首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
遥感区域大小对森林蓄积估测影响规律的研究   总被引:6,自引:2,他引:6  
该文将 1幅TM遥感图像分别分成 1 4及 1 2幅 ,通过实例分析了 1 4,1 2及整幅TM图像所能达到的几何精校正精度 .然后 ,以样地对应的遥感和GIS信息为影响森林蓄积估测的变量 ,采用最小二乘原理及岭迹分析 ,研究了上述 3种不同面积幅值图像对应林区影响森林蓄积估测的主要变量 .由 3种不同面积遥感区域蓄积估测方程中所含变量的个数、种类及预报精度 ,详细分析了遥感区域大小对蓄积估测的影响规律  相似文献   

2.
为进一步提高遥感模型预测森林蓄积量的精度和稳定性,分析了遥感特征因子、地形特征因子、郁闭度与森林蓄积量之间的相关关系。在此基础上,利用偏最小二乘回归方法构建了森林蓄积量遥感预测模型,生成了三峡库区森林蓄积量空间等级分布图,并与地面实测值进行比较。结果表明:该模型的最佳主成分数为3,且郁闭度、海拔、坡度、TM1、TM2、TM3、TM4、TM5、TM7、NDVI、RVI、TM7/ TM3、TM4 ⅹTM3/ TM2、亮度和湿度为预测森林蓄积量的入选变量;森林蓄积量预测的调整决定系数为0.524,相对误差为7.33%,均方根误差为1.763 m3 ;利用该模型计算出三峡库区森林总蓄积量约为1郾12 亿m3 ,总体预测精度达到89.58%。研究结果为提高森林蓄积量遥感预测的精度提供了一种有效手段,有利于大面积应用和推广。   相似文献   

3.
为进一步提高遥感模型预测森林蓄积量的精度和稳定性,分析了遥感特征因子、地形特征因子、郁闭度与森林蓄积量之间的相关关系。在此基础上,利用偏最小二乘回归方法构建了森林蓄积量遥感预测模型,生成了三峡库区森林蓄积量空间等级分布图,并与地面实测值进行比较。结果表明:该模型的最佳主成分数为3,且郁闭度、海拔、坡度、TM1、TM2、TM3、TM4、TM5、TM7、NDVI、RVI、TM7/TM3、TM4×TM3/TM2、亮度和湿度为预测森林蓄积量的入选变量;森林蓄积量预测的调整决定系数为0.524,相对误差为7.33%,均方根误差为1.763m3;利用该模型计算出三峡库区森林总蓄积量约为1.12亿m3,总体预测精度达到89.58%。研究结果为提高森林蓄积量遥感预测的精度提供了一种有效手段,有利于大面积应用和推广。  相似文献   

4.
Box-Cox变换在遥感数据建模中的应用   总被引:1,自引:0,他引:1  
以山东省2006年共15景TM数据和2002年的ETM+数据为基础,结合地面542个样地调查数据,采用多元回归估计的方法,建立蓄积量与遥感信息之间的回归方程,对森林蓄积量进行估测。但由于TM1—TM7波段的灰度值和蓄积量值之间的线性关系不够明显,通过对参与建模变量进行了Box-Cox变换,建立森林蓄积量反演模型,提高了模型的估测精度,解决了在大尺度范围内利用TM数据对森林蓄积量估测问题。  相似文献   

5.
王红岩  高志海  王琫瑜  白黎娜  吴俊君 《安徽农业科学》2010,38(32):18472-18474,18517
利用TM遥感数据以及同期获得的野外调查样地数据,研究了河北省丰宁满族自治县森林地上生物量的遥感估测技术。提取TM遥感影像6个波段反射率及DVI、NDVI、PVI、RVI、VI3、SLAVI和SAVI 7个植被指数,分析了森林样地地上生物量与各个因子间的关系,得出相关系数较小(均小于0.400);因此采用Stepwise逐步回归法,建立了多元回归模型。结果表明,ρ2、ρ3、ρ4、ρ54波段反射率和有效叶面积植被指数(SLAVI)结合建立的多元回归模型,可用于森林生物量的遥感估测,估测的R2值达0.730,留一交叉验证均方根误差RMSE最小,达33.712。利用2008年的全覆盖TM影像,结合丰宁遥感分类图像,获得了丰宁县2008年森林地上生物量分布图,森林植被总生物量为1.805×107t。  相似文献   

6.
森林蓄积量遥感估测在森林资源管理中具有十分重要的意义。以建德市为研究区,利用2007年TM遥感影像和2007年森林资源2类调查数据,对杉木树种分立地质量等级和不分地位等级2种类型建立蓄积量的遥感估测模型,并进行精度检验。其中立地质量等级依据小班平均高和平均年龄建立的地位级表划分为好、中、差3种类型,以每个小班的总蓄积量为因变量,小班各单个遥感因子信息总量为自变量。结果表明:以TM遥感影像主成分分析中第1主成分为自变量的模型拟合效果最好,相关系数R均在0.67以上,最高为0.868;利用预留独立样本对模型精度进行验证,不分地位级总体估测精度为90.31%,分立地质量等级好、中、差3种类型总体的估测精度分别为96.1%、97.24%、95.56%,分立地质量类型建模的精度明显优于统一建模的精度。研究结果为森林蓄积量遥感估测提供一种改进的思路,且为提高森林生物量和碳储量遥感估测精度提供一种参考方法。  相似文献   

7.
  目的  森林是整个陆地碳循环系统中最大的有机碳贮库,准确地估测森林地上生物量影响着全球碳源与碳储量的分析与评价。本文旨在评价利用Landsat8 OLI、高分一号光学数据、ALOS-1 PALSAR-1SAR 3组不同源遥感数据估测森林AGB的潜力,进而剖析光学数据和SAR数据在估测森林AGB方面的差异。  方法  首先对Landsat8 OLI、高分一号光学数据、ALOS-1 PALSAR-1SAR数据分别提取波段比值、植被指数、纹理信息,对ALOS-1 PALSAR-1SAR数据同时提取极化分解信息;然后,利用随机森林算法对不同数据提取的特征参数进行重要性排序,选择排序靠前的特征进行建模;最后,利用KNN-FIFS算法分析不同特征组合,对4组数据建立4个模型估测森林AGB,并使用留一交叉验证法对4个模型估测森林AGB值进行精度评价。  结果  使用植被因子、波段比值、纹理因子、极化分解信息4种特征参数分别对3组数据进行建模估测森林AGB,基于Landsat8 OLI数据反演森林AGB的精度评价结果为R2 = 0.50,RMSE = 33.34 t/hm2;基于高分一号数据估测精度为R2 = 0.36,RMSE = 37.60 t/hm2;基于PALSAR纹理特征估测精度为R2 = 0.45,RMSE = 35.40 t/hm2;基于PALSAR全极化分解信息估测精度为R2 = 0.63,RMSE = 28.84 t/hm2。  结论  参数提取方法相同时,即基于植被因子、波段比值、纹理信息3种特征参数估测森林AGB,其光学数据和SAR数据的反演潜力基本一致;参数提取方法不同时,即SAR数据加入极化分解信息估测森林AGB,与光学数据相比,SAR数据对森林AGB的反演潜力较好。   相似文献   

8.
基于机载激光雷达的森林地上碳储量估测   总被引:1,自引:0,他引:1  
以内蒙古大兴安岭生态站为研究对象,以2012、2013年的66块样地数据和2012年同步获取的机载Li DAR遥感数据为数据源,分别采用多元线性回归和随机森林回归算法,通过对比不同算法间的估测精度差异,选择更适于研究区的估测方法,实现研究区森林地上碳储量的遥感估测。结果表明:随机森林回归算法的估测精度最优,模型训练精度(R2为0.861,RMSE为11.133 t/hm2,rRMSE为0.279)和预测精度(RMSE为17.956 t/hm2,rRMSE为0.342,估测精度范围40.898%~95.129%,平均估测精度76.385%)均优于多元线性回归的模型训练结果 (R2为0.676,RMSE为11.846 t/ha,rRMSE为0.351)和模型预测结果(RMSE为22.703 t/hm2,rRMSE为0.636,估测精度范围45.824%~94.752%,平均估测精度69.859%)。机载Li DAR数据的高度变量和密度变量与森林地上碳储量均具有显著相关性,高度变量相关性更为显著。随机森林回归算法对区域森林地上碳储量的估测结果趋于真实分布情况,效果比较理想。  相似文献   

9.
以四川省遂宁市安居区为研究区域,研究了基于小班对象的森林蓄积量遥感估测模型的构建与合理性诊断。首先论述了建立森林蓄积量模型所需的各种数据,包括定性、定量数据以及遥感影像的派生数据。其次采用最大膨胀因子法及残差平方和法对选取的60个小班样地数据进行最优变量的选择,最终TM2、TM5、TM7、TM4×37、有林地、郁闭度等6个变量成为估测模型的主要因子。再次选取24个样地数据并采用残差分析方法对构建的模型进行合理性诊断,诊断结果显示模型基本合理。最后选用岭迹法对其余36个样地进行模型构建。构建的模型所测蓄积量的相对误差达8.0%,可应用到生产实践当中。  相似文献   

10.
利用RS和林分因子估测帽儿山林场森林可燃物负荷量   总被引:2,自引:0,他引:2  
以东北林业大学帽儿山实验林场为研究区域,以少量野外定位调查数据与其对应的遥感信息和GIS信息为基础,选用岭回归分析方法,对影响森林可燃物负荷量估测的遥感因子和GIS因子进行了筛选优化,找出了TM(4×3)/7、TM4/3、海拔等影响可燃物负荷量估测的主要因子,建立了以像元为单位的森林可燃物负荷量估测模型。该模型的预测偏差为23%,可用于实现区域性森林可燃物负荷量的定量估测。  相似文献   

11.
利用径向基神经网络,结合森林资源清查的930个样地调查数据和对应的TM影像数据,选取与森林生物量相关性较大的3个植被指数TM4/57、ARVI和KT2作为神经网络的输入变量,对临安市森林碳储量的空间分布进行模拟。结果显示,利用径向基神经网络较好地重建了森林碳储量空间分布和变化,模拟结果与样地实测值间的一致性好,为区域森林碳储量的估测研究提供了方法支持。  相似文献   

12.
以石台县为研究地,结合Rapideye高分遥感影像和不同森林类型样地林木地上生物量调查数据,采用Pearson双变量相关分析方法筛选模型变量,分别用多元线性回归和随机森林算法建立不同森林类型的遥感地上生物量估测模型,并进行模型估测精度对比分析。结果表明,叶绿素红边模型(CRM)与叶绿素绿波模型(CGM)2个指数与针叶林、阔叶林生物量在0.01水平上的相关性极显著,且在其多元线性回归模型和随机森林模型中两者均被挑选为建模变量。另外,与生物量相关性较强的纹理特征主要集中的红光波段和红边波段,且仅MEAN、VAR、SM3个滤波对生物量估测贡献较大,可作为建模变量。阔叶林、针叶林和针阔混交林3种森林类型的地上生物量模型估测精度均表现为随机森林模型优于多元线性回归模型。随机森林模型生物估测绝对均方误差在12.8760~36.5363之间,相对均方误差在20.20%~45.95%之间;多元线性回归生物量估测绝对均方误差在22.0425~46.4494之间,相对均方误差在34.58%~58.42%之间。  相似文献   

13.
Hyperion高光谱数据森林郁闭度定量估测研究   总被引:20,自引:3,他引:17  
该文探讨和评价了利用星载EO-1 Hyperion高光谱遥感数据定量估测森林郁闭度的能力.高光谱数据光谱特征空间降维采用两种方式, 一种是光谱特征选择的波段选择法(BS),另一种是光谱特征提取的主成分变换法(PCA).从森林资源变化图上获取200个样点的实测郁闭度值,130个用于建模,70个用于验证.对应图像的取值采用单像元值(NP)和3×3窗口的平均值(W33) 两种方法.两种光谱特征降维方式和两种图像取值方法构成4种估测模型(BS-NP、BS-W33、PCA-NP和PCA-W33).分析过程为:①对图像进行预处理,选出质量好的波段;②采用逐步回归技术提取与郁闭度相关性高的波段或变量;③建立多元回归模型估测郁闭度;④估测精度验证.经检验,估测精度分别为: BS-NP 83.17%、BS-W33 84.21%、 PCA-NP 85.62% 和 PCA-W33 86.34%.初步结果表明,光谱特征提取的主成分变换分析法比光谱特征选择的波段选择法的郁闭度估测更有效;3×3窗口的图像取值方法比单像元取值方法的估测精度高.   相似文献   

14.
为探究Landsat8 OLI反演蓄积量的潜力,研究不同特征选择方法对蓄积量反演精度及不同蓄积量反演模型对反演精度的影响。以湖南省怀化市排牙山国有林场作为研究区,森林资源二类调查数据作为样地地面实测数据,选用Landsat8 OLI作为遥感数据源,将传统的Pearson相关系数法及主成分分析法2种方法结合,得到一种顾及变量相关性的主成分分析法(PCA-P)对遥感变量进行降维。使用3种变量选择方法构建了随机森林(RF)、K最近邻(KNN)、支持向量机(SVR)、多元线性回归(MLR)模型进行森林蓄积量的估测,使用决定系数(R2)、均方根误差(RMSE)、相对均方根误差(RRMSE)对蓄积量估测模型进行精度评价。结果表明:通过Pearson相关系数结合方差膨胀因子得到IB2、IND25、IMSR3个遥感变量,其与蓄积量相关性分别为0.716、0.623、0.597。使用主成分分析法得到前3个主成分,累计贡献率为93.42%。通过PCA-P得到前2个主成分,累计...  相似文献   

15.
为研究利用国产GF-1号卫星影像进行森林资源定量估测的可行性,本文选择我国东北大兴安岭地区某林业局为试验场地,采用GF-1号卫星影像16m分辨率的WFV多光谱数据,结合试验区域的一类样地调查资料,建立以样地为单位的森林蓄积量估测方程,进行森林蓄积量定量估测。为有效设置可能影响蓄积量估测的遥感信息,本文重点分析了遥感比值波段的设置和优选对蓄积量估测模型建立和估测精度等的影响规律。研究结果表明,设置不同种类的比值波段将影响最优变量筛选结果,高分遥感信息对提高森林蓄积量估测精度有较大影响。  相似文献   

16.
为提高森林蓄积量遥感估测精度,探讨哑变量技术在蓄积量遥感估测中的作用。以云南省普洱市思茅区为研究区,以Landsat 8 OLI和93块森林资源二类调查角规控制样地数据为基础,使用随机森林(random forest)算法进行遥感变量因子的选择,并以龄组为哑变量分别构建基于哑变量的SVR和PLSR蓄积量估测模型,采用留一交叉验证对结果进行评估。结果表明,使用随机森林算法进行变量的选择有效减少了自变量的维度,提高了计算效率;其次,哑变量引入后,PLSR和SVR 2种回归模型的估测精度都比无哑变量方法有明显的提高,且SVR的估测结果优于PLSR;在引入哑变量后SVR模型的决定系数R2由0.59提高到0.68,相对均方根误差rRMSE由36.76%降低至32.97%,PLSR模型的决定系数R2由0.53提高到0.62,相对均方根误差rRMSE由39.41%降低至35.24%。在森林蓄积量的遥感估测中,哑变量技术的应用可以在一定程度上解决不同蓄积量大小对估测结果造成的影响,进而提高蓄积量的估测精度。  相似文献   

17.
针对区域尺度森林地上生物量的分布情况,以大兴安岭生态观测站为例,提出了一种融合光学影像纹理和机载LiDAR点云特征的森林地上生物量遥感估测方法。该方法首先提取Landsat 8 OLI不同波段在不同运算窗口下的纹理特征;然后对机载LiDAR点云进行滤波提取地面点,并利用地面点对点云数据进行高度归一化处理,提取点云特征因子;最后结合提取的遥感特征因子,利用支持向量回归的方法对研究区森林地上生物量进行估测,并对结果进行精度验证。结果表明:不同波段和窗口尺寸的建模精度差异较大,蓝光波段在7×7运算窗口下模型精度最高(R~2=0.73,R_(MSE)=22.32 t/hm~2);点云高度分位数变量的建模精度呈正态分布,变量H_(50)的建模精度最高(R~2=0.75,R_(MSE)=19.24 t/hm~2);与单一的遥感特征变量相比,融合光学影像纹理和机载LiDAR点云特征的模型精度有了一定提高,且针叶林和混交林的估测R_(MSE)分别为19.63和20.40 t/hm~2。因此,该方法可以为区域性的森林地上生物量估测提供有效参考。  相似文献   

18.
基于随机森林模型的陆地卫星-8遥感影像森林植被分类   总被引:6,自引:0,他引:6  
以黑龙江省漠河县为研究区域,采用陆地卫星-8遥感影像为数据源,结合影像的光谱信息和数字高程模型辅助数据,分别采用最大似然分类法(MLC)和随机森林模型法(RFM)对研究区森林植被进行分类,并分析和评价光谱特征变量对模型的重要性、2种分类方法对森林植被类型分类的适用性。结果表明:随机森林分类方法的总体分类精度为81.65%、卡帕(Kappa)系数为0.812。与传统的MLC方法相比,RFM法均提高了3种森林类型的生产者精度和使用者精度,其中针阔混交林精度提高最多。通过分析特征变量的重要性,发现高程、归一化植被指数、红光波段、近红外波段、短波红外波段对模型分类精度有较重要的影响。说明随机森林模型方法结合多源信息是森林植被类型遥感分类的一种有效手段。  相似文献   

19.
以河南西峡县2013年Landsat 8影像及同期217块森林资源连续清查固定样地数据为信息源,以9个植被指数、3个地形指数为自变量,建立多元线性回归、决策与回归树、装袋算法、随机森林4种遥感估测模型;采用十折交叉验证,及相关系数、绝对误差、均方根误差、相对误差、相对均方根误差5个指标,对遥感估测模型进行精度评价,在此基础上,对研究区域2013年的森林地上部分生物量进行遥感估测和空间分析。结果表明:在4种遥感估测模型中,随机森林综合性能最高,装袋法次之,多元线性回归最低;在12个自变量中,地形(海拔、坡度)、土壤(亮度指数、湿度指数)、植被生长状况(垂直植被指数、有效叶面积指数)6个因子是影响研究区域森林地上部分生物量的重要环境变量;2013年,研究区域单位面积森林生物量为38.56 t/hm2,其中低(40 t/hm2)、中(40~60 t/hm2)、高(60 t/hm2)的面积分别占59.92%、24.30%、15.78%;研究区域森林地上部分生物量较高的区域,主要分布在交通不便、森林茂密、人类干扰活动较少的北部石质山区,而较低的区域,主要分布在交通发达,人口密度大,坡度较为平缓的南部鹳河谷地。  相似文献   

20.
杉木人工林冠层高度无人机遥感估测   总被引:2,自引:0,他引:2  
冠层高度是森林资源调查的重要因子。传统的森林树高调查方法存在外业调查难度大,效率低等问题。无人机(UAV)的发展为快速估测森林树高提供了手段。以福建省闽清县的杉木Cunninghamia lanceolata人工林为研究对象,通过Eco Drone-UA无人机遥感系统获取研究区遥感影像,利用Pix4D Mapper软件对航拍多光谱影像进行预处理,构建数字表面模型(DSM),利用1:10 000地形图生成数字高程模型(DEM);基于DSM和DEM叠加相减得到树冠高度模型(CHM),实现杉木树高的提取。结果表明:植被指数和多光谱波段结合随机森林算法能够有效识别真实树冠顶点;利用无人机遥感影像能够实现杉木树高估测,相对误差最小值为0.81%,最大值为23.48%,标准误差为1.48 m,估测精度为90.8%。高程变化对树高估测精度有影响,根据高程大小排序的3组样木实测树高与提取树高的决定系数(R2)分别是0.97,0.84和0.78,标准误差分别是0.67,1.17和1.99 m,在高程较高区域树高估测精度明显高于高程相对较低区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号