首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 513 毫秒
1.
针对联合收割机田间收获时喂入量不稳定导致收获性能欠佳的问题,提出通过调节脱粒间隙以适应不同喂入量工况的解决斱案。为实现脱粒间隙可调节,基于4LZ–1.0型小型联合收割机,设计了一种直径可调的脱粒滚筒。滚筒由主轴、齿杄、间隙调节机构、间隙控制机构等部件组成。通过间隙控制机构驱动间隙调节机构,改变脱粒滚筒直径,实现脱粒间隙调节,间隙调节范围为10~40 mm。以喂入量、滚筒转速、脱粒间隙为影响因素,以未脱净率、夹带损失率、含杂率为评价指标进行脱粒性能试验。通过回归分析,分析了各因素对装置脱粒分离性能的影响,幵根据综合评价回归斱程分析得出了不同喂入量下的较优滚筒转速及脱粒间隙。喂入量小于0.876kg/s时,滚筒转速应匹配700 r/min的低速档,喂入量大于0.876 kg/s时,应匹配1 300 r/min的高速档。  相似文献   

2.
单纵轴流脱粒滚筒的设计与性能试验   总被引:1,自引:0,他引:1  
针对4LZ–3.0型联合收割机在水稻喂入量和草谷比较大时脱粒滚筒易堵塞的问题,设计了一种单纵轴流脱粒滚筒。该滚筒主要由喂入螺旋装置、辐条、辐盘、脱粒杆齿、排草板组成。脱粒时水稻由搅龙经输送槽输送至喂入螺旋装置处,经螺旋装置叶片轴向输送至脱粒杆齿滚筒进行脱粒。为探讨螺旋装置喂入适应性能,通过单头、双头和三头螺旋装置的选型试验,选定了三头喂入螺旋的脱粒滚筒,以滚筒转速、导向板倒角、脱粒间隙为因素,籽粒破碎率和未脱净损失率为性能评价指标,运用回归分析方法建立了该脱粒系统的数学模型,优化确定了其最佳工作参数组合。试验结果表明:当滚筒转速为800 r/min、导向板导角为23.7°、脱粒间隙为20 mm时,籽粒破碎率为0.113%,未脱净损失率为0.071%。  相似文献   

3.
针对4LZ–0.8型小型水稻联合收割机在清选过程中存在的清选损失较大以及连续作业时湿物料易堵塞问题,对其分离清选装置进行了改进设计。改进后的装置由物料输送机构、扬谷器、旋风分离清选筒以及吸杂风机组成,去除了原有刮板抛送机构,在旋风分离筒中加装了半球体分离组件,改物料径向进入分离筒为切向进入。利用自制旋风分离清选试验台,以扬谷器转速、吸杂风机转速、分离组件距入口高度为试验因素,以谷粒清洁率和清选损失率为性能评价指标,运用回归分析方法建立了清选系统的数学模型,优化确定了最佳参数组合。试验结果表明:当扬谷器转速为1 133 r/min,吸杂风机转速为2 609 r/min,分离组件距入口高度为51 mm时,谷粒清洁率达到98.93%,清选损失率为0.035%。  相似文献   

4.
为实现水稻联合收割机脱粒滚筒实时喂入量监测,基于薄膜传感器设计了一种脱粒滚筒喂入量测量系统,其原理为通过薄膜传感器测出滚筒顶盖侧边因喂入量变化而产生的受力变化。以额定喂入量为0.8kg/s的小型横轴流脱粒滚筒为试验对象,以成熟的晚籼98和传奇丰两优1号水稻为主要试验材料,在转速分别为650、800、950、1 100r/min、喂入量为0.2~0.8kg/s的条件下开展台架试验,结果显示:薄膜传感器采集的实时信号与实时喂入量显著相关,对喂入量和传感器信号进行线性关系拟合,拟合效果较好。试验结果表明,设计的测量系统可以通过传感器信号对喂入量进行测量。  相似文献   

5.
以轴流脱粒分离装置试验台为试验设备,采取二次回归正交旋转组合试验的方法,研究了影响组合式轴流脱分装置脱分性能的喂入量、滚筒转速、凹板间隙三个因素对功耗的影响,并得出了各因素水平之间的最佳组合工艺,即:喂入量1.5 kg/s,滚筒转速600r/min,凹板间隙21mm。  相似文献   

6.
油菜分段收获脱粒分离功率消耗试验研究   总被引:1,自引:0,他引:1  
研究油菜分段收获条件下脱粒分离功率消耗与喂入量、脱粒滚筒圆周线速度、脱粒间隙和脱粒滚筒结构形式之间的关系.对脱粒分离装置实际功耗峰值和实际功耗均值进行了4因素3水平正交试验,结果表明:喂入量1.4 kg/s,滚筒转速650 r/min,脱粒间隙20 mm和钉齿6排脱粒滚筒消耗的功率最小,其中喂入量和脱粒滚筒转速为影响脱粒分离功率消耗的主要影响因素;方差分析表明喂入量、脱粒滚筒转速、脱粒间隙和脱粒滚筒形式对实际功耗峰值和实际脱分段功耗均值影响均不显著.  相似文献   

7.
小喂入量大豆收割机纵轴流脱粒装置参数优化   总被引:1,自引:0,他引:1  
【目的】为解决我国西南丘陵地区大型收割机具通过性差,横轴流式收割机脱粒损失率大的问题.【方法】利用小喂入量纵轴流脱粒装置试验台,以籽粒破碎率、损失率和含杂率为试验指标,进行了滚筒转速、导向板升角和筛孔尺寸的单因素试验,初步确定了正交试验水平.在此基础上,进行了滚筒转速、导向板升角和筛孔尺寸三因素正交试验和滚筒转速、导向板升角两因素回归试验.【结果】当滚筒转速为460r/min,导向板升角为11°,筛孔尺寸为22mm×25mm时,该脱粒装置脱粒分离性能较优,破碎率为1.81%、含杂率为25.02%、损失率为0.52%.【结论】研究结果为小喂入量大豆收割机纵轴流脱粒装置的设计与优化提供参考.  相似文献   

8.
为寻求组合式螺旋板尺脱离装置工作时最优参数组合,以脱净率、含杂率、破损率作为指标,利用4因素3水平的正交试验分析方法对螺旋板齿式脱粒装置的螺旋角度、滚筒转速、喂入量、排芯口压力工作参数及参数交互作用进行多因素分析。结果表明,对脱净率、含杂率、破损率影响的因素大小分别为螺旋角度、滚筒转速、喂入量、排芯口压力,最佳工作参数为喂入量3.1 kg/s、脱粒轴转速245 r/min、螺旋角9°、排芯口压力50 N。  相似文献   

9.
横轴流脱粒分离装置滚筒长度限制了其脱粒分离能力,仅被应用于中小型联合收割机。为研究横轴流脱粒分离装置脱粒滚筒转速、喂入量、脱粒间隙等因素对脱粒分离性能的影响,优化装置结构,利用概率学理论建立了横轴流脱粒分离装置的未脱净率和夹带损失率数学模型。对模型正确性验证试验表明,模型对未脱净率的预测相对误差为8.23%,对夹带损失率的预测相对误差为2.90%。仿真分析和试验表明,该模型可反映籽粒轴向分布和脱粒滚筒转速、喂入量、脱粒间隙等参数对脱粒分离性能的影响。  相似文献   

10.
为解决传统横轴流联合收割机在水稻脱分选作业时存在的问题,4LZS-1.8型联合收割机采用差速脱粒滚筒和圆锥形清选风机等新型工作部件,以提升脱分选性能,其结构参数和工作参数有待通过试验来明确.由于田间试验的重复性差,以4LZS-1.8型联合收割机脱分选装置实际结构和尺寸为基础,自行研制了工作性能试验台.利用正交试验方法考察脱粒滚筒转速组合、脱粒滚筒长度比例组合、圆锥形风机叶片锥度等工作参数和结构参数对损失率、破碎率、含杂率、脱粒功耗等性能指标的影响程度.试验结果表明:在喂入量为2 kg/s时,影响4LZS-1.8型联合收割机脱分选工作性能的因素主次顺序为差速滚筒转速组合(B)、圆锥形风机叶片锥度(C)、差速滚筒高低速段长度比(A);最优方案为B=750/950 r/min、C=5°、A=2∶8(28型),对应性能指标为损失率1.28%、破碎率0.32%、含杂率0.48%,对应差速脱粒滚筒总功耗为16.66 kW,其中低速滚筒功耗占总功耗的74.73%,高速滚筒功耗占总功耗的25.27%.  相似文献   

11.
双割台双滚筒全履带式再生稻收割机的设计与性能试验   总被引:3,自引:0,他引:3  
为降低再生稻头季收获碾压率,设计1台轻量化、宽割幅、低碾压的双割台双滚筒全履带式再生稻收割机。该机由2套收割、脱粒、清选及储粮系统构成,共用1套履带式行走底盘,其收获装置采用对潮湿作物脱粒能力强的轴流钉齿式脱粒滚筒,清选装置采用质量轻、功耗小的气流清选筒式装置。对整机结构及参数进行设计并试制1台割幅为2.55m、理论喂入量为1.6kg/s的样机。以水稻品种"中香一号"为试验对象,对该机进行田间性能试验,结果表明,该机作业速度可达0.24 m/s,割茬高度在0.35~0.55 m间可调,工作效率为0.133hm~2/h。该机碾压率低、质量轻,能满足再生稻头季收获要求。  相似文献   

12.
针对传统油菜联合收获机运动部件多、机械传动路线长且结构复杂等问题,设计了1套应用于4LYZ-1.8型油菜联合收获机的串并联组合式双泵多马达液压驱动系统,通过液压系统测试确定了负载敏感系统节流阀开度与转速间关系;采用正交试验研究割台复合推运器转速、脱粒滚筒转速、抛扬机转速、强制喂入轮转速对负载敏感系统总功耗的影响;开展功耗分析试验对主要工作部件所在回路的功耗进行测量。正交试验方差分析表明:脱粒滚筒转速对负载敏感系统总功耗影响极显著,割台复合推运器转速、旋风分离筒入口风速对总功耗影响显著。液压回路功耗分析试验表明:油菜平均喂入量为1.5kg/s时,割台平均功耗为1.68kW,强制喂入轮平均功耗为1.00kW,脱粒滚筒平均功耗为5.11kW,抛扬机及输送装置平均功耗为2.28kW,风机平均功耗为1.80kW。田间试验表明:串并联组合式双泵多马达液压驱动系统可适应油菜联合收获机的作业要求,能根据不同作业工况实现无级调速。  相似文献   

13.
小区小麦育种联合收获机试验研究   总被引:1,自引:0,他引:1  
根据小麦育种试验种子收获方法和农业技术要求,通过理论分析和田间试验,研制出小区小麦育种联合收获机。该机可一次完成切割、脱粒、分离、清选、集粮等全部作业。以喂入量、滚筒转速、吸杂风机转速为因素,以脱粒总损失率、脱粒破碎率、分离含杂率为评价指标进行作业性能试验。结合正交试验,应用综合平衡法得出了该机作业时各参数的最优方案为:喂入量0.3 kg·s-1,滚筒转速1 350 r·min-1,吸杂风机转速1 000 r·min-1。以该最优组合作业参数进行田间试验,结果表明,该机平均脱粒总损失率为0.43%,平均分离含杂率为15.03%,平均脱粒破碎率为0.48%,装置罩壳残留率为0,符合小区小麦育种收获要求。  相似文献   

14.
大豆联合收获机气力卸粮装置的设计与试验   总被引:1,自引:0,他引:1  
针对现阶段大豆联合收获机传统螺旋运输器卸粮过程中籽粒破碎率较高的问题,设计一种大豆联合收获机气力卸粮装置。以叶轮转速、风机转速、卸粮软管内径为试验因素,破碎率及卸粮效率为试验指标进行三因素三水平响应面试验。结果表明:3个因素对破碎率影响程度的主次顺序为,风机转速、叶轮转速、卸粮软管内径,对卸粮效率影响程度的主次顺序为,叶轮转速、卸粮软管内径、风机转速;通过多目标参数优化分析得到适合气力卸粮的工作参数为,叶轮转速15r/min、风机转速3 166r/min、软管内径100mm,此时破碎率为1.49%,卸粮效率1.3L/s。该装置能有效降低联合收获机卸粮过程对大豆造成的损伤。  相似文献   

15.
旋风分离清选适用于小型水稻联合收割机,在保证清选损失率小的前提下,降低含杂率是设计的关键。为探寻分离筒中气流和籽粒两相流动规律,选取水稻脱出物中谷粒、颖壳、瘪谷、杂穗等为研究对象,利用Fluent软件对4LZ-0.8型水稻联合收割机清选系统中的旋风分离清选装置进行三维数值仿真模拟,分析不同工况下清选模型中各组分籽粒的运动轨迹,计算其分离效率。并以低损试验条件下谷粒清洁率为主目标进行台架试验,对最优模型进行了试验验证,评价扬谷轮转速、吸杂风机转速和分离组件距入口高度三因素与装置清选性能之间的影响关系,通过建立回归模型,进行多目标优化求解,得到较优参数组合:当扬谷轮转速为1 163 r/min,吸杂风机转速为1 920 r/min,分离组件距入口高度为63.26 mm时,预测所得谷粒清洁率为99.26%,可为清选装置再设计提供参考。  相似文献   

16.
大豆联合收获机清选装置与关键技术研究进展   总被引:2,自引:0,他引:2  
清选装置是大豆联合收获机完成脱粒混合物清选分离的主要设备,其工作性能决定大豆机收的清选作业水平。目前,中国专用于大豆机收的清选装置较少,联合收获机主要采用筛子-气流式清选装置,但该类清选装置与大豆特性的匹配性较低,导致大豆机收清选损失率和含杂率较大。从清选装置与关键技术2个方面综述大豆联合收获机清选装置的研究现状,结合当今世界联合收获机清选装置的先进技术进行总结,分析现阶段中国大豆机收清选装置研究的不足之处,并展望大豆联合收获机清选装置的发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号