层(0.57 t/hm2), 分别占总碳密度的62.03%、33.96%、3.57%和0.44%;每层碳密度的分配规律表现为:乔木层为树干>树枝>树根>树叶, 林下植被为草本层>灌木层, 凋落物为半分解层>未分解层, 土壤各层单位厚度的碳密度随土层深度的增加而逐渐降低。(2)随林龄的增大, 各层碳密度的变化规律不尽相同。其中, 乔木层、土壤层的碳密度均呈增加趋势, 且均以成熟林最大, 成熟林的林木各组分碳密度均显著高于其他龄组(P < 0.05), 而土壤层碳密度在不同龄组间均存在显著差异(P < 0.05);林下植被层碳密度随林龄变化表现出先减后增趋势, 但以幼龄林最大。不同龄组间的灌木层、草本层及其各组分碳密度均有显著差异(P < 0.05), 其中灌木层碳密度以近熟林最大, 草本层碳密度以成熟林最大; 凋落物层碳密度随林龄增大表现为先增后减的趋势, 近熟林未分解层碳密度显著高于其他龄组(P < 0.05), 而半分解层碳密度各龄组间差异不显著(P>0.05)。结论土壤层和乔木层是马尾松天然林整个生态系统碳密度的主体; 随着林龄的增大, 乔木层及其各组分和土壤层的碳密度均呈增加趋势, 而林下植被层、凋落物层及其各组分碳密度的变化并未表现出相同规律。   相似文献   

8.
森林抚育作为重要的森林经营措施,深刻影响着森林生态系统碳储量及其分布。根据抚育前后中幼龄栎类Quercus天然次生林林分密度,分为轻度(21%),中度(35%),重度(54%)和对照(0%)等4个抚育处理水平,抚育2a后进行测树学调查,研究乔木层各组分、林下植被、凋落物层和土壤碳储量及碳氮分布特征。结果表明:基于16株树干解析资料建立的栎类单株生物量估算模型,可以用来估算栎类各组分生物量;不同抚育强度栎类天然次生林乔木层干、皮、枝、叶和根组分中,叶的碳、氮质量分数最大;乔木层、林下植被和凋落物层碳、氮质量分数均随抚育强度增大而增加,碳氮比(C/N)均随抚育强度增大有减小的趋势;不同抚育强度乔木层各组分生物量和碳储量大小顺序为干枝根叶皮,轻度、中度、重度和对照的乔木层碳储量分别为21.42,32.62,51.24,14.35t·hm~(-2);林下植被、凋落物层生物量和碳储量大小关系为对照轻度中度重度,各层碳储量大小关系均为乔木层凋落物层林下植被层;重度抚育有利于提高土壤表层有机碳、全氮质量分数及碳储量,重度抚育时3个指标值分别达到16.93 g·kg~(-1),3.88 g·kg~(-1)和22.79 t·hm~(-2)。森林抚育有利于栎类天然次生林乔木层、林下植被层生物量和碳储量的提高,不利于凋落物层碳储功能的发挥,而乔木层在栎类天然次生林中碳储量最大,碳汇潜力也最大。  相似文献   

9.
【目的】探明坡位对不同林分密度长白落叶松人工林生态系统碳储量及其分配特征的影响,为制定长白落叶松人工林增汇经营技术提供科学依据。【方法】以长白落叶松人工林为研究对象,利用生物量与含碳率估算植被层碳储量,土壤剖面法估算土壤层碳储量,并分析不同坡位、不同林分密度长白落叶松人工林生态系统的碳储量及其分配特征。【结果】上坡位和中坡位低密度长白落叶松人工林生态系统碳储量分别为236.69 t/hm2和235.66 t/hm2,二者差异不显著;上坡位和中坡位高密度长白落叶松人工林生态系统碳储量分别为272.26 t/hm2和330.72 t/hm2,中坡位生态系统碳储量显著高于上坡位。长白落叶松人工林生态系统碳储量依次为土壤层>植被层>凋落物层;高密度林分中坡位土壤有机碳储量占比显著低于高坡位,而植被层有机碳储量占比中坡位显著高于高坡位。【结论】立地条件对低密度林分的碳储量影响较小;对于高密度林分,立地条件好有利于提高植被层碳储量,中坡位择伐强度可以适当加大,但不能超过上坡位的2倍。  相似文献   

10.
河南省鸡公山位于暖温带-亚热带过渡区,马尾松(Pinus massoniana Lamb)栎类混交林是该区域的典型林分类型。分别在鸡公山海拔200、400和600 m的天然松栎混交林分中设置样地,调查分析松栎混交林生态系统土壤碳密度和碳储量,测定林下植被层和凋落物层碳储量,用生物量方程法估测了乔木层各组分的生物量及碳储量,并与鸡公山天然落叶栎林生态系统总碳储量作了比较分析。结果表明,松栎混交林生态系统总碳储量为179.74t·hm-2,空间分布特征表现为乔木层(97.57 t·hm-2)土壤层(70.56 t·hm-2)凋落物层(10.57 t·hm-2)灌木层(0.83 t·hm-2)草本层(0.21 t·hm-2)。在不同采样层次上碳含量存在显著差异。200、400和600 m 3个海拔高度上,松栎混交林生态系统仅在土壤层碳储量存在显著差异(P0.05),其他各层次差异均不显著;土壤层碳储量随着海拔升高而显著增加,随着土层深度增加而显著降低(P0.05)。松栎混交林生态系统总碳储量与林分密度正相关,随着样地林分密度的增加而呈现上升趋势。松栎混交林总碳储量高于落叶栎林,但二者之间没有显著差异。这些结果揭示了该地区松栎混交林生态系统碳储量的分布特征,也为当地碳汇林业的经营提供了依据。  相似文献   

11.
晋西吕梁山基岩山地与黄土丘陵区生态过渡带的植被和土壤具有明显的过渡性和特殊性。以过渡带内黄土丘陵边缘区的油松人工林为对象,分别研究了油松人工林的合理经营密度、生物量和碳密度特征,并在此基础上分析了油松人工林生态系统的管理对策。应用标准样地调查资料,研究油松树冠面积与胸径的相关关系,并构建出拟合精度高(相关系数R=0.875 6)的模型:Y=0.762 4exp(0.166 4*X),其中,Y为树冠面积,X为径阶。应用上述模型,根据径阶计算理论树冠面积和理论密度,在此基础上考虑树冠重叠度的影响,作为理论密度修正,进而编制了不同郁闭度条件下的油松林分合理密度经营表。研究区域内油松人工林年龄范围在16~37 a,乔木层生物量维持在39.97~110.93 t·hm-2,年均生产力范围在1.04~3.09 t·hm-2·a-1,乔木层碳密度范围为19.99~55.47 t·hm-2,均低于全国其他气候相对湿润的油松产区。该地区油松人工林多存在初植密度过大的问题,经过几十年的生长,很多林分已经开始出现明显的退化特征,建议该地区应适时进行抚育间伐,间伐标准可参照林分生长现状及林分密度管理表来确定。  相似文献   

12.
以黄土高原区油松人工林为研究对象,对比3种不同密度的油松人工林群落特征和物种多样性差异,构建两者间耦合关系模型,探讨不同密度油松人工林经营策略。结果表明:1)不同密度油松人工林群落特征具有差异,高密度(3 400~4 600株·hm-2)林分的角尺度显著大于中密度(2 200~2 800株·hm-2)、低密度(1 400~2 100株·hm-2)林分;低密度林分的混交度、平均胸径和冠幅显著高于中、高密度林分。2)不同密度林分的乔木、灌木和草本物种多样性指数均与其自身显著正相关;低密度林分中,乔木层和灌木层多样性指数、灌木层和草本层多样性指数显著负相关。3)不同植物群落具有不同特征,中、高密度林分物种多样性对群落贡献较高,低密度林分群落植物空间分布合理,生长状况良好。4)通过改善植物群落的空间分布结构和生长状况,可以提升中密度林分群落中乔木、灌木和草本的物种多样性,而在高、低密度的林分中,则需采取其他经营策略。  相似文献   

13.
应用异速生长模型对广西3种不同经营措施的油茶人工林生物量及其分配特征进行研究。结果表明,中耕除草+施肥、中耕除草+施肥+垦复2种抚育措施的油茶林其叶生物量、枝生物量、根生物量、果生物量和总生物量高于对照林分,嫁接换冠油茶林的叶生物量、枝生物量、根生物量和总生物量低于对照林分,但其果生物量高于对照林分;油茶人工林生态系统的总生物量除采用嫁接换冠措施的油茶人工林生物量(28.86 t·hm-2)低于对照林分(40.60 t·hm-2),中耕除草+施肥(13.76 t·hm-2)、中耕除草+施肥+垦复(20.60 t·hm-2)2种抚育措施的油茶人工林生物量均高于对照林分(12.54、12.91 t·hm-2);在群落生物量分配格局方面,无论对照林分还是采用嫁接换冠、抚育经营措施的油茶人工林均为乔木层所占比例最高。其中,采用中耕除草+施肥、中耕除草+施肥+垦复2种抚育措施的油茶林乔木层生物量所占比例均高于对照林分,嫁接换冠的油茶林其乔木层生物量所占比例低于对照林分,而中耕除草+施肥、中耕除草+施肥+垦复2种抚育措施的油茶林凋落物层生物量和灌草层生物量低于对照林分,嫁接换冠油茶林凋落物层生物量和灌草层生物量所占的比重高于对照林分。乔木层生物量在各器官的分配比例均为枝干>树根>树叶,且枝干和树根占乔木层总生物量的50%以上;在考虑果实和花芽的情况下,花芽生物量所占比重最低,果实生物量所占比重在嫁接换冠油茶林仅较枝生物量和根生物的比重低。表明经营措施可以影响油茶人工林的生物量,通过抚育措施在一定程度上利于油茶人工林乔木层生物量的积累,进而提高油茶人工林生态系统的总生物量,而嫁接换冠措施对于油茶人工林生物量的影响短期表现为生物量的减少;但从经济效益的角度,无论是抚育措施还是嫁接换冠均可提高油茶果实生物量。  相似文献   

14.
油松中龄林间伐的密度效应   总被引:1,自引:0,他引:1  
以陕西省黄龙山林区油松人工中龄林为研究对象,分析了不同间伐保留密度(3 900、3 000、2 250株·hm-2和1 800株·hm-2)的4类林分油松林木的生长特征及树干形质的差异。结果表明:间伐保留密度对油松林木生长的影响不同,随着保留密度的减小,林木胸径增大,且保留密度为1 800株·hm-2时,可以显著促进胸径的增大。林木单株材积随着保留密度的减小而明显增大,林分蓄积不断减小并趋于稳定;保留密度对树高的影响较弱;保留密度对林木树干形质的影响也不同,随着间伐保留密度的减小,林木尖削度、径高比、通直度、分枝数及分枝基径均增大,分叉率先降低后上升,活枝下高随保留密度的减小而降低。方差分析表明,除树高和林分蓄积外,间伐保留密度对油松中龄林林木生长及树干形质均有显著性影响。  相似文献   

15.
蔡清楼 《安徽农业科学》2011,39(12):7122-7124
通过对将乐县5年生马尾松人工林生物量空间分布格局进行研究。结果表明,马尾松人工林生物总量为35.512 t/hm2,其中乔木层、草本层和凋落物层生物量分别为28.608、3.861、3.043 t/hm2,分别占总生物量的80.56%、10.87%及8.57%;乔木层各器官生物量占乔木层总生物量的比例大小依次为:干(40.90%)〉枝(25.73%)〉根(23.87%)〉叶(9.50%);就乔木层地上部分生物量分配格局而言,马尾松枝和叶主要分布在1~3 m区分段,而干则主要分布在0~2 m区分段。  相似文献   

16.
探究滇中高原磨盘山云南松天然林枯落物凋落动态及各组分化学计量特征,为云南松林地的经营管理以及森林生态系统养分再分配提供理论依据。以磨盘山云南松林为对象,采用野外枯落物收集器法对云南松林枯落物凋落动态进行研究,并通过室内试验对云南松林枯落物化学计量特征进行了分析。结果表明:1)云南松枯落物凋落动态存在明显的月变化,月凋落量变化曲线呈双峰型,凋落量最大值出现在5月,最小值出现在9月,叶的凋落动态与总枯落物凋落动态基本一致,而花、果枯落物具有明显的季节性;2)云南松枯落物各组分之间TC、TN、TP含量及C/N、C/P、N/P均存在显著差异(P<0.05),各组分的平均TC、TN、TP含量变动范围分别为433.37~473.74、3.1~6.77、1.26~1.76 g·kg-1,云南松枯落物的平均C/N值高于全球枯落物平均值,而C/P和N/P值则低于全球枯落物;3)云南松林枯落物年凋落总量为12 472.36 kg·hm-2,叶凋落量占比最大,占到年凋落总量的58.25%;云南松枯落物TC、TN、TP年归还量分别为5 672.40、66.24、17.52 kg·hm-2,叶枯落物的养分年归还量均显著(P<0.05)高于其他各组分。  相似文献   

17.
高云昌    赵广智    马增旺    邢存旺    刘春鹏   《西北林学院学报》2022,37(5):30-35
通过林木保存率、林木生长、自然更新和防护功能4个指标来反映河北坝上地区北京杨和樟子松2种主要人工固沙林的生物学稳定性。结果表明,北京杨随着林龄的增长,死亡株数迅速增加,25 a林木保存率仅有21.5%,且生长衰退现象严重,大多为萌生个体,幼树全部为萌蘖更新,5 a和25 a林分内的输沙率分别为5.7、5.1 g·cm-1·d-1;24 a樟子松林木保存率达到70.4%,但生长分化现象严重,林内存在天然更新幼苗,但数量很少,8 a和24 a生林分内的输沙率分别为1.9、0 g·cm-1·d-1。坝上地区北京杨人工固沙林生物学稳定性差,而樟子松人工固沙林则有较高的生物学稳定性。人工固沙林的生物学稳定性从林分层次反映了造林树种对造林地自然环境的适应性,研究结果可为坝上地区的造林树种选择和经营管理提供理论参考。  相似文献   

18.
李鹏      零天旺  杨章旗      陈虎      颜培栋      陆绍浩 《西北林学院学报》2022,37(5):9-16
探索不同林龄马尾松人工林土壤和针叶养分特征及其相关性,为马尾松人工林高效培育提供理论参考。采用时空互代法,以桂中不同林龄(4、9、15、19、22、30、56 a)马尾松人工林为对象,利用冗余分析和结构方程探讨马尾松人工林林龄对土壤和针叶养分含量的影响。结果表明,林龄对土壤和叶片养分均具有显著影响,随林龄的增加土壤pH呈先增后减趋势,中龄林中最大,有机碳、全N、全P、碱解N和速效态K、Ca、Mg、Zn和B含量呈先减后增的U形变化,中龄-成熟林阶段最小,全K和有效P含量呈W形变化;针叶养分含量随林龄增加呈波动性变化,C、N、P和K含量在过熟林中最大,Ca、Zn分别在中龄林、成熟林中含量最大,Mg和B均在幼龄林中最大。针叶K、Ca、Mg、Zn和B与土壤对应元素呈显著正相关,土壤有机碳、全N、有效P和速效K是影响马尾松叶片养分含量变化的敏感因素,土壤速效元素对叶片养分的正向效应显著,而土壤有机碳和全量养分的负向效应显著。综上,不同林龄阶段马尾松土壤和叶片养分存在显著差异,在马尾松15 a后,土壤和叶片养分均有所下降,尤其是受N素和微量元素限制,为此在马尾松中龄林后,建议施用N肥满足其健康生长,并辅以适量微量元素,以增强植物光合作用和蛋白质的合成及抗逆性。  相似文献   

19.
以陕西省永寿县马莲滩林场22年生侧柏人工林为研究对象,比较分析了林分密度具有明显差异的2组侧柏人工林的树冠二维特征,以期为黄土高原地区不同密度侧柏人工林的合理修枝抚育提供理论依据。结果表明:1) 平均冠幅和平均活枝下高均以密度较小林分(2 080~2 120株·hm-2)大于密度较大林分(3 560~3 760株·hm-2),而平均冠长和平均冠长率均以密度较大林分较大;2) 不同密度的侧柏人工林中,相同径阶和相同树高组林木的活枝下高、冠长和冠长率均具有极显著差异,而冠幅只在3 m树高组具有显著差异。表明林分密度对林木冠幅、活枝下高、冠长和冠长率均具有显著影响。因此,对于不同密度的侧柏人工林应采取不同的修枝强度进行人工抚育。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号