首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
为弄清桔梗株高与花色的遗传关系,调查分析了矮秆紫花桔梗与高秆白花桔梗杂交后代的株高、花色及其分离。结果表明,桔梗矮秆×高秆F1的株高接近双亲的平均值,在F2中呈连续分布的趋势,表现出数量性状遗传的基本特征;紫花×白花的F1全部开紫花,F2中紫花与白花的分离呈3∶1比例,符合一对相对性状的遗传规律;株高在白花和紫花群体中均呈连续分布的趋势。  相似文献   

2.
蓖麻矮秆性状基因遗传规律研究   总被引:3,自引:0,他引:3  
通过蓖麻矮秆与高秆不同遗传交配组合配制、种植,调查其后代株高性状分离的试验,研究了蓖麻高、矮秆性状主控基因遗传规律。结果表明,在其F1代群体中,株高性状没有发生分离,全表现为高秆性状;在其F2代群体中,表现为高秆和矮秆两种性状分离,而且植株高、矮秆性状的分离符合3∶1的分离比例;在回交一代群体中株高也全部发生高、矮性状的分离,且符合1∶1的分离比例。由此推断蓖麻植株高、矮这对性状是受1对等位基因所控制,高秆是受显性基因T所控制,而矮秆则是受隐性基因t所控制。  相似文献   

3.
不结球白菜株高性状主基因+多基因遗传分析   总被引:7,自引:0,他引:7  
应用主基因 多基因6个世代联合分离分析方法对不结球白菜SI×秋017组合的株高性状进行了分析.结果表明,SI×秋017组合的株高性状遗传受1对负向完全显性主基因 加性-显性多基因控制,主基因加性效应为5.79;多基因加性效应为-7.85,多基因显性效应为14.95;B1、B2和F2世代株高的主基因遗传率分别为33.28%、37.05%和51.68%;多基因遗传率分别为5.84%、12.67%和1.34%,说明F2世代株高表现出较高的主基因遗传率,并受环境影响.对SI×秋017组合株高性状的改良要以主基因为主,同时注意环境的影响.  相似文献   

4.
选用7个株高差异比较明显的啤酒大麦品种(系)为亲本,按照Griffing双列杂交方法 II配制21个杂交组合,2年重复试验,分析大麦株高及其构成因素的杂种优势和配合力关系。结果表明:株高及其构成因素的杂种优势均存在广泛的变异,除倒1节间长度外,其余节间长度的平均优势均为负值,倒3,4节间长平均优势最大;株高及其构成因素的遗传同时存在显著的加性效应和非加性效应,以加性效应为主;苏啤3号和港啤2号的株高及各节间长一般配合力效应值均表现为较明显的负向效应,其在育种工作中对改良啤用大麦后代株高结构有良好的作用;品系连0719穗长一般配合力具有较大的正向效应,在改善穗长性状育种中具有一定的利用价值。除倒5节间长外,杂种组合扬农啤5号×苏引麦2号、港啤1号×苏啤3号、苏引麦2号×苏啤3号的各节间长均表现为较明显的负向效应,其穗长均表现为正向效应,可作为选育矮秆或半矮秆大麦品种的较优组合;株高及其构成因素具有较高的遗传力,表型变异受环境影响较小,宜早代选择。  相似文献   

5.
玉米株高的遗传分析   总被引:2,自引:0,他引:2  
以矮秆玉米自交系44长分别与Mo17和嫩169杂交组合的六世代P1,P2,F1,B1,B2,F2为材料,采用主基因+多基因遗传模型分析方法,对株高的遗传进行研究,结果表明:玉米株高的遗传符合两对加性-显性-上位性主基因+加性-显性多基因混合遗传模型,主基因遗传率在48.5%~83.0%,多基因遗传率在4.7%~28.7%。两个组合的主基因遗传效应差异较大,说明矮秆基因在不同遗传背景下表现出较大的差异。  相似文献   

6.
用Nair法对87个自交系进行分组,选用高秆、中秆和矮秆自交系为材料,观察F_1、F_2以及F_1与亲本回交的遗传效应。同时分析节间数与节间长度与矮化的关系。研究结果表明,矮秆遗传的表达有两种方式,一为质量性状,受一对主效矮秆隐性基因控制,但矮化自交系的遗传背景有区别。一为数量性状,F_2代分离呈正态分布。作者观察到在高秆自交系中潜存着矮秆基因。矮秆自交系一般伸长的节间数不比高秆系少,主要是节间缩短。矮化的F_1代植株高大,也是节间伸长所致。  相似文献   

7.
对航天搭载小麦3个矮秆突变体和4个高秆突变体的株高、各节间及穗部性状进行研究,以探索引起航天搭载小麦株高变异原因及株高突变体穗部性状变化。结果表明,矮秆突变体株高最矮的‘19h-64’仅有46.4 cm,比对照降低26.3 cm,降幅36.2%,高秆突变体株高最高的‘19h-87’有92.5 cm,比对照增高19.8 cm,增幅21.4%;矮秆突变体的穗长不会随着株高的变矮而变短,高秆突变体的穗长都比对照增长,增幅在36.6%~52.5%;矮秆突变体主要是通过缩短倒4和倒5节间来降低株高,高秆突变体主要是通过增长穗长和倒5节间来增高株高;株高突变体的茎秆节间数及穗部经济性状的变化与株高高矮变化无明显关系。  相似文献   

8.
刘宝泉  闫昊  王博 《安徽农业科学》2009,37(23):10945-10946
[目的]探明吉密豆1号矮秆性状的遗传规律。[方法]以吉密豆1号(矮秆,母本)、吉育47(株高正常,父本)、辽豆14(株高较高,父本)及其杂交F1、F2代和回交BC1、BC2代为材料,研究吉密豆1号矮秆基因的遗传规律。[结果]F1代平均株高均高于中亲值,矮秆性状表现为隐性;杂交组合(吉密豆1号×吉育47、吉密豆1号×辽豆14)与双亲回交世代株高的分离比例符合1对基因控制性状的分离比例;2个组合R代株高的分离比例为3:1。[结论]吉密豆1号的矮秆性状受1对隐性基因控制。  相似文献   

9.
甘蓝型油菜株高及其相关性状的主基因+多基因遗传分析   总被引:1,自引:0,他引:1  
油菜株高对产量、抗逆性尤其是抗倒伏性有重要影响,适当降低株高可提高油菜抗性和收获指数进而提高产量。甘蓝型油菜(Brassica napus L.)矮秆自交系‘74-1002’具有早熟、分枝多、抗倒伏等优良性状,是进行油菜株高遗传和矮化育种的良好材料。以高秆甘蓝型油菜自交系‘HN92’为母本,‘74-1002’为父本,杂交构建6世代遗传群体(P1、P2、F1、F2、B1和B2),对6世代群体的株高及其相关性状进行度量,采用主基因+多基因混合遗传模型进行遗传分析。结果表明:株高(PH)、主花序长度(MIL)及一次有效分枝高度(VBH)均受到2对加性主基因控制,并存在加性—显性多基因效应,PH和MIL的最适遗传模型为E-0模型(MX2-ADI-ADI),VBH的最适遗传模型为E-3模型(MX2-A-AD);有效分枝节间距(IL)和有效分枝数(BN)的遗传均只受加性—显性—上位多基因控制,无主基因效应,其最适遗传模型为C-0模型(PG-ADI)。在B1、B2和F2世代中,PH的主基因+多基因遗传率最高,分别为71.22%、78.71%、81.87%;其次是VBH和MIL,分离世代主基因+多基因平均遗传率分别为57.10%和44.09%;IL和BN的遗传率偏低,3个世代主基因+多基因平均遗传率分别为15.24%和9.68%。相关性分析表明:PH与VBH、MIL和IL的相关性表现为极显著的正相关,相关系数分别为0.533、0.721和0.520。因此,在甘蓝型油菜理想株高育种进程中,在早代对株高进行选择是有效的,该研究也为后期开展株高相关性状QTL分析奠定基础,有利于加快油菜株高分子标记辅助育种进程。  相似文献   

10.
对贵州高原粳稻与中矮杆粳稻间的17个杂交组合F1及7个杂交组合F2的研究表明,F1代株高介于双亲之间,高秆与矮秆均不表现显性,F1代株高与中亲值间的相关极显著。在F2代,大多数组合有超亲分离现象,株高分布呈一连续单峰曲线,故系多基因控制的数量性状,但遗传力较高,育种中可于早代进行选择。  相似文献   

11.
小麦株高问题的探讨   总被引:4,自引:0,他引:4  
为提高育种预见性和选择效率,对小麦株高问题进行了探讨。认为选育矮秆和半矮秆品种是现代小麦育种的发展趋势,分析了小麦品种过度矮化的不利影响和适度高化的有利作用。株高的理想范围不能一概而论,应根据生产条件和产量水平来确定。在适当控制株高的基础上,应着重提高茎秆质量和根量,注重合理群体组成及冠层结构的选配工作,进一步优化综合农艺性状,从而在更高的基础上实现形态性状的理想组合,才能提高产量潜力,实现产量的突破。  相似文献   

12.
赵韦 《湖北农业科学》2012,51(7):1312-1314
以EMS诱变获得的高油玉米(Zea mays L.)突变体ce03005为材料,对植株的穗位高和株高进行了遗传分析.通过随机区组试验设计,分析玉米167个BC1S1家系的穗位高和株高的变化.利用101对共显性引物构图,构图长度为1611.7cM,标记间平均距离为15.9 cM.用复合区间作图法进行数量性状位点(QTL)分析,共检测到3个控制稳位高的主效QTL和1个微效QTL,分别位于1号和2号染色体上,单个控制穗位高QTL的贡献率变幅为4.42%~15.42%;检测到2个控制株高的主效QTL和1个微效QTL,分别位于1号和4号染色体上,单个控制株高QTL的贡献率变幅为7.89%~12.53%.  相似文献   

13.
玉米株高和穗位遗传模型测验   总被引:12,自引:4,他引:8  
采用增广NCⅡ设计,对玉米株高、穗位进行了遗传模型测验。结果表明:玉米株高不符合加性--显性模型,存在有显著显性效应和上位性效应,穗位符合加性--显性产效、减效等位基因频率在雌、雄间的分配,株高差异显著,但穗位无明显差异。株高的遗传为超显性遗传。穗位的遗传为部分显性,隐性为增效基因。  相似文献   

14.
多环境下玉米株高和穗位高的QTL定位   总被引:6,自引:1,他引:5  
【目的】通过对玉米株高和穗位高进行多环境的QTL分析,寻找能够稳定表达的株高和穗位高主效QTL,以为玉米理想株型的分子育种提供理论依据。【方法】以优良玉米自交系许178×K12衍生的150个F7代重组自交系(recombinant inbred lines,RILs)群体为试验材料。首先,从MaizeGDB中选取495个SSR标记进行亲本间多态性筛选,利用具有多态性的标记进行群体基因型分析,使用MapMaker V3.0软件划分标记的连锁群并构建遗传连锁图谱。其次,采用IciMapping V4.0软件的完备区间作图法(inclusive composite interval mapping,ICIM)进行2年3点(陕西榆林、陕西杨凌、辽宁葫芦岛,2014-2015年)表型值及育种值的株高和穗位高QTL分析。最后,对株高和穗位高进行条件QTL分析,对照非条件QTL分析的结果,探讨株高和穗位高在QTL水平上的遗传关系。【结果】构建的遗传连锁图谱共包含191个SSR标记,图谱全长2 069.1 cM,平均图距10.8 cM。6种环境和育种值中,共检测到10个株高QTL和8个穗位高QTL,分布于第1、3、4、5、6、7、8和10染色体上,LOD介于3.25-8.36,加性效应值介于-6.41-8.70,单个QTL贡献率在6.96%-27.41%。这些QTL中有6个能在3种及以上环境中被检测到,且贡献率大于10.00%,是控制株高和穗位高的主效QTL。位于染色体Bin5.01/5.02区域同一位置的2个QTL在6种环境中被检测到,LOD介于3.25-6.48,加性效应值介于4.05-8.70。位于染色体Bin3.03/3.04区域同一位置的2个QTL在5种环境中被检测到,LOD介于4.71-8.36,加性效应值介于4.93-6.36。位于染色体Bin6.02区域同一位置的2个QTL在3种环境中被检测到,LOD介于3.52-5.21,加性效应值介于4.38-8.16。它们的增效等位基因均来自母本许178。条件QTL分析和非条件QTL分析的结果表明,这3个染色体区域的6个QTL是3个同时控制株高和穗位高的一因多效位点。【结论】玉米株高和穗位高的遗传受环境影响较大,大部分QTL只能在1种或2种环境中被检测到,3个主效QTL可以在3种及以上环境中被检测到,能够稳定地遗传,且贡献率高,有望在分子育种上得到应用。  相似文献   

15.
使用不同质量浓度外源植物生长调节剂喷施于初花期藜麦植株,结果表现为质量浓度为24 mg/L、36 mg/L的ABA溶液能有效的降低藜麦株高。不同质量浓度的IAA、GA溶液对藜麦植株没有显著的矮化作用,但于生殖生长期喷施对藜麦灌浆前、中期植株株高生长的上扬趋势有一定抑制作用,使上扬趋势变为平缓增高,可辅助促进植株同化营养向藜麦生殖生长分配,从而提高藜麦籽实品质和产量。  相似文献   

16.
对高粱株高的遗传模型进行测验。结果表明,高粱株高的遗传符合加性、显性模型,控制株高的增效、减效等位基因在雌亲和雄亲的分配比率有极显著差异。株高的遗传、增效等位基因,即高秆基因为显性,而这种显性为部分显性。  相似文献   

17.
小麦株高构成指数的研究   总被引:1,自引:0,他引:1  
对 1 0个小麦品种 (系 )的株高构成指数进行了研究。结果表明 ,株高构成指数在品种间存在着极显著差异 ,该值的提高可通过杂交选择来实现。各I值与克草粒数、经济系数和籽粒产量均呈正相关 ,I1值与产量的相关达到了极显著水平 ,可作为高产育种的重要筛选指标。  相似文献   

18.
普通小麦株高的遗传分析   总被引:1,自引:0,他引:1  
利用小麦扬麦9号和CI12633构建了184个重组自交系群体,利用双亲间多态的212个SSR标记绘制分子连锁图谱,图谱总长1 567.2 CM,标记间平均距离8.2 CM。在3年9次条件下对株高性状进行鉴定,利用复合区间作图法监测到6个株高QTL,它们分别位于1D、2A、2B、3A和5A染色体上,其中位于2B染色体上的QTL来自品种CI12633,其余5个QTL均来自矮杆亲本扬麦9号,单个QTL能够解释4.13%~17.44%的表型变异,每个环境条件下检测到的所有QTL能解释29.46%~46.46%的表型变异,5A染色体上的QTL在9次试验环境下均能被检测出来,同时其效应也是最大的QTL,说明这个QTL能够在育种中被利用。  相似文献   

19.
黄瓜株高性状遗传规律的初步分析   总被引:1,自引:0,他引:1  
以亲本矮生1号、A38及其杂交F2代为试材,分析了双亲及F2代下胚轴长度、株高、节间数,结果表明亲本高度差异显著;F2代群体株高与下胚轴长度都呈正态分布,属于数量遗传;相关性分析表明,黄瓜的节间数和下胚轴长度都与黄瓜株高线性相关,相关系数R2〉0.7(P〈0.05)。  相似文献   

20.
以伽马射线诱变籼稻品种"93-11"获得的5个长穗颈突变体"eR-1~eR-5"为材料,与野生型对比研究表明,5个长穗颈突变体植株、倒Ⅰ节间和倒Ⅱ节间分别显著增高和变长,穗长显著变长,突变体"eR-4"和"eR-5"分蘖能力显著提高,每穗粒数和结实率变化不显著,千粒重和单株产量均不同程度下降,其中突变体"eR-1"和"eR-2"的单株产量显著下降。等位性测定表明,突变体"eR-1"、"eR-2"、"eR-4"和"eR-5"的eui突变基因相互等位,并与已报道的eui基因等位,而与突变体"eR-3"的eui突变基因不等位。由此说明,"eR-3"是一个新的长穗颈突变体,其长穗颈性状受1对隐性核基因控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号