首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
为明确嗜水气单胞菌临床分离株对常用氟喹诺酮类药物的敏感性和耐药菌株中gyrA和parC基因的突变情况。试验采用自动化细菌药敏分析仪测定4种常用氟喹诺酮类药物对23株鱼源嗜水气单胞菌的最低抑菌浓度,并依据耐药数目的不同选取9株嗜水气单胞菌,PCR扩增其gyrA及parC基因的喹诺酮抗性决定区(QRDR),直接测序后进行多序列比对分析。结果显示:嗜水气单胞菌对诺氟沙星、氧氟沙星、恩诺沙星和环丙沙星的耐药率依次为8.7%、30.4%、73.9%和43.5%;序列分析发现gyrA基因编码的第83位氨基酸存在Ser→Ile、Ser→Val的突变,parC基因编码的第87位氨基酸同样存在Ser→Ile的突变。表明临床分离的嗜水气单胞菌对恩诺沙星耐药最为严重,氧氟沙星、环丙沙星次之,对诺氟沙星较为敏感;尽管绝大多数耐药菌株的药物靶位基因QRDR区域有突变发生,但是菌株的耐药性与药物靶位基因QRDR区域有无发生突变并不存在线性关联,提示我们药物靶位的变化并非是氟喹诺酮类耐药菌株唯一的抗性机制。  相似文献   

2.
为了解PMQR基因、QRDR突变与气单胞菌喹诺酮类耐药相关性,以116株水产源气单胞菌为研究对象,采用PCR法检测PMQR基因(qnrA、qnrB、qnrS、qepA、aac(6′)-Ib-cr)并分析QRDR靶基因gyrA、parC突变情况,用微量二倍稀释法测定萘啶酸(NAL)、环丙沙星(CIP)、恩诺沙星(ENR)的最小抑菌浓度(MIC)值。结果表明:116株气单胞菌中,有18株(15.52%)菌株携带PMQR基因,其中8株(6.90%)携带qnrS2基因,9株(7.76%)携带aac(6′)-Ib-cr基因,1株同时携带qnrS2、aac(6′)-Ib-cr基因,未检测到qnrA,qnrB和qepA基因;56株(48.28%)菌株发生QRDR靶位点突变,主要突变方式为GyrA:Ser~(83)Ile和GyrA:Ser~(83)Ile+ParC:Ser~(87)Ile;对NAL、CIP及ENR耐药率分别为47.41%、12.07%及11.21%;7株仅携带qnrS2基因菌株未发生QRDR突变,对喹诺酮类药物敏感性略下降,NAL、CIP及ENR的MIC值分别小于4.00、0.50和1.00mg/L;10株携带aac(6′)-Ib-cr基因的菌株均发生QRDR突变并对NAL表现耐药,MIC值均128.00mg/L,其中8株对CIP和ENR表现耐药,MIC值均≥4.00mg/L;发生gyrA单突变或gyrA和parC双突变菌株均对NAL表现耐药,MIC值均≥64.00mg/L,CIP和ENR的MIC值有的4.00mg/L,有的≥4.00mg/L。综上,QRDR靶基因突变可影响水产动物源气单胞菌对萘啶酸的药物敏感性,而气单胞菌对氟喹诺酮类药物耐药可能与PMQR和QRDR协同作用有关。  相似文献   

3.
养殖场分离的耐氟喹诺酮类药物的大肠杆菌基因突变研究   总被引:2,自引:0,他引:2  
【目的】探讨从养殖场动物、环境和饲养员分离的大肠杆菌的gyrA 和parC 基因突变特征。【方法】用琼脂稀释法测定环丙沙星和恩诺沙星对菌株的最小抑菌浓度。PCR扩增gyrA 和parC 基因的喹诺酮耐药决定区,扩增的片段长度分别为525 bp和487 bp,PCR产物直接测序。【结果】在63株突变株中,在GyrA 亚基发生的氨基酸替代有Ser83→Leu(62株)和Asp87→Asn(52株)、Asp87→Tyr(2株)、Asp87→His(2株);ParC 亚基的氨基酸替代有Ser80→Ile(47株)、Ser80→Arg(2株)和Glu84→Val(3株)、Glu84→Lys(4株)、Glu84→Gly(5株)、Glu84→Ala(1株)。环丙沙星对菌株的MIC小于0.125μg·ml-1时,GyrA和ParC亚基均没有任何变异;环丙沙星的MIC为0.125~0.25 μg·ml-1时,GyrA亚基出现单一氨基酸替代;环丙沙星的MIC为0.5~32μg·ml-1时,出现GyrA 83位和87位双替代或者GyrA83和ParC80位双替代;环丙沙星的MIC为4~128μg·ml-1,发生GyrA 双替代和ParC单替代;环丙沙星的MIC在16~128μg·ml-1,发生GyrA双替代和ParC 双替代。【结论】不同来源的耐氟喹诺酮类药物的大肠杆菌GyrA和ParC具有多种氨基酸替代类型,而且GyrA和ParC突变位点的数量与菌株对氟喹诺酮类耐药水平呈正相关。  相似文献   

4.
【目的】探讨在亚抑菌浓度喹诺酮类药物培养后,嗜水气单胞菌Aeromonas hydrophila对喹诺酮类的药物敏感性变化及其耐药机制.【方法】以对喹诺酮类敏感的临床分离嗜水气单胞菌菌株和标准菌ATCC7966为研究对象,分别在含亚抑菌浓度萘啶酸(NAL)和环丙沙星(CIP)的培养基上逐步诱导培养.提取诱导菌的DNA,PCR扩增其gryA和parC基因,测序分析其喹诺酮类耐药决定区(QRDR)突变情况;测定诱导菌对诱导药物和11种非诱导药物的最小抑菌浓度(MIC)及添加外排泵抑制剂羰基氰化氯苯腙(CCCP)后的MIC,分析其敏感性变化与基因突变、外排作用的关系.【结果和结论】诱导后菌株对萘啶酸和环丙沙星的MIC分别提高了1 024和64 000倍,对非诱导药物也有不同程度提高;当萘啶酸和环丙沙星诱导浓度分别达到16和32μg/mL或以上后,诱导菌株gyrA基因编码的氨基酸分别发生Asp87→Tyr和Ser83→Arg的变化,但两者parC基因编码的氨基酸均没有发生突变;添加CCCP后,只有氟喹诺酮类药物的MIC值略有下降,提示嗜水气单胞菌对喹诺酮类耐药存在靶基因突变及主动外排作用等多种耐药机制.  相似文献   

5.
该文探讨从养殖场动物、环境、饲养员等分离的大肠杆菌耐氟喹诺酮类药物的靶位基因gyrA 突变特征.对 养殖环境中分离的8株大肠杆菌进行临床常用氟喹诺酮类药物的耐药性分析、PCR扩增gyrA 基因并测序,并采用 DNASTAR软件对gyrA 基因的氟喹诺酮耐药决定区进行生物信息学分析.结果表明:养殖场环境中分离的菌株编 号为1,6和8的3株大肠杆菌对环丙沙星、左氧氟沙星、诺氟沙星敏感,菌株2,3,4,5和7的5株大肠杆菌对环丙 沙星、左氧氟沙星、诺氟沙星耐药;氨基酸序列分析发现,敏感菌株氨基酸位点未发生突变或83位发生单突变;耐 药菌株的突变发生在83位Ser→Leu替代和87位Asp→Asn替代,且发生氨基酸双替代的菌株均为高度耐药菌株. 表明不同来源的耐氟喹诺酮类药物的大肠杆菌gyrA 基因的氨基酸变异具有多种类型,该研究将更好地诠释养殖 场大肠杆菌的氟喹诺酮类耐药机制.  相似文献   

6.
人工诱导猪链球菌氟喹诺酮耐药株的靶位突变分析   总被引:1,自引:0,他引:1  
以4株临床分离的对环丙沙星和恩诺沙星敏感的猪链球菌2型菌株为研究对象,采用体外递增药物浓度的方法分别诱导了其对环丙沙星和恩诺沙星耐药的菌株,按CLSI推荐方法测定了环丙沙星和恩诺沙星对亲本敏感株和诱导耐药株的MIC,测定了亲本株和诱导耐药株的生长曲线,并采用PCR和基因测序的方法分析了诱导耐药株的DNA回旋酶(GyrA和GyrB)和拓扑异构酶Ⅳ(ParC和ParE)耐药决定区(QRDR)的基因突变和氨基酸序列变化.结果表明:浓度递增法成功诱导了猪链球菌对环丙沙星和恩诺沙星耐药性,其MIC分别由05 mg·L-1上升至128 mg·L-1;与敏感株比较,恩诺沙星与环丙沙星诱导的耐药菌在gyrA和gyrB,或parC和parE耐药决定区的氨基酸序列有突变,除了已报道的与氟喹诺酮耐药相关的ParC的Ser79Phe,GyrA的Ser81Arg,GyrB的Asp315Asn、Ser285Leu和Glu354Lys及ParE的Pro278Ser点突变外,在诱导菌中还出现了一些不曾报道的突变位点和氨基酸缺失,如GyrA的Gln118His和ParE的Asn297Tyr突变,GyrB的288~291位和ParC的62位氨基酸缺失.结果提示:逐步增加药物浓度可以诱导猪链球菌对氟喹诺酮类抗菌药耐药性,并导致主要靶位发生突变.  相似文献   

7.
鸭源大肠杆菌对氟喹诺酮类耐药机制的研究   总被引:1,自引:0,他引:1  
目的:分析鸭源大肠杆菌对喹诺酮类药物耐药机制。方法:微量肉汤稀释法测定4种喹诺酮类药物对22株鸭源大肠杆菌分离菌及恩诺沙星诱导耐药菌的抗菌活性,并通过PCR和DNA测序检测DNA促旋酶和拓扑异构酶Ⅳ基因(gyrA、gyrB、parC、parE)突变情况。结果:22株分离菌及诱导菌均扩增出目的片段,有18株菌对喹诺酮类药物耐药,耐药率约为82%。基因测序及分析表明:在9个测序菌株中,分别有5、2、6和7株出现gyrA、gyrB、parC和parE碱基突变;其中,gyrA基因突变,gyrB与parC或parE基因同时突变与耐药表型一致,3株仅有parC或parE基因突变的菌株并不明显耐药。gyrA基因突变均为双突变(Ser104→Leu和Asp108→Asn)。结论:鸭大肠杆菌对喹诺酮类药物的耐药严重,其主要机制是喹诺酮类耐药决定区(QRDR)的基因突变,特别是多个位点同时突变导致高水平耐药。  相似文献   

8.
耐氟喹诺酮类鸡源性沙门氏菌DNA旋转酶gyrA基因序列分析   总被引:1,自引:0,他引:1  
取临床分离的对5种氟喹诺酮类药物(环丙沙星、氧氟沙星、恩诺沙星、单诺沙星和沙拉沙星)均耐药的9株鸡源性沙门氏菌耐药株,提取其染色体DNA。设计引物gyrAF和gyrAR扩增其DNA旋转酶gyrA基因的氟喹诺酮类耐药决定区(QRDR),对PCR扩增产物进行测序及序列分析。与质控菌株相比,9株临床分离耐药株中只有菌株38和60的gyrA基因发生单碱基突变,菌株38的gyrA基因第371位碱基发生C→T突变,菌株60的gyrA基因第350位碱基发生A→C突变,两处突变均位于QRDR内,其余菌株的核苷酸未发生任何突变。菌株38的碱基突变导致gyrA基因第121位氨基酸发生R→C取代,即Arg→Cys;菌株60的碱基突变导致gyrA基因第114位氨基酸发生M→L取代,即Met→Leu。上述结果提示,gyrA基因QRDR突变并非沙门氏菌耐药性产生的主要原因。  相似文献   

9.
【目的】探究江苏泰州地区猪源致病性大肠埃希菌对喹诺酮类药物的耐药情况以及喹诺酮相关耐药因子的流行情况.【方法】采用纸片法对81株临床分离的猪源致病性大肠埃希菌进行喹诺酮类药物耐药性的检测,通过PCR方法检测质粒介导的喹诺酮类耐药基因(PMQR)和喹诺酮类耐药决定区基因(QRDR)并进行分析.【结果】菌株对萘啶酸和环丙沙星的耐药最为严重,耐药率分别为69.1%和51.9%,且多呈现多药耐药现象.PMQR检测结果表明aac(6′)-Ib-cr基因检出率最高,为76.5%,其次为qnrS,qnrA,qnrD,qnrB,检出率依次为45.7%,34.6%,23.6%,2.5%,未检出qepA基因.QRDR突变分析中,常见的gyrA中Ser83突变为Ile, Asp87突变为Asn或Gly和parC中Ser80突变为Ile均被检测到,突变率分别为84.0%,61.7%和60.5%.而gyrB中Asp426突变为Gly还是首次报道,突变率为35.8%.此外,parC还检测到1株Phe64突变为Pro,2株Gln91突变为His.【结论】江苏泰州地区猪源大肠埃希菌中PMQR基因普遍存在,且QRDR基因突变严重,提示应加强抗生素的合理使用以及对喹诺酮相关耐药基因的监控.  相似文献   

10.
【目的】了解我国耐喹诺酮类致病性嗜水气单胞菌主要毒力基因及引起耐药基因的突变情况,为致病性嗜水气单胞菌的防治及毒力基因和耐喹诺酮类药物机制的研究提供参考依据。【方法】通过计算机检索中国知网(CNKI)数据库、万方数据库、维普(VIP)中文科技期刊数据库、读秀知识库等,检索时限均从建库至2016年4月,查找收集有关嗜水气单胞菌对喹诺酮类药物耐药机制研究及其毒力基因、致病机理的相关文献,采用Cochrane协作网发布的RevMan 5.3进行常规Meta分析,以加拿大卫生药品技术总署编写的ITC软件进行间接比较Meta分析。【结果】最终纳入31篇文献,其中有19篇检测了致病菌株的毒力基因,含457株菌株;11篇检测了致病菌株的耐药基因,共101株菌株;8篇检测了耐药菌株的耐药基因突变位点,共88株菌株。我国致病性嗜水气单胞菌毒力基因的检出率为:astA基因91.30%、altA基因80.42%、aerA基因72.77%、hlyA基因66.85%、actA基因62.13%、ahpA基因56.18%、ahaI基因53.04%。淮河以北地区主要以hlyA基因为主,检出率(67.31%)显著高于淮河以南地区(P<0.05,下同),且高于全国平均检出率;淮河以南地区主要以actA基因为主,检出率(93.59%)显著高于淮河以北地区,也高于全国平均检出率。质粒介导的耐药基因检出率为:qnrB基因50.00%、qepA基因32.00%、qnrS基因27.91%、qnrA基因6.98%、qnrC和qnrD基因未检出。 gyrA83位点单突变检出率显著高于gyrA83、parC87双位点突变检出率[OR=0.49,95% CI(0.08,3.09),P=0.008]。【结论】我国致病性嗜水气单胞菌的分子检测方法为:淮河以南地区以毒力基因actA和aerA为致病性强的判断标准,淮河以北地区以毒力基因hlyA和aerA为致病性强的判断标准。目前我国耐喹诺酮类嗜水气单胞菌的基因突变位点主要是gyrA83单位点突变和gyrA83、parC87双位点突变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号