首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
堆体规模对牛粪堆肥氨气和温室气体排放的影响   总被引:3,自引:0,他引:3  
【目的】分析堆体规模对牛粪堆肥过程中氨气和温室气体排放的影响,为减少温室气体排放提供参考。【方法】采用牛粪与锯末混合物进行堆肥,调节含水率约为66%,牛粪、锯末混合物的质量分别为109.24,217.52和429.53kg,每周翻堆2次。通过发酵棚+INNOVA 1412i多种气体分析仪+INNOVA 1409-24多点采样器测量系统,对3种规模堆肥过程中氨气和温室气体排放进行不间断测试,每小时测量1次进气口和排气口氨气、氧化亚氮、甲烷和二氧化碳的质量浓度,进而对堆肥过程中的温室气体排放进行分析与评价。【结果】单位质量堆肥的氨气、甲烷和氧化亚氮排放率随着堆体规模的增加而增大,CO_2排放率则随堆体规模增加而减小。NH_3-N和N_2O-N分别占堆体初始总氮的12.59%~17.44%和3.29%~4.62%,CH_4-C和CO_2-C分别占堆体初始总有机碳的0.31%~0.41%和20.70%~30.98%。各处理单位质量堆肥的总温室气体排放量(CO_2基础)为241.20~257.36g/kg。【结论】牛粪堆肥过程中,增加堆体规模能降低总温室气体排放量。  相似文献   

2.
东北季节性冻融农田土壤CO2、CH4、N2O通量特征研究   总被引:4,自引:2,他引:2  
为了评估季节性冻融交替对土壤温室气体排放的影响,采用静态暗箱-气相色谱法,监测了东北松嫩平原两种典型农田生态系统(稻田和玉米田)非生长季土壤CO_2、CH_4和N_2O通量变化。研究表明:三种温室气体排放在土壤冻结期、覆雪期、融雪期和解冻期具有明显的季节动态特征。冻结期和融雪期对温室气体排放贡献最大,这两个时期内稻田和玉米田CO_2排放量分别占非生长季总累积排放量的74.9%和68.6%,稻田CH_4排放占非生长季总排放的95.7%,尽管玉米田土壤CH_4以吸收为主,但在融雪过程中存在明显释放峰,短暂的融雪期内N_2O呈集中爆发性释放,稻田和玉米田N_2O通量峰值分别是冻结前的40倍和99倍,排放量占到总累积排放量的73.9%和80.7%,覆雪期土壤CH_4和N_2O存在弱的吸收。另外,土壤温室气体排放存在土地利用方式间的差异,表现在稻田土壤比玉米田(非生长季)具有更高的温室气体排放潜力。稻田土壤CO_2、CH_4和N_2O累积排放量均高于玉米田,表现为净排放(源),而玉米田土壤CH_4通量表现为净吸收(汇);稻田土壤CO_2和CH_4平均排放速率显著高于玉米田;除覆雪期外,其他时期内三种温室气体平均通量在两类农田之间也存在显著差异。总之,在评价季节性冻土区温室气体排放时需要重视土壤冻结和融化过程,同时需要考虑不同土地利用方式间的差异。  相似文献   

3.
农业生产过程产生的温室气体在全球温室气体排放总量中占有较大比例,黑龙江省作为中国重要的农业大省,其农业温室气体排放的估算分析,对实现农业低碳减排具有重要意义。基于2005-2015年黑龙江农业生产数据,估算了农业生产过程中主要排放源CH_4和N_2O排放量,并提出了低碳农业发展的规划建议。结果表明:2015年,黑龙江省农业温室气体排放总量已上升至117.845万t,其中养殖业温室气体排放总量达51.967万t,主要来自反刍畜禽肠胃道内发酵CH_4排放,以及畜禽粪便管理过程CH_4和N_2O的排放,分别达到了48.527万、2.058万和1.382万t;种植业温室气体排放量达65.878万t,主要来自水稻种植CH_4排放,以及农业种植土壤本底和施肥N_2O的排放,分别达到了61.949万、2.764万和1.165万t。  相似文献   

4.
水氮耦合对设施土壤温室气体排放的影响   总被引:4,自引:2,他引:2  
为探究水氮耦合对设施土壤温室气体排放的影响,基于连续5年的设施番茄水氮调控定位试验,比较分析了水氮耦合对土壤N_2O、CO_2和CH_4排放通量和累积排放量的影响,并估算了温室气体的全球增温潜势(GWP)和温室气体排放强度(GHGI)的差异。田间小区试验设置不同灌水下限(W1:25 kPa、W2:35 kPa、W3:45 kPa)和施氮量(N1:75 kg N·hm~(-2)、N_2:300 kg N·hm~(-2)、N3:525kg N·hm~(-2))组合共9个处理。结果表明:设施土壤N_2O和CO_2排放通量受灌水施肥时期的影响,施肥后N_2O排放通量呈增加趋势,高灌水量(低灌水下限25 kPa)促进N_2O和CO_2排放。CH_4的排放通量表现为中等和强变异的特点。除水氮交互对CO_2累积排放总量和施氮量对CH_4累积排放总量影响不显著外,灌水下限、施氮量和水氮交互作用对N_2O、CO_2、CH_4累积排放总量、GWP、GHGI和番茄产量的影响显著或极显著。随氮肥用量的增加,N_2O累积排放总量增加。N_2O和CO_2累积排放总量与GWP之间均达到极显著正相关,且各处理N_2O对GWP平均贡献率为5.25%,CO_2为94.59%。适当减少氮肥用量和增加灌水下限能够有效地降低温室气体排放和减缓全球变暖。W2N1处理是本研究中减缓温室气体排放并提高番茄产量的最佳水氮管理措施。  相似文献   

5.
为探讨不同水分管理下N_2O、CO_2和CH_4排放的动态变化,研究不同初始土壤含水量和后期补充水分情况下温室土壤的气体排放特征,以盆栽培养的方式,采用静态箱-气象色谱法对土壤N_2O、CO_2和CH_4的排放通量进行观测。结果表明:处于田间持水量以下的土壤,N_2O的累积排放量随灌溉量增加而增加且CO_2的排放量与灌溉量呈显著正相关(P 0. 05),过于干燥的条件下会出现土壤对N_2O的吸收现象,灌水会使CO_2的排放产生阻滞效应。旱地土壤是大气CH_4的弱汇,灌水频率过高会增加土壤CH_4的排放。对于旱地土壤来说,其温室效应主要由排放的N_2O产生,初始含水量WFPS=40%时,后期补水频率不高的情况下能显著降低CH_4和N_2O的温室效应。  相似文献   

6.
基于相关统计数据,通过文献调研方法,估算了我国河南、河北和山东3个典型省份在小麦和玉米上消费的化学氮肥产生的温室气体排放量,包括化学氮肥施用产生的土壤N_2O直接排放、通过挥发沉降和淋溶径流途径损失的氮素导致的N_2O间接排放以及不同种类化学氮肥在生产和运输过程中的温室气体排放。结果表明:河南、河北和山东3个典型省份在小麦上消费的化学氮肥产生的温室气体排放量分别为1536万、847万、1153万t CO_2–eq·a–1,单位播种面积温室气体排放量分别为2.85、3.61、3.09 t CO_2–eq·hm–2·a–1,单位产量温室气体排放量分别为0.46、0.60、0.51 t CO_2–eq·t~(–1)·a~(–1);相应省份在玉米上消费的化学氮肥产生的温室气体排放量分别为717万、720万、912万t CO_2–eq·a–1,单位播种面积温室气体排放量分别为2.19、2.27、2.92 t CO_2–eq·hm–2·a–1,单位产量温室气体排放量分别为0.40、0.43、0.46 t CO_2–eq·t~(–1)·a~(–1)。研究表明,化学氮肥消费带来的温室气体排放主要来自于化学氮肥在生产过程中的温室气体排放以及化学氮肥施用导致的土壤N_2O直接排放这两部分。  相似文献   

7.
有机无机肥配施对苹果园温室气体排放的影响   总被引:1,自引:0,他引:1  
为研究有机肥代替化肥对苹果园温室气体排放的影响,本研究基于12 a的长期定位试验,采用静态暗箱-气象色谱法监测了果园温室气体(CH_4和N_2O)排放的动态变化。试验共设置4个处理:对照(CK)、有机肥(M)、化肥(NPK)、有机无机肥配施(MNPK)。结果表明:果园年生活周期内CH_4以吸收为主;N_2O排放的高峰均出现在施肥后。各处理温室气体累积排放量差异显著(P0.05),其中M处理的CH_4累积吸收量最高,为9.95 kg·hm~(-2);MNPK处理的N_2O累积排放量显著高于NPK处理。相关性分析结果显示,土壤含水量、气温及硝态氮、铵态氮均为影响温室气体排放的因素。与NPK处理相比,MNPK处理可显著增加苹果产量,提高氮肥农学利用效率,增加CH_4吸收量、N_2O排放量和N_2O排放系数,降低综合温室气体排放强度。MNPK处理与NPK处理下单位产量CH_4的累积吸收量分别为0.04 kg·t~(-1)和0.06 kg·t~(-1),单位产量N_2O累积排放量分别为0.05 kg·t~(-1)和0.07 kg·t~(-1),两处理间差异不显著。研究表明,有机无机肥配施在保证产量的前提下更有利于苹果园的可持续发展。  相似文献   

8.
为了研究氮沉降对内蒙古贝加尔针茅草原主要温室气体CO_2、CH_4和N_2O通量的影响,试验通过施加NH4NO3以模拟氮沉降增加,设置对照(0 kg N·hm~(-2),CK)、低氮(30 kg N·hm~(-2),N30)、中氮(50 kg N·hm~(-2),N50)和高氮(100 kg N·hm~(-2),N100)4个氮素添加水平,于牧草生长季(6—10月),采用静态箱-气相色谱法测定了CO_2、CH_4和N_2O的通量。结果表明:贝加尔针茅草原是CO_2和N_2O的源、CH_4的汇,与对照相比,氮素添加处理(N30、N50和N100)在显著增加植物地上生物量的同时,增加了CO_2和N_2O的累计排放量,并降低了CH_4的累计吸收量,处理间全球增温潜势表现为N100N30N50CK,所以N50处理既能显著增加草原植物地上生物量,又能够减缓全球增温潜势的增加。相关分析表明:3种温室气体排放通量与土壤温度、有机碳和NO_3~--N含量均显著相关(P0.05),CO_2和N_2O排放通量与土壤含水率显著正相关(P0.05),CH_4和N_2O排放通量与土壤NH_4~+-N含量极显著相关(P0.01)。  相似文献   

9.
牛粪不同堆肥模式对温室气体排放的影响   总被引:1,自引:0,他引:1  
采用静态箱-气相色谱法研究了自然状态下牛粪(C)、牛粪+秸秆(CSt)、牛粪+土(CSo)、牛粪+秸秆+土(CSt So)4种堆肥模式对温室气体排放的影响,以期为温室气体减排和堆肥模式优化提供参考。结果表明:堆肥期间堆温和温室内气温随时间推进均呈升—降—升的趋势,同一观测时间点气温高于堆温,总体上CSt、CSt So处理的堆温略高于C、CSo处理,表明加入秸秆具有提高堆温的效果。随时间推进,C处理的CO_2、CH_4和N_2O排放通量总体均呈增加的趋势,第6~7周排放通量较大;CSt、CSo、CSt So处理的3种温室气体排放通量总体均呈先升后降的趋势,CO_2和CH_4排放通量最大值总体出现在第2周,N_2O排放通量在第5~6周时较大。CO_2平均排放通量表现为CStCSt SoCSoC,除C处理与CSo处理无显著差异外,其他处理间差异显著;CH_4平均排放通量表现为CCStCSt SoCSo,C处理与CSt、CSo、CSt So处理之间及CSt、CSo处理之间差异显著;N_2O平均排放通量表现为CSoCStCSt SoC,CSo处理与C处理差异显著。CSt、CSo、CSt So处理的全球增温潜势(GWP)分别是C处理的3.25、2.61、2.59倍,主要是由于CSt、CSo、CSt So处理的CO_2和N_2O排放总量显著高于C处理,其对GWP的贡献率均高达97%以上。综合考虑广大农村堆料实际组分及温室气体减排,建议采用CSt So堆肥模式,但应适当增加牛粪和土的用量。  相似文献   

10.
巢湖圩区再生稻田甲烷及氧化亚氮的排放规律研究   总被引:3,自引:1,他引:2  
为明确巢湖圩区再生稻田甲烷(CH_4)及氧化亚氮(N_2O)的排放规律,采用静态箱-气相色谱法对比观测了巢湖圩区2019—2020年再生稻田(RR)和稻麦轮作田(SW)的CH_4和N_2O排放通量,测定了土壤氧化还原电位(Eh)、土壤溶解性有机碳(DOC)、土壤铵态氮(NH_4~+-N)和硝态氮(NO_3~--N)。研究结果表明:SW处理在水稻返青期和分蘖期出现较大CH_4排放峰,RR处理的CH_4排放峰不仅出现在中稻季返青期和分蘖期,还出现在成熟期和再生季前期。SW处理N_2O排放峰主要出现在麦季降雨之后、稻季烤田及排水落干时,而RR处理N_2O排放峰主要出现在促苗肥施用后。与SW处理相比,RR处理的全年CH_4排放量、N_2O排放量、总温室气体排放量(TGHG)和温室气体排放强度(GHGI)分别降低了22.3%、86.5%、36.3%和15.9%(P0.05)。RR处理无小麦产量,但水稻产量增加了16.2%(P0.05)。稻季CH_4排放通量与土壤Eh呈显著负相关(P0.01),但与土壤DOC含量无显著相关性(P0.05)。RR处理的稻季N_2O排放通量与土壤NH_4~+-N浓度呈显著正相关(P0.05)。综合来看,在巢湖圩区种植再生稻不仅能提高水稻产量,还大幅减少总温室气体排放量和温室气体排放强度。  相似文献   

11.
花生壳生物炭用量对猪粪堆肥温室气体和NH3排放的影响   总被引:3,自引:0,他引:3  
为研究不同花生壳生物炭添加比例对猪粪堆肥过程中温室气体和NH3排放的影响。利用强制通风静态堆肥技术,研究0(对照)、3%、6%和9%花生壳生物炭添加比例(质量比)对猪粪堆肥过程CO_2、CH_4、N_2O和NH_3排放和堆肥性质的影响。结果表明:添加生物炭能够延长堆肥高温期持续天数,使pH提高0.09~0.13个单位,EC提高11.7%~50.6%;各堆肥处理CO_2、CH_4和N_2O排放速率均随发酵时间的延长呈先升高后降低的趋势,且CO_2、CH_4和N_2O排放速率均与pH具有显著的相关性;随生物炭用量的增加,猪粪堆肥过程中CO_2排放速率表现为先升高后降低的变化趋势,其中以3%生物炭添加比例处理最高,其平均CO_2排放速率比对照增加12.9%;N_2O排放和NH_3挥发均以9%生物炭添加比例处理最低,分别比对照降低12.5%和29.9%。综上,在整个堆肥过程中,花生壳生物炭的添加降低了N_2O和CH_4的累积排放量,且随花生壳生物炭添加比例的增加,温室气体减排效应增大。  相似文献   

12.
为研究畜禽粪便好氧堆肥过程氨气(NH3)与温室气体的排放特征及协同减排机制,以鸡粪与蘑菇渣为原料,设置9组不同条件的好氧堆肥正交实验,并进行为期45 d的跟踪监测,了解好氧堆肥过程基本理化参数变化,分析NH3和温室气体的排放规律及最佳减排条件,探究微生物群落与环境因子、气体排放通量之间的相关性。结果表明:含水率与碳氮比(C/N)变化影响整个堆肥进程,经45 d堆肥后,大多数处理组的堆肥均已经完全腐熟,且添加一定比例的椰壳生物炭与钙镁磷肥可以提高堆肥腐熟度。NH3和4种温室气体(CH4、N2O、CO、CO2)在堆肥前期(1~22 d)排放通量较高,人工翻堆会增加气体排放通量。NH3和温室气体排放的影响因子和最佳减排条件各不相同,存在"此消彼长"的关系。对NH3、CH4、N2O排放影响较大的因子是椰壳生物炭占比、钙镁磷肥占比和通风速率,有利于这3种气体协同减排的条件为含水率60%、椰壳生物炭0或5%、钙镁磷肥0或5%或10%、通风速率0.12 L·min-1·kg-1,其中含水率60%、椰壳生物炭占比5%、通风速率0.12 L·min-1·kg-1是NH3和CH4协同减排的最佳条件。整个堆肥过程中,门水平与属水平的微生物群落相对丰度均发生明显变化,C/N和温度是微生物群落变化的主要驱动因素;堆肥前期(22 d前),门水平的优势菌为Firmicutes、Actinobacteria、Bacteroidetes和Proteobacteria,其中Firmicutes对NH3与温室气体的排放具有显著影响。研究表明,鸡粪好氧堆肥过程中影响NH3和温室气体排放的因子很多,通风条件下进行调理剂种类及配比优选有望实现NH3、CH4和N2O的协同排放。  相似文献   

13.
化肥减量配施有机肥对早稻田温室气体排放的影响   总被引:5,自引:3,他引:2  
为明确化肥减量配施有机肥对早稻田温室气体排放的影响,在长期定位施肥试验区采用密闭静态箱法采集温室气体,监测了常规施用化肥以及化肥减量配施鲜猪粪、沼液沼渣、猪粪堆肥、紫云英绿肥等不同施肥处理的早季稻田主要温室气体排放动态,探讨了不同施肥措施对稻田温室气体累积排放量、全球增温潜势(GWP)及排放强度(GHGI)的影响。结果表明:不同施肥措施下早稻田温室气体的排放存在明显的差异;与常规施肥相比,各化肥减量配施有机肥处理均促进了早稻田CH_4和CO_2的排放,而化肥减量配施鲜猪粪、猪粪堆肥处理的N_2O排放量分别降低了7.09%、4.89%。在早稻生长季,化肥减量配施有机肥虽引起了稻田GWP值的增加,增幅在5.00%~59.58%之间,但也使稻谷产量增加了6.15%~12.10%,选择适宜的有机肥还可降低稻田的GHGI值;其中化肥减量配施猪粪堆肥是本试验中促进早稻增产和实现温室气体减排的最佳施肥措施。  相似文献   

14.
双氰胺和氢醌添加对堆肥温室气体排放的影响   总被引:3,自引:2,他引:1  
为实现畜禽粪便堆肥过程温室气体和NH3的同步减排,在添加一定氢醌的基础上,探究双氰胺添加比例和添加时间对堆肥温室气体和NH3排放的影响。以猪粪和玉米秸秆为堆肥原料,设置5个堆肥处理:对照处理,添加0.03%氢醌处理,在氢醌的基础上第19 d添加0.1%的双氰胺处理、第0 d添加0.2%的双氰胺处理和第0 d与19 d各添加0.1%的双氰胺处理。在60 L的发酵罐中进行40 d的堆肥试验。结果表明:添加干质量0.1%~0.2%的双氰胺和0.03%的氢醌并未对猪粪堆肥腐熟度造成影响;氢醌作为脲酶抑制剂对堆肥NH3和温室气体排放影响较小,在此基础上添加双氰胺可减少8.88%~12.94%的NH3排放、6.79%~13.55%的CH4排放和24.71%~35.83%的N2O排放,总温室效应可降低18.61%~19.97%。考虑到经济成本和减排效果,建议在堆肥降温期添加双氰胺。  相似文献   

15.
生物质炭对城市污泥堆肥温室气体排放的影响   总被引:1,自引:0,他引:1  
采用城市脱水污泥为研究对象,设置两种堆肥处理(试验组:添加水稻生物质炭;对照组:未添加生物质炭),考察污泥堆肥过程温室气体动态变化特征以及添加生物质炭的影响。结果表明:生物质炭能提高堆体温度、延长堆体高温期、加快堆体腐熟,减少堆体TC(总碳)、TOC(总有机碳)和氮素损失(特别是减少NH_4~+-N的损失),两种处理TC、TOC和TN(总氮)均呈显著性差异(P0.05)。CH_4排放主要集中在高温期和降温期,占CH_4总排放量的76.40%~82.40%,添加生物质炭会促进CH_4排放。CO_2排放主要集中在高温期和降温期,占排放总量的78.77%~78.83%,添加生物质炭能减少CO_2排放。超过84%的N_2O排放集中在腐熟期,添加生物质炭能减少堆肥过程中N_2O排放,试验组N_2O累积排放量比对照组低18.94%。添加生物质炭对污泥堆肥处理具有一定的温室气体减排作用,试验组与对照组CO_2排放当量(以干污泥计)分别为60.21 kg·t~(-1)和67.19 kg·t~(-1),添加生物质炭能减排温室气体10.39%。  相似文献   

16.
畜禽粪便堆肥过程中碳氮损失及温室气体排放综述   总被引:3,自引:1,他引:2  
堆肥是畜禽粪便资源化利用的重要技术,但堆肥过程中碳氮损失会降低产品的农用价值并造成温室气体排放。堆肥过程中的污染气体排放受多种因素影响,本文综述了堆肥原料类型、辅料类型、初始C/N、含水率和通风速率对畜禽粪便堆肥过程碳氮损失和温室气体(CH4、NH3、N2O)排放的影响。结果发现:48.7%的C和27.7%的N在堆肥过程中损失,其中CH4-C损失平均占初始总碳的0.5%,NH3-N和N2O-N损失分别占初始总氮的18.9%和1.1%。不同种类粪便堆肥碳氮损失差异明显,猪粪和鸡粪堆肥的温室气体排放量高于牛粪和羊粪。选择富含C的辅料与畜禽粪便联合堆肥均可促进有机物降解,其中以稻草或锯末为辅料时的温室气体排放量较低。初始C/N对堆肥过程N损失影响较大,总氮、NH3和N2O的损失均随C/N的增加而降低,其中C/N为20~25时最适宜N素保留。初始含水率显著影响CH4和N2O的排放,其排放量随含水率的增加呈显著上升趋势,以含水率为60%~65%最为适宜。通风速率(以堆肥干基计)为0.1~0.2 L·kg-1·min-1时,CH4排放和总碳损失较低;通风速率为0.1~0.3 L·kg-1·min-1时,N2O、NH3和总氮损失较低。因此,为降低畜禽粪便堆肥过程碳氮损失和温室气体排放量,建议采用的工艺参数为:通风速率0.1~0.3 L·kg-1·min-1、含水率60%~65%、C/N为20~25。  相似文献   

17.
规模养猪场粪便堆肥处理生命周期评价实例分析   总被引:2,自引:0,他引:2       下载免费PDF全文
以北京郊区某规模化养猪场现有堆肥系统为例,运用生命周期评价方法,以养猪场现行堆肥工艺为参比,以4种不同翻堆频率条件下的条垛式堆肥工艺作为备选方案,对该养猪场粪便不同堆肥处理情景的环境影响进行系统对比分析。结果表明,每处理1 t新鲜猪粪的化石能源损耗潜力为80.8~221.5 MJ;堆肥氨挥发排放对系统总酸化效应和富营养化效应贡献率均达96%以上;CO2和N2O等温室气体排放对总温室效应的贡献分别为58%~88%和8%~35%。能源投入和气体排放是猪粪堆肥生命周期环境影响的关键因素,实践生产中应注重使用清洁能源,并结合工艺特点采用氨挥发与温室气体减排技术,减少堆肥生产过程的环境污染。  相似文献   

18.
炭基辅料对羊粪好氧堆肥中氮素损失的影响   总被引:4,自引:1,他引:3  
养殖废弃物(羊粪)的堆肥化处置是现代"草-羊-田"农牧循环生产的重要环节,为探讨羊粪高温好氧堆肥中氮素损失的有效控制技术,研制了一种炭基辅料,与羊粪和稻草混合后进行了34 d的堆肥试验。试验设置2个处理:羊粪与稻草高温好氧堆肥(CK)、CK基础上添加质量比15%的炭基辅料(CA)。监测了堆肥体的温度、NH_3挥发速率、N_2O排放通量、各形态氮素含量等参数变化情况,分析了炭基辅料对羊粪堆肥过程中氮素转化及损失的影响。结果表明,与CK处理相比,添加炭基辅料促进了堆肥后第1~7 d堆肥温度快速上升,对堆肥后第8~34 d的堆温影响较小;堆肥34 d后,CK、CA处理的NH_3挥发累积量分别为368.38、175.63 mg·kg-1,N_2O排放累积量分别为50.38、88.94 mg·kg-1,CA处理的NH_3挥发累积量显著小于CK处理(P0.05),而2个处理之间的N_2O排放累积量差异性不显著(P0.05),羊粪堆肥过程中NH_3挥发是氮素损失的主要途径;CK、CA处理的氮素损失率分别为50.49%、32.63%,添加炭基辅料显著降低了羊粪堆肥体的氮素损失率(P0.05),炭基辅料应用于羊粪有机肥生产,氮素损失率可减少35.37%。  相似文献   

19.
为研究贮存高度和锯末覆盖厚度对猪粪NH3和温室气体排放量及其增温潜势的影响,以猪粪为贮存材料,锯末为覆盖材料,试验设2种猪粪贮存高度(20 cm和40 cm)和3种锯末覆盖高度(0、10 cm和20 cm),共6个处理,每个处理3个重复。通过动态箱技术对猪粪贮存过程中NH3和温室气体排放进行不间断测试,每小时测量一次进气口和排气口NH3、N2O、CH4和CO2的质量浓度,进而计算增温潜势,共测量42 d。结果表明:猪粪便的贮存高度对各种气体排放量均有显著影响,与20 cm贮存高度的猪粪相比,40 cm贮存高度猪粪的NH3、N2O和CO2排放量显著降低,而CH4排放量显著增加。锯末覆盖降低了猪粪贮存过程中NH3和CO2的排放量,但是增加了CH4的排放量;锯末覆盖对不同贮存高度猪粪N2O排放量影响不同,锯末覆盖增加了20 cm贮存高度猪粪N2O排放量,却降低了40 cm贮存高度猪粪N2O排放量。各处理组单位质量猪粪排放的总温室气体增温潜势为36.62~62.83 g·kg-1(CO2基础)。覆盖可以减少猪粪贮存过程中总温室气体增温潜势11.59%~23.61%,但差异不显著。与20 cm贮存高度的猪粪相比,40 cm贮存高度显著降低了猪粪总温室气体增温潜势达36.26%~41.48%。研究表明,增加猪粪贮存高度可以减少猪粪贮存过程中总温室气体的增温潜势。  相似文献   

20.
不同养猪模式的温室气体排放研究   总被引:3,自引:3,他引:0  
为评价不同养猪模式温室气体排放情况,对南京六合发酵床和传统水泥地面猪舍温室气体排放情况进行试验测定。通过测定猪舍内空气中CH4、CO2、N2O浓度,根据二氧化碳平衡法原理,计算不同猪舍的温室气体排放通量。结果表明:发酵床舍内CH4、CO2、N2O的平均含量分别是传统猪舍的61.2%、78.6%、125.0%;其舍内CH4平均排放通量要低于传统猪舍,是其63.6%,而N2O和CO2平均排放通量分别是传统猪舍的10倍和1.4倍;考虑到传统猪场猪粪堆肥和化粪池后续管理过程中的温室气体排放,试验期间发酵床养猪模式每天每头猪排放的CO2当量的温室气体总量较传统养猪模式多26.3%,CO2是发酵床养猪过程中温室气体排放总量的主要贡献者,其次是N2O。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号