首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
甲氧丙烯酸酯类杀菌剂的环境降解特性研究   总被引:1,自引:0,他引:1  
为了掌握甲氧丙烯酸酯类(Strobilurins)杀菌剂在环境中的行为归趋,评价其在环境中的风险性,采用室内模拟实验法,对嘧菌酯、氰烯菌酯和醚菌酯3种Strobilurins杀菌剂在不同温度、pH水体中,不同类型土壤中及氙灯光照环境下的降解特性展开实验。结果表明:在25 ℃, pH5.0、7.0、9.0条件下嘧菌酯和氰烯菌酯水解缓慢,醚菌酯则较快,降解半衰期范围为0.105 d至1 a以上,其水解特性差异与水体pH值和农药本身结构相关;50 ℃时3种Strobilurins杀菌剂水中降解较25 ℃时水解速  相似文献   

2.
甲基叔丁基醚在地表水中的水解行为及消失动态的研究   总被引:1,自引:0,他引:1  
以地表水为研究对象,对甲基叔丁基醚(MTSE)在水中的消失动态、水解行为及影响因素进行了研究.水解作用研究结果表明:MTBE水解速率受温度和pH的影响.在pH分别为3.29,7.24,9.15的3种缓冲溶液中,25℃时的水解半衰期分别为69.59,81.26,165.8 d;15℃时的水解半衰期分别为107.5,114.6,183.4 d.在相同温度条件下,MTBE在酸性溶液中的水解速率比在中性和碱性溶液中更快.在pH分别为3.29,7.24,9.15的溶液中,水解过程的活化能Ea分别为76.2,74.1,72.0 kJ/mol,说明在不同pH条件下,MTBE的水解反应历程是相同的.模拟水体试验结果表明:MTBE在水中消失动态符合一级反应动力学模式,在室内培养条件下的消失半衰期为25.1~86.5 d,预示了MTBE在环境中的稳定性.  相似文献   

3.
环境因子对土壤中二氯喹啉酸降解的影响   总被引:1,自引:0,他引:1  
为明确环境因素对土壤中二氯喹啉酸降解的影响,以华南地区水稻田土壤为对象,测定其在不同温度、湿度和pH值条件下的降解速率和半衰期。二氯喹啉酸按照1 mg·kg-1的剂量进行添加。不同处理的土壤被放置在各自的培养环境中,1 h,1、3、7、14、21、30、45、60、120 d后取样。用高效液相色谱法对二氯喹啉酸进行定量分析。结果表明:pH值对二氯喹啉酸的降解影响最为明显,中性环境下(pH=7.0)降解最为迅速,半衰期为10.58 d,碱性环境下(pH=8.0)的半衰期为18.53 d,酸性环境下(pH=6.0)降解最慢,半衰期为30.81 d;温度对其降解存在一定影响,在5~25℃范围内,温度升高,二氯喹啉酸降解加快,(25±0.5)℃的半衰期为15.04 d,(35±0.5)℃的半衰期为17.33 d;湿度对二氯喹啉酸的降解无明显促进作用,30%、60%、90%湿度条件下,其半衰期分别为24.32、20.69和25.77 d。因此,调节土壤pH值为中性或在25~35℃范围内施用二氯喹啉酸有利于其降解,可减少其残留和药害的发生。  相似文献   

4.
实验室条件下,利用高效液相色谱研究了联苯肼酯在不同初始浓度,温度,pH值,自然水体中的水解动态特性.结果表明:25℃时,联苯肼酯在初始质量浓度为5,10,15,20 mg/L时的质量半衰期分别是70.01,100.46,177.73,330.07d,符合一级动力学方程模型.在初始质量浓度为10mg/L,温度为25,35,45,55,65℃时,水解半衰期分别是100.46,16.66,5.43,1.27,0.74d,温度效应系数Q为1.709~6.029;联苯肼酯水解活化能与温度呈负相关,活化熵的绝对值与温度呈正相关;在25℃,初始质量浓度为10mg/L,pH值为3.0,5.0,7.0,9.0,11.0的缓冲溶液中,水解半衰期分别是53.32,55.01,12.40,6.81,0.51d;在25℃,初始质量浓度为10mg/L,在河水,湖水,自来水,河水灭菌4种自然水体中的半衰期分别是30.40,33.81,17.73,10.36d.温度和pH值对联苯肼酯的水解反应影响较大,在高温、碱性环境下易水解.常温(25℃)下,联苯肼酯在水体中的滞留期较长,建议对其使用和残留情况进行跟踪与监测.  相似文献   

5.
实验室条件下,采用高效液相色谱研究了异■唑草酮水解和在水中的光解动态特性,结果表明,异■唑草酮在碱性缓冲液中水解最快,在酸性缓冲液中水解最慢,其水解速率随着温度的升高而加快,温度效应系数和活化能均是在碱性缓冲液中最低。在pH值分别为4、7、9的缓冲液中,25℃时异■唑草酮的水解半衰期分别为150.70、82.50、3.90 h,50℃时的水解半衰期分别为19.40、4.10、0.75 h,根据我国农药登记试验水解等级划分标准,异■唑草酮属于易水解农药。在25℃,光照度为3 350 lx以及紫外强度为58.8μW/cm~2条件下,异■唑草酮在水中的光解半衰期为6.4 h,根据我国农药登记试验的光解特性等级划分标准,异■唑草酮属于中等光解类农药。  相似文献   

6.
乙酰甲胺磷水解动力学研究   总被引:4,自引:0,他引:4  
采用气谱-质谱联用的分析方法,研究了乙酰甲胺磷在不同pH和温度条件下的水解动力学.结果表明,乙酰甲胺磷在酸性条件下比较稳定,不易水解,在碱性条件下水解速率较快,25℃时,乙酰甲胺磷在pH5.0,7.0,9.0水解速率常数分别为5.3×10-3,1.99×10-2,7.42×10-2 d-1,半衰期分别为130.8,34.83,9.34 d;50℃时,水解速率常数为1.012×10-1,2.04×10-1,7.542×10-1 d-1,半衰期为6.85,3.40,0.92 d.温度升高有利于乙酰甲胺磷的水解反应,pH5.0,7.0,9.0缓冲溶液中的水解活化能分别为94.38,74.47,74.19 kJ/mol;在酸性环境中,水解速率受温度影响更为显著.  相似文献   

7.
三唑酮水解动力学研究   总被引:4,自引:2,他引:4  
采用气相色谱仪分析方法,研究了三唑酮在不同pH和温度条件下的水解动力学情况。实验表明,三唑酮在酸性条件下比较稳定,不易水解,而在碱性条件下水解速度较快。温度升高有利于三唑酮的水解反应,水解活化能为70.47kJ·mol-1,温度效应系数为2.6。三唑酮在模拟水生环境中的实验结果与在缓冲溶液体系中的结果相近,在pH7.18和pH9.25的水中,三唑酮的降解半衰期分别为5.30d和1.15d。  相似文献   

8.
啶虫脒水解动力学研究   总被引:4,自引:0,他引:4  
为全面评价啶虫脒提供理论依据。通过模拟实验,观察啶虫脒在不同温度、不同pH值水体中的水解情况,研究其水解动力学。啶虫脒在酸性条件下非常稳定,中性条件下几乎不水解,当pH值≥8时,其水解加速,且随着pH值的升高,水解速度显著增加。啶虫脒的水解过程符合一级反应动力学方程。30℃条件下,pH值为8、91、0时,其水解半衰期分别为2311、03和11.7 d。pH值为89、和10时,温度每提高10℃,水解速率分别增加3.8、3.1和2.9倍,水解温度效应系数分别为4.8、4.1和3.9,活化能分别为120.1、107.2和103.6kJ/mol。啶虫脒的水解过程符合一级反应动力学方程,属于碱催化水解。pH值和温度的升高显著加速啶虫脒的水解。  相似文献   

9.
分别在不同培养温度、培养基pH值、培养基含水量条件下培养金福菇Tg-505菌株,比较其菌丝的生长速度及生长势,探讨不同温度、酸碱度和培养基含水量对金福菇Tg-505菌丝生长的影响。结果表明:温度在15~35℃范围内,金福菇Tg-505菌丝均能生长,以25℃时菌丝生长势最佳,日平均生长速度最大为5.99 mm;酸碱度在pH 5.0~10.0范围内菌丝均能生长,以pH 7.0~8.0时菌丝生长势最佳,生长速度最快;培养基含水量在50%~75%范围内菌丝能够生长,含水量为65%~70%时,其菌丝洁白、粗壮、长势好,生长速度最快,达到3.77 mm/d以上。  相似文献   

10.
仙客来花粉离体萌发培养条件的优化   总被引:3,自引:0,他引:3  
采用正交法,对比了不同温度、pH、蔗糖浓度和硼酸浓度对仙客来花粉离体萌发的影响,发现对仙客来花粉萌发影响最大的因素是温度和pH,其中pH值在7.0的情况下萌发率显著高于pH 6.0和pH 8.0;在温度为25℃时平均萌发率可达85%以上,且培养3 h后花粉萌发率基本处于稳定状态,温度高于25℃花粉萌发受到抑制。根据试验结果,优化了仙客来花粉萌发的培养条件为配制10%蔗糖、0.075%硼酸和1%琼脂的培养基,pH值调至7.0,在25℃下培养3 h。  相似文献   

11.
借助高效液相色谱紫外检测器法(HPLC-UV),研究了不同pH和温度条件对双草醚钠盐水解的影响,以期为指导双草醚钠盐的合理使用以及评价其环境特性提供科学依据,并为处理该除草剂废水的进一步研究提供基础参数。结果表明,双草醚钠盐的水解速率和机制受其化合物本身的结构和介质的酸碱度影响很大。双草醚钠盐在酸性条件下易水解,酸能催化双草醚钠盐的水解,且随着pH值的降低水解速度加速,当pH为3和5时,双草醚钠盐的水解半衰期分别为2.61、36.67d。双草醚钠盐在中性和弱碱性条件下水解缓慢,当pH为7和9时,双草醚钠盐表现得相当稳定,25℃下经过30d的水解反应均未超过10%,而强碱性环境下的水解速度明显加快。温度升高有利于双草醚钠盐的水解反应,pH4时水解活化能为58.367kJ·mol-1,温度效应为2.6。  相似文献   

12.
采用高效液相色谱法,研究了氯嘧磺隆在不同pH下的水解.结果表明,氯嘧磺隆在中性及碱性条件下稳定,不易水解;在酸性条件下不稳定,易发生水解.随着pH值的增大,氯嘧磺隆的水解反应速率逐渐减慢,速率常数K减小,半衰期相应的增大,氯嘧磺隆在pH 3.0、4.0、5.0、6.0、7.0、8.0、9.0的缓冲液中的水解半衰期分别为...  相似文献   

13.
为明确环境因素对土壤中莠去津降解的影响,以华南地区蔬菜田土壤为对象,采用高效液相色谱法测定了莠去津在不同温度、p H值和湿度条件下的降解速率和半衰期。结果表明:温度对莠去津的降解影响最为明显,在(5"0.5)℃、(15"0.5)℃、(25"0.5)℃和(35"0.5)℃时的半衰期分别为187.30,19.97,14.38,8.87 d,说明莠去津在土壤中的降解速率与温度呈正相关;p H对其降解存在一定影响,当p H值为7.0、8.0和6.0时,半衰期分别为10.95,16.82,14.41 d;湿度对莠去津的降解无明显促进作用,30%、60%和90%湿度条件下,其半衰期分别为13.35,13.64,20.44 d。因此,温度是影响莠去津降解的关键因素,推荐蔬菜地夏季施用莠去津可能更为合理。  相似文献   

14.
采用室内模拟试验研究了噻吩磺隆水解及光解行为,以期为环境和生态安全性评价提供科学依据。土壤样品经乙腈提取,水样经二氯甲烷提取,高效液相色谱仪(DAD检测器)检测。结果表明,噻吩磺隆在不同p H缓冲溶液中水解速率大小依次为p H 4.0、p H 9.0、p H 7.0,在25℃、p H 7.0时,其半衰期最长,达2 310.49 h(96.27 d);噻吩磺隆在纯水中的光解半衰期为2.30 h,土表光解试验在7 d内,光照下光解速率与黑暗状态下无显著差异。温度和p H对噻吩磺隆的水解有显著影响。根据《化学农药环境安全评价试验准则》划分标准,噻吩磺隆水解特性属易水解和较难水解,水中和土表光解特性属易光解和难光解。  相似文献   

15.
嘧菌酯水解动力学研究   总被引:2,自引:1,他引:1  
为指导合理使用嘧菌酯以及评价其环境特性提供依据,并为处理该药剂废水的研究提供基础参数,研究了嘧菌酯在不同温度和pH条件下水溶液中的降解情况。结果表明,嘧菌酯在水中相对稳定,温度和pH是影响嘧菌酯在水环境中降解的两个主要因素;在不同温度条件下,嘧菌酯的半衰期分别为56.1、37.7、15.5、13.6 d,水解速率常数随温度的升高而增加,说明嘧菌酯的水解受温度影响较大,低温抑制水解,高温促进水解;在不同pH值缓冲溶液中,嘧菌酯的半衰期分别为47.9、29.6、17.2 d,水解速率依次为pH9>pH7>pH5,说明嘧菌酯在偏碱性环境中稳定性较差。  相似文献   

16.
采用室内模拟试验,研究植物杀虫活性成分杠柳新苷P在不同水体和不同类型土壤中的降解与移动特性,分析其对不同水体与不同类型土壤的污染风险性。结果表明:温度和pH对杠柳新苷P在水中的降解均有一定程度的影响。温度为50℃、pH=9时,降解速率最快,其水解半衰期为2.36d。土壤降解与土壤淋溶试验表明,杠柳新苷P在麦田土、果园土和菜园土中的降解半衰期分别为4.33、4.25和3.85d,降解速率依次为菜园土果园土麦田土;对比试验研究表明,在未灭菌的土壤中,杠柳新苷P的降解速率比灭菌的土壤中显著加快。  相似文献   

17.
2,4-D丁酯的水解与光解特性研究   总被引:5,自引:2,他引:3       下载免费PDF全文
通过室内模拟试验,研究2,4-D丁酯在不同pH值和温度下的水解动态和在有机溶剂中的光解特性.结果表明,2,4-D丁酯的水解与光解均符合一级动力学方程.在pH 7以下的缓冲溶液中,2,4-D丁酯的水解反应十分缓慢,但在碱性溶液中其水解速率加快.25℃下2,4-D丁酯在pH 5、7和9的缓冲溶液中的水解半衰期分别为23.5、5.8 d和10.7 min.2,4-D丁酯的水解速率随温度升高而增加,在温度为15、25℃和35℃的pH 7缓冲溶液中的水解半衰期分别为21.5、5.8、3.9 d,平均温度效应系数为2.57.2,4-D丁酯水解反应的活化能与温度之间无明显相关性,而活化熵与温度呈显著相关性.2,4-D丁酯的水解主要由活化熵所驱动.采用GC-MS技术对2,4-D丁酯水解产物进行鉴定,确定水解产物主要是2,4-二氯苯氧乙酸和2,4-二氯苯酚.2,4-D丁酯在正己烷中光解速率比在甲醇中快,在丙酮中几乎不发生光解,其光解速率随浓度的升高而减慢.  相似文献   

18.
2,4-D的水解、光解及在土壤中的降解特性研究   总被引:2,自引:0,他引:2  
[目的]研究2,4-D在环境中的降解特性。[方法]采用室内模拟试验方法,测定2,4-D在水体中光解、水解及其在3种土壤中的降解特性,并对其降解特性进行评价。[结果]在常温(25℃)下,2,4-D在pH 5和9时的水解半衰期分别为117.5和79.7 d,较易水解;在pH 7时的水解半衰期为138.6 d,具有中等程度的水解特性。在人工光源氙灯条件下,其光解半衰期仅为4.63 h,较易光解。常温(25℃)下,2,4-D在江西红壤和东北黑土中的降解半衰期分别为86.6和53.3 d,易于土壤降解;而在太湖水稻土中的降解半衰期为20.2 d,易于土壤快速降解。[结论]2,4-D在环境中具有一定的稳定性,对水体和土壤环境存在一定的风险,应严格掌握其使用量和使用时期,加强对2,4-D在环境中的跟踪监测。  相似文献   

19.
为评价氨唑草酮的环境安全性,参照国家标准GB/T 31270-2014的要求,采用室内模拟法研究了氨唑草酮在不同温度和不同pH值缓冲溶液中的水解特性、在不同环境介质中的挥发特性,以及在2种水-沉积物系统中的降解特性。结果表明:氨唑草酮在25 ℃时,在pH值为4或7的缓冲液中水解半衰期均长于365 d,在pH值为9的缓冲液中水解半衰期为90.0 d,属于难水解至中等水解农药。在20~25 ℃、气体流速500 mL·min-1的条件下,氨唑草酮在空气、水和土壤中的挥发率均小于1%,属于难挥发农药。氨唑草酮在湖泊(杭州西湖)水-沉积物系统和河流(京杭大运河)水-沉积物系统中的降解符合一级动力学方程,好氧降解半衰期分别为408 d和630 d,厌氧降解半衰期分别为248 d和990 d,在水-沉积物系统中属于难降解农药。  相似文献   

20.
毒死蜱在环境中的降解研究   总被引:2,自引:0,他引:2  
按照<化学农药环境安全评价试验准则>的规定研究了毒死蜱在环境中降解的特性.结果表明,毒死蜱在壤土、粘土和砂土中的降解半衰期分别为23.9、12.6和9.8 d;在pH值4.0、7.0和10.0的水中的水解半衰期分别为22.4、18.9和0.6d;在pH值4.0、7.0和10.0的水中光降解的半衰期分别为12.8、10.7和0.5 d.毒死蜱在环境中属于易降解的农药.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号