首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
油菜分段收获脱粒分离功率消耗试验研究   总被引:1,自引:0,他引:1  
研究油菜分段收获条件下脱粒分离功率消耗与喂入量、脱粒滚筒圆周线速度、脱粒间隙和脱粒滚筒结构形式之间的关系.对脱粒分离装置实际功耗峰值和实际功耗均值进行了4因素3水平正交试验,结果表明:喂入量1.4 kg/s,滚筒转速650 r/min,脱粒间隙20 mm和钉齿6排脱粒滚筒消耗的功率最小,其中喂入量和脱粒滚筒转速为影响脱粒分离功率消耗的主要影响因素;方差分析表明喂入量、脱粒滚筒转速、脱粒间隙和脱粒滚筒形式对实际功耗峰值和实际脱分段功耗均值影响均不显著.  相似文献   

2.
以轴流脱粒分离装置试验台为试验设备,采取二次回归正交旋转组合试验的方法,研究了影响组合式轴流脱分装置脱分性能的喂入量、滚筒转速、凹板间隙三个因素对功耗的影响,并得出了各因素水平之间的最佳组合工艺,即:喂入量1.5 kg/s,滚筒转速600r/min,凹板间隙21mm。  相似文献   

3.
单纵轴流脱粒滚筒的设计与性能试验   总被引:1,自引:0,他引:1  
针对4LZ–3.0型联合收割机在水稻喂入量和草谷比较大时脱粒滚筒易堵塞的问题,设计了一种单纵轴流脱粒滚筒。该滚筒主要由喂入螺旋装置、辐条、辐盘、脱粒杆齿、排草板组成。脱粒时水稻由搅龙经输送槽输送至喂入螺旋装置处,经螺旋装置叶片轴向输送至脱粒杆齿滚筒进行脱粒。为探讨螺旋装置喂入适应性能,通过单头、双头和三头螺旋装置的选型试验,选定了三头喂入螺旋的脱粒滚筒,以滚筒转速、导向板倒角、脱粒间隙为因素,籽粒破碎率和未脱净损失率为性能评价指标,运用回归分析方法建立了该脱粒系统的数学模型,优化确定了其最佳工作参数组合。试验结果表明:当滚筒转速为800 r/min、导向板导角为23.7°、脱粒间隙为20 mm时,籽粒破碎率为0.113%,未脱净损失率为0.071%。  相似文献   

4.
为实现水稻联合收割机脱粒滚筒实时喂入量监测,基于薄膜传感器设计了一种脱粒滚筒喂入量测量系统,其原理为通过薄膜传感器测出滚筒顶盖侧边因喂入量变化而产生的受力变化。以额定喂入量为0.8kg/s的小型横轴流脱粒滚筒为试验对象,以成熟的晚籼98和传奇丰两优1号水稻为主要试验材料,在转速分别为650、800、950、1 100r/min、喂入量为0.2~0.8kg/s的条件下开展台架试验,结果显示:薄膜传感器采集的实时信号与实时喂入量显著相关,对喂入量和传感器信号进行线性关系拟合,拟合效果较好。试验结果表明,设计的测量系统可以通过传感器信号对喂入量进行测量。  相似文献   

5.
为解决现有通用小型联合收割机脱粒装置内高残留的问题,选定农广4LZ-0.8小型联合收割机脱粒装置为原型机进行改进设计,为满足育种收获低混种的农艺要求,对脱粒装置底部曲面进行了改进,并采用了全程气流辅助清理和扬谷器清理的组合方式,解决了原有搅龙与刮板输送造成高残留的缺陷。设计了脱粒试验台进行试验,以喂入量、导向风管入口风速、扬谷器转速为试验因素,以脱粒装置内谷粒残留量为性能评价指标,先进行不同风速下最大喂入量的单因素试验,以确定试验因素范围,再运用回归分析方法建立了脱粒装置清残留的数学模型,优化确定了最佳参数组合。试验结果表明:当喂入量为0.6 kg/s;导向风管入口风速为12 m/s;扬谷器转速为1 000 r/min时,装置内整体残留量为0.18 g。  相似文献   

6.
横轴流脱粒分离装置滚筒长度限制了其脱粒分离能力,仅被应用于中小型联合收割机。为研究横轴流脱粒分离装置脱粒滚筒转速、喂入量、脱粒间隙等因素对脱粒分离性能的影响,优化装置结构,利用概率学理论建立了横轴流脱粒分离装置的未脱净率和夹带损失率数学模型。对模型正确性验证试验表明,模型对未脱净率的预测相对误差为8.23%,对夹带损失率的预测相对误差为2.90%。仿真分析和试验表明,该模型可反映籽粒轴向分布和脱粒滚筒转速、喂入量、脱粒间隙等参数对脱粒分离性能的影响。  相似文献   

7.
纵轴流双滚筒小区育种脱粒分离装置设计与试验   总被引:1,自引:1,他引:0  
田间试验机械化是提高作物育种工作效率的关键环节,是获得正确育种试验结果的重要措施。根据小区育种小麦收获试验要求,设计了一种由钉齿式圆柱滚筒与短纹杆—板齿锥型滚筒组成的纵轴流双滚筒小区育种脱粒分离装置,通过论述该装置总体配置方案,完成其关键部件(脱粒滚筒、分离滚筒)结构与运动参数设计计算,确定脱粒滚筒的平均直径为450 mm、分离滚筒的直径为430 mm,两者的转速分别在764-892 RPM和888-1 022RPM,计算得出分离滚筒的脱粒元件数为36个,且装置适宜的喂入量需小于2.7 kg/s。利用该装置进行了育种小麦脱粒分离试验结果表明,当喂入量由1.8 kg/s向2.6 kg/s变化,脱粒滚筒转速为760 RPM、分离滚筒转速为1 020RPM时,装置脱粒损失率为0.32%-0.36%、种子破碎率为0.51%-0.62%、籽粒含杂率为2.48%-2.92%。研究表明,纵轴流双滚筒小区育种脱粒分离装置针对物料脱粒难易程度能够实现有序脱粒作业,其脱出物料分布均匀,有较强的适应性,各项技术指标均达到国家标准要求。  相似文献   

8.
谷子联合收获机脱粒装置设计与试验   总被引:2,自引:0,他引:2  
针对现有谷物联合收获机脱粒装置对谷子脱粒清选困难的问题,采用田间单因素试验、正交试验、二次回归正交试验的方法,研究脱粒元件、滚筒转速、凹板筛筛条间距、脱粒间隙4因素对谷子脱粒效果的影响规律,分析各因素的显著性,并建立回归模型。结果表明:影响脱粒性能的因素主次顺序为:凹板筛筛条间距、滚筒转速、脱粒间隙、脱粒元件;最优参数组合为凹板筛筛条间距7.9mm,滚筒转速928.3r/min,脱粒间隙10.4mm,全纹杆脱粒元件。  相似文献   

9.
鼓形与圆柱形杆齿式纵轴流脱粒滚筒功耗对比试验   总被引:2,自引:0,他引:2  
为降低功耗,同时减少脱粒滚筒堵塞,提高水稻联合收获机收获效率,设计了一种鼓形杆齿式纵轴流脱粒滚筒,并对其功耗进行了仿真与试验研究。以具有相同外部尺寸的圆柱形杆齿式纵轴流脱粒滚筒为对照,以脱粒滚筒旋转轴总力矩为试验指标,进行了基于离散元法的对比试验,结果显示:相同喂入量下,2种结构的脱粒滚筒旋转轴总力矩存在明显差异,鼓形滚筒旋转轴总力矩小于圆柱形滚筒,且随喂入量增大,差异越大。与仿真条件一致的2种脱粒滚筒结构功耗对比台架试验结果表明,在喂入量为0.8~1.6 kg/s时,随喂入量增加,滚筒功耗增大,与相同外部尺寸的圆柱形滚筒相比,鼓形结构的脱粒滚筒功耗平均降低5%~15%。  相似文献   

10.
为解决传统横轴流联合收割机在水稻脱分选作业时存在的问题,4LZS-1.8型联合收割机采用差速脱粒滚筒和圆锥形清选风机等新型工作部件,以提升脱分选性能,其结构参数和工作参数有待通过试验来明确.由于田间试验的重复性差,以4LZS-1.8型联合收割机脱分选装置实际结构和尺寸为基础,自行研制了工作性能试验台.利用正交试验方法考察脱粒滚筒转速组合、脱粒滚筒长度比例组合、圆锥形风机叶片锥度等工作参数和结构参数对损失率、破碎率、含杂率、脱粒功耗等性能指标的影响程度.试验结果表明:在喂入量为2 kg/s时,影响4LZS-1.8型联合收割机脱分选工作性能的因素主次顺序为差速滚筒转速组合(B)、圆锥形风机叶片锥度(C)、差速滚筒高低速段长度比(A);最优方案为B=750/950 r/min、C=5°、A=2∶8(28型),对应性能指标为损失率1.28%、破碎率0.32%、含杂率0.48%,对应差速脱粒滚筒总功耗为16.66 kW,其中低速滚筒功耗占总功耗的74.73%,高速滚筒功耗占总功耗的25.27%.  相似文献   

11.
为寻求组合式螺旋板尺脱离装置工作时最优参数组合,以脱净率、含杂率、破损率作为指标,利用4因素3水平的正交试验分析方法对螺旋板齿式脱粒装置的螺旋角度、滚筒转速、喂入量、排芯口压力工作参数及参数交互作用进行多因素分析。结果表明,对脱净率、含杂率、破损率影响的因素大小分别为螺旋角度、滚筒转速、喂入量、排芯口压力,最佳工作参数为喂入量3.1 kg/s、脱粒轴转速245 r/min、螺旋角9°、排芯口压力50 N。  相似文献   

12.
完熟期油菜的脱粒特性与分析   总被引:1,自引:0,他引:1  
利用端面喂入式轴流脱粒滚筒对完熟期油菜进行脱粒试验,分析筛下脱出籽粒、果荚壳、颖杂、茎秆等成分的质量和茎秆长度沿脱粒滚筒轴线的分布特征,并以滚筒转速为因素进行单因素试验,分析滚筒转速对脱出物质量的影响规律.结果表明,各筛下脱出物沿滚筒轴线呈现出小尺寸脱出物前多后少、大尺寸脱出物前少后多的分布规律,当转速为750 r/min时,油菜籽粒的脱出质量最大.  相似文献   

13.
为解决传统横轴流联合收割机在水稻脱分选作业时存在的问题,4LZS-1.8型联合收割机采用差速脱粒滚筒和圆锥形清选风机等新型工作部件,以提升脱分选性能,其结构参数和工作参数有待通过试验来明确。由于田间试验的重复性差,以4LZS-1.8型联合收割机脱分选装置实际结构和尺寸为基础,自行研制了工作性能试验台。利用正交试验方法考察脱粒滚筒转速组合、脱粒滚筒长度比例组合、圆锥形风机叶片锥度等工作参数和结构参数对损失率、破碎率、含杂率、脱粒功耗等性能指标的影响程度。试验结果表明:在喂入量为2 kg/s时,影响4LZS-1.8型联合收割机脱分选工作性能的因素主次顺序为差速滚筒转速组合(B)、圆锥形风机叶片锥度(C)、差速滚筒高低速段长度比(A);最优方案为B=750/950 r/min、C=5°、A=2∶8(28型),对应性能指标为损失率1.28%、破碎率0.32%、含杂率0.48%,对应差速脱粒滚筒总功耗为16.66 k W,其中低速滚筒功耗占总功耗的74.73%,高速滚筒功耗占总功耗的25.27%。  相似文献   

14.
<正>一、脱粒不净1.原因。喂入量过大或喂入不均匀;纹杆与凹板之间的脱粒间隙过大;滚筒转速过低;谷物太潮湿。2.调修方法。①减少喂入量,均匀喂入。②正确调整好脱粒间隙,磨损严重的零件应及时更换。  相似文献   

15.
《农家顾问》2014,(1):51-52
<正>半喂入联合收割机指作物仅穗头进入脱粒滚筒脱粒而茎秆留在机外的联合收割机。其特点是有较长的夹持输送链和夹持脱粒链,脱粒时,只将作物穗部送入滚筒,因而保持了茎秆的完整性,因为茎秆不进入滚筒,机器上的分离装置可大大简化或省去,耗用的功率也大为减少,采用的都是弓齿轴流式滚筒,在收获水稻方面具有显著的优势。为保证脱净,半喂入联合收割机夹持脱粒的茎秆层不能太厚。  相似文献   

16.
全喂入式联合收割机的脱粒清选系统的工作性能对收获质量的影响很大,而复杂多变的工作环境极易对脱粒清选系统造成不良影响。从脱粒清选系统的主要结构、工作流程、收割前的调节、收割过程中的故障排除以及日常的维护保养等方面详细介绍全喂入联合收割机的脱粒清选系统。  相似文献   

17.
为降低4LZ–4.0型联合收割机机收作业中籽粒破碎率,提高清洁度,依托纵轴流差速分段式脱粒滚筒,设计了杆齿、弓齿和刀齿3种形状的脱粒元件,通过改变脱粒元件表面与籽粒碰撞时的接触状态,刚柔耦合成6种类型脱粒滚筒;基于冲量–动量定理对籽粒碰撞过程进行分析,通过仿真试验得到刚性杆齿和刚柔耦合杆齿与水稻籽粒谷物接触时籽粒所受法向力均值分别为28.4 N和22.3 N,籽粒所受切向力均值分别为14.43 N和8.74 N。以前滚筒齿形、前滚筒转速和前后滚筒转速差为影响因素,以水稻籽粒破碎率和未脱净率为评价指标进行3因素3水平正交试验。结果表明:前后滚筒转速差对破碎率的影响最大,前滚筒齿形对未脱净率的影响最大;试验得到的最优组合为前滚筒齿形为弓齿、前滚筒转速为600 r/min、前后滚筒转速差为100 r/min;与刚性脱粒元件相比,带有聚氨酯橡胶套的刚柔耦合脱粒元件可有效降低水稻籽粒破碎率,平均可降低18.5%。  相似文献   

18.
纵置单轴流滚筒脱粒与分离装置功耗性能试验研究   总被引:6,自引:0,他引:6  
考察脱粒与分离因子对功耗性能的影响,通过二次回归正交旋转组合试验,对影响钉齿式轴流滚筒脱粒与分离性能的3个因素(喂入量、滚筒转速及导向板导角)以及对脱粒与分离的主效应、单效应、两因素的交互效应进行分析,并且得出各因素水平之间的最佳组合工艺。  相似文献   

19.
为解决含水率在30%以上的玉米在籽粒直收时破碎率和未脱净率高的问题,设计一种低喂入量玉米柔性脱粒装置试验台,选取导流角、滚筒转速和脱粒间隙为试验因素,以破碎率和未脱净率为试验指标,对玉米进行了单因素试验和响应雨试验并使用Design·Expert软件分析获得脱粒最佳参数.单因素试验结果表明:所选试验因素对试验结果有显著影响,对于柔性滚筒,当导流角增大,玉米籽粒破碎率先减小后增大,未脱净率随导流角增大而减小;滚筒转速增大玉米籽粒破碎率先减小后增大,未脱净率随转速增大而减小;脱粒间隙增大,玉米籽粒破碎率和未脱净率均为先减小后增大.响应面试验鲒果表明,当导流角为68°、滚筒转速223 r·min-1、脱粒间隙为33 mm时,最优脱粒效果为破碎率2.49%,未脱净率为0.171%.  相似文献   

20.
小喂入量大豆收割机纵轴流脱粒装置参数优化   总被引:1,自引:0,他引:1  
【目的】为解决我国西南丘陵地区大型收割机具通过性差,横轴流式收割机脱粒损失率大的问题.【方法】利用小喂入量纵轴流脱粒装置试验台,以籽粒破碎率、损失率和含杂率为试验指标,进行了滚筒转速、导向板升角和筛孔尺寸的单因素试验,初步确定了正交试验水平.在此基础上,进行了滚筒转速、导向板升角和筛孔尺寸三因素正交试验和滚筒转速、导向板升角两因素回归试验.【结果】当滚筒转速为460r/min,导向板升角为11°,筛孔尺寸为22mm×25mm时,该脱粒装置脱粒分离性能较优,破碎率为1.81%、含杂率为25.02%、损失率为0.52%.【结论】研究结果为小喂入量大豆收割机纵轴流脱粒装置的设计与优化提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号