首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 359 毫秒
1.
畜禽粪便堆肥过程中碳氮损失及温室气体排放综述   总被引:3,自引:1,他引:2  
堆肥是畜禽粪便资源化利用的重要技术,但堆肥过程中碳氮损失会降低产品的农用价值并造成温室气体排放。堆肥过程中的污染气体排放受多种因素影响,本文综述了堆肥原料类型、辅料类型、初始C/N、含水率和通风速率对畜禽粪便堆肥过程碳氮损失和温室气体(CH4、NH3、N2O)排放的影响。结果发现:48.7%的C和27.7%的N在堆肥过程中损失,其中CH4-C损失平均占初始总碳的0.5%,NH3-N和N2O-N损失分别占初始总氮的18.9%和1.1%。不同种类粪便堆肥碳氮损失差异明显,猪粪和鸡粪堆肥的温室气体排放量高于牛粪和羊粪。选择富含C的辅料与畜禽粪便联合堆肥均可促进有机物降解,其中以稻草或锯末为辅料时的温室气体排放量较低。初始C/N对堆肥过程N损失影响较大,总氮、NH3和N2O的损失均随C/N的增加而降低,其中C/N为20~25时最适宜N素保留。初始含水率显著影响CH4和N2O的排放,其排放量随含水率的增加呈显著上升趋势,以含水率为60%~65%最为适宜。通风速率(以堆肥干基计)为0.1~0.2 L·kg-1·min-1时,CH4排放和总碳损失较低;通风速率为0.1~0.3 L·kg-1·min-1时,N2O、NH3和总氮损失较低。因此,为降低畜禽粪便堆肥过程碳氮损失和温室气体排放量,建议采用的工艺参数为:通风速率0.1~0.3 L·kg-1·min-1、含水率60%~65%、C/N为20~25。  相似文献   

2.
双氰胺和氢醌添加对堆肥温室气体排放的影响   总被引:3,自引:2,他引:1  
为实现畜禽粪便堆肥过程温室气体和NH3的同步减排,在添加一定氢醌的基础上,探究双氰胺添加比例和添加时间对堆肥温室气体和NH3排放的影响。以猪粪和玉米秸秆为堆肥原料,设置5个堆肥处理:对照处理,添加0.03%氢醌处理,在氢醌的基础上第19 d添加0.1%的双氰胺处理、第0 d添加0.2%的双氰胺处理和第0 d与19 d各添加0.1%的双氰胺处理。在60 L的发酵罐中进行40 d的堆肥试验。结果表明:添加干质量0.1%~0.2%的双氰胺和0.03%的氢醌并未对猪粪堆肥腐熟度造成影响;氢醌作为脲酶抑制剂对堆肥NH3和温室气体排放影响较小,在此基础上添加双氰胺可减少8.88%~12.94%的NH3排放、6.79%~13.55%的CH4排放和24.71%~35.83%的N2O排放,总温室效应可降低18.61%~19.97%。考虑到经济成本和减排效果,建议在堆肥降温期添加双氰胺。  相似文献   

3.
腐熟堆肥筛上粗颗粒对堆肥化过程中温室气体排放的影响   总被引:5,自引:3,他引:2  
以猪粪和玉米秸秆按湿重7:1混合为原料,研究腐熟堆肥粗颗粒在堆肥化过程中减排温室气体作用。试验在1.2 m3发酵仓中进行,采用自然通风,每周翻堆一次,设混匀、覆盖、覆混、对照4种处理。试验结果表明:混匀处理能提高堆体的通气性能,提高堆肥产品的腐熟度,同时降低CH4排放41.8%,但不能显著降低NH3排放。覆盖处理能降低NH3排放49.1%;腐熟堆肥覆盖层具有CH4氧化能力,降低CH4排放67.4%。覆混处理既能在堆肥翻堆前降低氨气排放(22.7%),又能在堆肥翻堆后减低甲烷排放(46.6%)。同对照相比,混匀和覆混处理分别减少N2O排放35.7%和74.1%。腐熟堆肥粗颗粒中含有大量亚硝酸盐氧化菌,混入堆肥后可促使亚硝酸盐向硝酸盐的转化,减少通过反硝化途径产生N2O,但是在堆肥初期将促进硝化途径产生N2O。堆肥结束后,覆盖、混匀、覆混处理的总温室气体排放分别下降35.2%、50.4%和58.1%。覆混处理因其操作便捷性、良好的减排效果,可以在实际生产中推广应用。  相似文献   

4.
不同水分对半干旱地区砂壤土温室气体排放的短期影响   总被引:3,自引:2,他引:1  
为探明不同水分条件对土壤排放温室气体的短期影响,本研究以黑龙江省半干旱地区的砂壤土为对象,通过室内培养试验研究60%田间最大持水量(WHC)、100% WHC和淹水条件下土壤中N2O、CO2和CH4的排放规律。结果表明:与60% WHC处理相比,土壤水分含量增加至100% WHC对净硝化速率没有显著影响,但显著促进了N2O的排放,平均排放速率(0.109 mg N2O-N·kg-1·d-1)是60% WHC处理(0.014 mg N2O-N·kg-1·d-1)的7.8倍。淹水处理显著抑制了硝化作用的进行,但显著促进了N2O的排放,平均排放速率(0.419 mg N2O-N·kg-1·d-1)分别为60% WHC和100% WHC处理的29.9倍和3.8倍。60% WHC处理土壤CO2和CH4平均排放速率分别为9.92 mg CO2-C·kg-1·d-1和2.99 μg CH4-C·kg-1·d-1,土壤水分含量增加至100% WHC对CO2和CH4排放速率没有显著影响。淹水处理土壤CO2和CH4平均排放速率分别为12.7 mg CO2-C·kg-1·d-1和5.14 μg CH4-C·kg-1·d-1,显著高于60% WHC和100% WHC处理。研究表明,半干旱地区砂壤土应注意田间水分管理,避免短期淹涝,以减少温室气体排放。  相似文献   

5.
以不同水旱轮作稻田为研究对象,对比分析不同轮作模式温室气体排放特征,挖掘关键影响因素,并将温室效应和成本-收益计量相结合,通过综合评价筛选环境友好、经济效益高的轮作模式。基于大田小区试验,设置休闲-水稻、紫云英-水稻、小麦-水稻、油菜-水稻、青饲小麦-水稻、蚕豆-水稻6种水旱轮作处理,采用静态箱-气相色谱法,于2020年6月—2021年5月进行CH4和N2O排放原位监测,通过结构方程模型挖掘影响CH4和N2O排放的关键因素,采用全球增温潜势和成本-收益计算方法,评价不同轮作制度的环境和经济效应。结果表明:不同水旱轮作模式CH4累积排放量为95.6~173.3 kg·hm-2,排放量与冬茬秸秆还田量和水稻产量有关;N2O累积排放量为1.5~2.5 kg·hm-2,受施氮量、冬茬秸秆还田量、水稻产量和土壤有机质含量影响。增加氮肥施用量不仅可增加N2O排放量,而且会导致土壤有机质含量的降低;冬茬秸秆还田量、水稻产量的变化会导致CH4和N2O排放的此消彼长,即秸秆还田量和水稻产量与CH4排放量呈正相关,而与N2O排放量呈负相关。青饲小麦-水稻轮作模式的经济效益为10 139元·hm-2,高于其他轮作模式。对比单位经济效益的温室气体排放量发现,尽管青饲小麦-水稻轮作模式周年N2O排放量最高、土壤固碳量低,但其单位经济收益的温室气体排放量仍最低(0.41 kg CO2e·元-1);紫云英-水稻轮作分别比油菜、小麦、休闲、蚕豆与水稻的轮作方式低51%、33%、20%和4%。不同水旱轮作方式下的稻田周年温室效应有显著差异,紫云英-水稻轮作的综合温室效应(3.1 t CO2e·hm-2)显著低于小麦-水稻轮作(5.4 t CO2e·hm-2)。研究表明,与其他轮作模式相比,紫云英-水稻和蚕豆-水稻轮作在保证较高经济收益的同时温室气体排放量相对较低,冬茬秸秆还田量、绿肥还田生物量是环境效应和经济效益协同的重要影响因素。  相似文献   

6.
通风量对厨余垃圾堆肥过程中H2S和NH3排放的影响   总被引:2,自引:0,他引:2  
厨余垃圾堆肥过程中H2S和NH3的排放不但会引发臭气污染,而且会降低堆肥产品的养分含量。通风量是影响这2种恶臭气体排放的重要因素。以大类粗分后的厨余垃圾为研究对象,玉米秸秆作为调理剂,设置4个水平的通风量,分别为每立方米物料0.5、1.0、2.2、3.2 m3·h-1,研究通风量对厨余垃圾堆肥过程中H2S和NH3 排放的影响。结果表明,4个处理均满足无害化和堆肥腐熟的要求,NH3的排放量随通风量的增加而增加,H2S的排放量随通风量的增加而减少,但过大的通风量会增加H2S的吹脱,使其排放量增大。综合厨余垃圾堆肥的无害化指标、H2S和NH3的排放以及最终堆肥产品的毒性检验结果,实验条件下每立方米物料的通风量为2.2 m3·h-1的持续通风处理,既能有效控制H2S和NH3的排放,又能保证堆肥的无害化和堆肥产品的腐熟。  相似文献   

7.
稻田是农业温室气体排放的重要来源。近年来,稻田综合种养模式发展迅速,但其对温室气体排放的影响具有较大争议。为明确我国东北地区典型稻田种养模式——稻蟹共生系统温室气体排放特征,在辽宁省盘锦市大洼区开展微区试验,设置持续淹水水稻单作、晒田水稻单作和稻蟹共生3种处理,开展了不同稻田生态系统下温室气体排放特征及其主要影响因素研究。结果表明:稻蟹共生能够降低稻田N2O排放,与持续淹水水稻单作处理和晒田水稻单作处理相比,稻蟹共生处理N2O排放量分别降低23.9%和16.7%。稻蟹共生对CH4排放的影响则取决于水稻单作的水分管理模式。相比于持续淹水水稻单作处理,稻蟹共生处理使CH4排放量降低13.5%;然而相比于晒田水稻单作处理,则使CH4排放量增加34.0%。整体而言,与持续淹水水稻单作处理相比,稻蟹共生处理降低了13.6%的增温潜势;与晒田水稻单作处理相比,却增加了32.6%的增温潜势。冗余分析表明,在稻田生态系统中,温室气体排放主要受田面水溶解氧和pH以及土壤中NO3--N含量和pH的影响。综上,从温室气体减排潜力的角度看,与持续淹水水稻单作系统相比,稻蟹共生模式可以降低N2O和CH4等温室气体排放;而与晒田水稻单作系统相比,持续淹水的稻蟹共生模式会增加温室气体排放。  相似文献   

8.
施用生物炭对农田土壤N2O的减排效应   总被引:1,自引:1,他引:0  
生物炭作为一种土壤改良剂,在农田土壤氮素转化和温室气体减排等方面发挥着重要作用。本实验对不同施氮量的农田土壤添加生物炭,研究了其对N2O的减排潜力,为生物炭的固氮减排提供理论依据。于2015年6月18日至9月25日,利用盆栽实验研究了施用生物炭对农田土壤在不同氮肥用量下N2O排放的影响,实验共设4个处理:对照(CK)为不施氮处理、N1(200 kg·hm-2)、N2(400 kg·hm-2)和N3(600 kg·hm-2),各处理均施用土壤质量15%(W/W)的等量生物炭。结果表明,随着施氮量的增加,土壤N2O的累积排放量逐渐增加,N2和N3处理差异不显著,N2O排放系数逐渐降低,N1、N2、N3的排放系数分别为1.33%、1.27%、0.90%。Pearson相关分析表明,土壤孔隙含水量(WFPS)、土壤pH、土壤NO3--N和土壤微生物量氮(MBN)含量是影响N2O排放最主要的因素,其中土壤WFPS、土壤NO3--N和MBN含量与N2O排放通量之间呈极显著的正相关关系,土壤pH与N2O排放通量之间呈极显著负相关关系。生物炭的施用对农田土壤N2O具有巨大的减排潜力,并且生物炭与氮肥配施对土壤氮素有很好的固持作用。  相似文献   

9.
为探讨土壤氧气可获得性(SOA)对双季稻田温室气体排放的影响,利用静态箱气相色谱法对多种管理措施影响下稻田温室气体排放通量和土壤氧化还原电位(Eh)、pH值及田间淹水深度(H)等3种SOA因子进行了观测。结果表明,甲烷(CH4)排放最集中的Eh值、pH值和H范围分别为-100-0mV、5 < pH < 6和1-5cm,3个范围内分别观测到48.8%、61.1%和77.0%的CH4排放,其中H对CH4排放影响最明显,单独由其就可解释37.8%的CH4排放通量(P < 0.0001)。对于氧化亚氮(N2O),观测到较多的负通量,其纯排放最密集的3种SOA因子的范围分别是:0-100mV、5 < pH < 6和1-5cm,而200-300mV是其排放的临界Eh范围,高于此范围N2O排放极少。厌氧的反硝化过程是双季稻田N2O产生的主导过程。可为水稻田温室气体排放机理研究提供基础数据。  相似文献   

10.
为研究气候变化下不同管理措施对淮河流域稻麦轮作农田生态系统CH4通量的影响,通过参数率定后的DNDC(DeNitrification-DeComposition)模型,估算了淮河流域历史时期(2000—2020年)及未来(2021—2049年) RCP4.5 (中等排放强度情景)和RCP8.5(高排放强度情景)两种情景下稻麦轮作农田CH4通量时空分布特征,评估了未来气候变化下多种田间管理措施对流域CH4的减排能力。结果表明:淮河流域历史时期区域CH4通量平均排放强度为125.3 kg·hm-2,未来两种情景(RCP4.5和RCP8.5)下区域CH4通量平均排放强度分别为140.5 kg·hm-2和150.5 kg·hm-2,总体均呈显著上升趋势(P<0.01)。空间上,未来两种情景下CH4通量空间分布特征相似,均呈现南部和西北部地区CH4通量高,东北部和中西部地区CH4通量低的特征。与基础措施相比,不同施肥量措施均减少了CH4排放,但不同秸秆还田措施提高了CH4排放水平。研究表明,在仅考虑控制淮河流域CH4通量的情况下,秸秆不还田+减量施肥20%是未来气候变化情景下最佳田间管理措施。  相似文献   

11.
花生壳生物炭用量对猪粪堆肥温室气体和NH3排放的影响   总被引:3,自引:0,他引:3  
为研究不同花生壳生物炭添加比例对猪粪堆肥过程中温室气体和NH3排放的影响。利用强制通风静态堆肥技术,研究0(对照)、3%、6%和9%花生壳生物炭添加比例(质量比)对猪粪堆肥过程CO_2、CH_4、N_2O和NH_3排放和堆肥性质的影响。结果表明:添加生物炭能够延长堆肥高温期持续天数,使pH提高0.09~0.13个单位,EC提高11.7%~50.6%;各堆肥处理CO_2、CH_4和N_2O排放速率均随发酵时间的延长呈先升高后降低的趋势,且CO_2、CH_4和N_2O排放速率均与pH具有显著的相关性;随生物炭用量的增加,猪粪堆肥过程中CO_2排放速率表现为先升高后降低的变化趋势,其中以3%生物炭添加比例处理最高,其平均CO_2排放速率比对照增加12.9%;N_2O排放和NH_3挥发均以9%生物炭添加比例处理最低,分别比对照降低12.5%和29.9%。综上,在整个堆肥过程中,花生壳生物炭的添加降低了N_2O和CH_4的累积排放量,且随花生壳生物炭添加比例的增加,温室气体减排效应增大。  相似文献   

12.
生物质炭对城市污泥堆肥温室气体排放的影响   总被引:1,自引:0,他引:1  
采用城市脱水污泥为研究对象,设置两种堆肥处理(试验组:添加水稻生物质炭;对照组:未添加生物质炭),考察污泥堆肥过程温室气体动态变化特征以及添加生物质炭的影响。结果表明:生物质炭能提高堆体温度、延长堆体高温期、加快堆体腐熟,减少堆体TC(总碳)、TOC(总有机碳)和氮素损失(特别是减少NH_4~+-N的损失),两种处理TC、TOC和TN(总氮)均呈显著性差异(P0.05)。CH_4排放主要集中在高温期和降温期,占CH_4总排放量的76.40%~82.40%,添加生物质炭会促进CH_4排放。CO_2排放主要集中在高温期和降温期,占排放总量的78.77%~78.83%,添加生物质炭能减少CO_2排放。超过84%的N_2O排放集中在腐熟期,添加生物质炭能减少堆肥过程中N_2O排放,试验组N_2O累积排放量比对照组低18.94%。添加生物质炭对污泥堆肥处理具有一定的温室气体减排作用,试验组与对照组CO_2排放当量(以干污泥计)分别为60.21 kg·t~(-1)和67.19 kg·t~(-1),添加生物质炭能减排温室气体10.39%。  相似文献   

13.
尿素和生物质炭对茶园土壤pH值及CO2和CH4排放的影响   总被引:3,自引:0,他引:3  
为明确生物质炭对酸化茶园土壤改良及温室气体排放的影响,利用室内培养试验,研究了在施氮(N1)和不施氮(N0)条件下,不同小麦秸秆生物质炭添加量(B1,10 g·kg~(-1);B2,30 g·kg~(-1);B3,50 g·kg~(-1))对茶园土壤pH值、CO_2和CH_4排放的影响。结果表明,添加生物质炭显著提高了茶园土壤pH值(P0.05),生物质炭施加比例越高,土壤pH值提高幅度越大,处理组N0B1、N0B2和N0B3土壤平均pH较对照组CK(氮和生物质炭都不施)分别提高了0.18、0.53、1.06个单位,生物质炭添加量为3%(B2)时,短期内可达到提高土壤pH值、改良酸化土壤的效果;CO_2和CH_4的累积排放量随着生物质炭添加比例的升高而增大,且显著高于对照组CK(P0.05)。施加尿素短期内显著提高了土壤pH值(P0.05),并促进了CO_2的排放,但对CH_4的排放无显著影响。与单施生物质炭相比,生物质炭与尿素共施时土壤pH提高幅度更大,CO_2累积排放量提高程度也更为显著,而CH_4的排放得到抑制,但仍显著高于对照组CK(P0.05)。生物质炭的添加在提高土壤pH值的同时也会增加CO_2和CH_4的排放量,增大环境风险,但当土壤酸化程度较轻时,可适当施加低量生物质炭,在缓解土壤酸化状况的同时尽可能地减少温室气体的排放量。  相似文献   

14.
不同生物质炭对酸化茶园土壤N2O和CO2排放的影响   总被引:1,自引:1,他引:0  
为了研究不同生物质炭对酸化茶园土壤温室气体排放的影响,采用原料为小麦秸秆、柳树枝、椰壳3种生物质炭,通过室内培养试验来探究不同生物质炭对茶园土壤性质及N_2O、CO_2排放特征的影响。试验中生物质炭添加量为20 g·kg~(-1),同时设置了施氮肥处理,采用尿素作为外加氮源,施氮量为100 mg·kg~(-1)。结果表明,施加生物质炭提高了酸化茶园土壤pH值,柳树枝生物质炭处理土壤pH值最高为6.71,显著高于其他处理。不同生物质炭对土壤DOC含量的影响效果存在差异,柳树枝生物质炭使土壤DOC平均含量增加了95.6%,椰壳生物质炭使土壤DOC含量降低36.1%,小麦秸秆生物质炭则影响不显著。生物质炭通过抑制土壤硝化和反硝化作用降低土壤N_2O的排放,椰壳生物质炭降低N_2O排放比例达91.7%,减排效果最显著。在施氮条件下柳树枝生物质炭对土壤N_2O的减排效果显著低于小麦秸秆和椰壳生物质炭。土壤CO_2的排放通量与pH值、DOC含量均呈极显著正相关,生物质炭促进了土壤CO_2的排放,柳树枝生物质炭处理CO_2的排放显著高于其他处理。此外,外加氮源降低了土壤pH值,增加了土壤N_2O的排放,但是对土壤DOC含量变化无显著影响。  相似文献   

15.
生物质炭的固碳减排与合理施用   总被引:4,自引:1,他引:3  
近年来开展了大量短期一次性施用生物质炭对作物产量、土壤碳库和温室气体排放的研究。研究表明生物质炭能增加土壤碳库,但对作物产量、CH4和N2O排放的影响受生物质炭性质和土壤类型影响。生物质炭用在酸性土壤上比中性或碱性土壤上更能提高作物产量。草本或木本炭能减少N2O排放,但畜禽粪便炭不能减少N2O排放。在热带、亚热带地区生物质炭施用对N2O的减排作用小于温带地区。生物质炭的固碳减排效应除了受生物质炭类型、稳定性和施用区域影响外,还受制炭能耗和裂解气回收技术影响。在未来发展方向上,提出了亟需加强制炭技术、长期连续施用生物质炭效应和生物质炭性质与土壤类型互作研究。  相似文献   

16.
为了解不同比例生物质炭的添加对猪粪和稻草堆肥过程中氮素损失及温室气体排放的影响,监测了堆置过程中铵态氮、硝态氮、氨挥发及温室气体的变化。试验设猪粪秸秆对照(B0)以及猪粪秸秆中添加5%(B1)、10%(B2)、15%(B3)生物质炭共4个处理。结果表明:添加生物质炭能够提高堆体温度,缩短堆肥周期,B3处理的堆体比B0处理提前3 d进入高温期;高温期B0、B1、B2、B3各处理堆体中NH+4含量分别比初始值增加6.6%、41.8%、51.9%、48.6%。与B0相比,添加生物质炭能够显著增加高温期堆体NH+4含量,减少高温期NH+4向NH3的转化,显著降低堆肥过程中的氨挥发,其中B1、B2、B3氨挥发累计量比B0分别减少23.1%、68.6%、78.4%;B2处理与B0相比能够显著减少CO_2排放总量,而B1、B3处理效果不显著,但能够显著减少堆肥过程中CH4的排放;与B0相比,添加生物质炭处理CH4排放总量降低16.3%~23.5%,且可显著降低堆肥过程中N_2O的排放,其中B2、B3的N2O排放总量比B0减少70.7%。  相似文献   

17.
为减少厨余垃圾堆肥过程中恶臭物质的排放,设计通风方式对H_2S和NH_3排放影响的进行研究。厨余垃圾和玉米秸秆按照湿基比例85∶15进行充分混合后作为堆肥原料,堆肥试验在100-L的密闭发酵罐中进行,堆肥周期为30d。堆肥试验分别设置2.2(T1,持续通风)、3.3(T2,通风40min,停20min)和6.6m~3/(m~3·h)(T3,通风20min,停40min)3种通风方式。结果表明:3个堆肥处理均满足无害化和堆肥腐熟的要求;在总通风量相同的情况下,间歇通风方式有利于降低H_2S排放,但是过大的通风量会增加堆肥过程中的总硫损失;通风量对NH_3的排放影响较大,通风量越大,NH_3的排放量越高,通风方式对NH_3的排放几乎没有影响。综合堆肥的无害化指标、H_2S和NH_3的排放以及最终堆肥产品的品质,本试验条件下通风量为3.3m3/(m3·h)的间歇通风方式既能有效控制H_2S和NH_3的排放,减少N和S营养元素损失,又能满足堆肥的无害化和堆肥产品的腐熟。  相似文献   

18.
堆肥中不同氮素原位固定剂的综合比较研究   总被引:3,自引:0,他引:3  
为综合比较磷酸+氧化镁(PMO)、过磷酸钙(SP)和磷酸(PA)等3种氮素原位固定剂在堆肥化过程中对氮素损失控制、温室气体排放、堆肥品质以及成本的差异,进而选择合适的氮素原位固定剂,试验以猪粪和玉米秸秆为原料,采用强制通风模式(通风率均为0.25 L·kg~(-1)DW·min-1),在60 L发酵罐中进行模拟堆肥。结果表明,PMO处理能降低55.4%的NH3排放,但对N2O和CH4排放无显著影响;PMO堆肥产品充分腐熟,最终产品的晶体中鸟粪石相对含量达到78.3%。SP处理能降低37.5%的NH3和76.4%的CH4排放,对N2O无显著影响;氮素主要以氨氮形式固定。SP处理的成本最低,计算固定营养元素的价值后可实现利润4.0元·t-1。PA的NH3挥发率最低,仅为初始总氮的12.4%,但因氨氮积累导致堆肥未能彻底腐熟。鸟粪石沉淀技术是控制堆肥化过程中氮素损失的重要技术,在未来的研究中应当寻找磷酸的替代材料,以降低该技术的成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号