首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
通过RT-PCR分析,鉴定了一个在水稻茎、叶中特异表达的锌指基因OsZF153.利用PCR扩增了OsZF153基因上游约2 kb启动子区,构建了启动子与GUS的融合表达载体pCZF153P-GUS.pCZF153P-GUS转基因T0植株GUS活性分析显示:转基因植株的根、茎、叶、颖壳中检测到GUS活性,其中茎和叶GUS表达活性较强,而根和颖壳表达较弱,在雄蕊和雌蕊及种子不同发育阶段中没有检测到GUS活性,表明OsZF153启动子是一个水稻非生殖器官表达,且在茎、叶中优势表达的启动子.  相似文献   

2.
根据基因芯片数据库和RT-PCR验证得到1个高活性的水稻组成型表达基因(TIGR Locus:LOC-Os07g34589),用PCR技术从籼稻品种明恢63基因组中克隆得到其上游启动子PSUI1,长度为1 941bp;将其与β-glucuronidase(GUS)报告基因融合构建植物表达载体DX2181b-PSUI1,利用玉米Ubiquitin启动子融合GUS报告基因构建表达载体DX2181b-PUbi作为对照,通过根癌农杆菌(Agrobacterium tumefaciens)介导法将DX2181b-PSUI1和DX2181b-PUbi转化粳稻品种中花11。组织化学染色表明,含DX2181b-PSUI1的转基因植株中,GUS基因在幼苗期叶片、叶鞘、根,抽穗期叶片、叶鞘、茎秆、颖壳、雄蕊和成熟期的叶片、叶鞘、茎秆、胚、胚乳中均有表达,说明PSUI1为组成型启动子。对GUS表达活性进行定量分析表明,PSUI1启动子的活性约为玉米Ubiquitin启动子活性的1/3~1/2,但是PSUI1表现出了更好的表达稳定性。  相似文献   

3.
在水稻基因组芯片分析的基础上,克隆到一个在水稻中高水平表达基因OsSG15'末端启动子区域1.6-kb的DNA片断,即Ospz1启动子,构建了由Ospz1启动子引导的GUS重组基因,并经农杆菌介导将重组基因导入到水稻中.对转基因水稻植株中GUS活性的定性测定结果表明,Ospz1启动子可驱动GUS报告基因在转基因水稻植株叶片、芽和根中高效表达,而在其它器官中不表达或表达活性极弱,表现出组织特异性.Ospz1启动子可用于农作物生物技术的遗传改良.  相似文献   

4.
为了研究水稻OsN1基因启动子(OsN1p)的表达调控机理,用OsN1基因ATG(ATG中的A为0)上游-1 089 bp、-881 bp、-489 bp和-245 bp的启动子序列分别取代pBI121中的35S启动子,构建植物表达载体pBIN1.1p、pBIN0.9p、pBIN0.5p和pBIN0.2p。将这些表达载体经农杆菌介导转化水稻日本晴,获得转基因植株。对启动子的表达特点和启动活性进行了分析,结果表明,由-1 089 bp启动子、-881 bp启动子和-489 bp启动子驱动的gus基因能在愈伤组织中表达,-245 bp启动子不能驱动gus基因在愈伤组织中表达,说明启动子OsN1p具有启动活性的最小启动序列为ATG上游的-489 bp;-489 bp启动子驱动的gus基因在转基因植株根中表达,在根冠不表达;用5 mmol/L水杨酸(SA)喷施转基因植株叶片后,GUS定量分析结果表明转基因植株的GUS活性增高,转-881bp启动子植株的GUS活性比转-1 089 bp启动子植株的活性高。可见,启动子OsN1p具有组织特异性表达和受SA诱导表达的特性。  相似文献   

5.
[目的]克隆水稻TFL2(OsTFL2)启动子序列,并分析其结构和功能,为深入研究OsTFL2基因对水稻开花和花发育的调控机理提供理论参考.[方法]采用同源克隆方法克隆OsTFL2基因启动子序列,利用PLACE和PlantCARE分析其结构和功能,并将其连接至携带β-葡萄糖苷酸酶(GUS)基因的pCAMBIA1301载体以构建pCAMBIA1301-Pro-moter植物表达载体,通过农杆菌介导转化水稻品种农垦58愈伤组织,通过对转基因植株进行GUS组织化学染色以分析该基因启动子的表达特性和调控功能.[结果]克隆获得的OsTFL2基因起始密码子上游启动子序列1.8 kb,该序列除含有真核生物典型启动子元件TATA-box和CAAT-box外,还含有花粉特异识别的顺式作用元件Pollen1lelat52(AGAAA)、开花基因转录相关的多功能转录因子CACTFTPPCA1(PACT,Y=C/T)、CCAAT box1(CCAAT)、DOFCORE(AAAG)和GATA box(GATA)、分生组织特异性元件CCGTCC-box及多个光诱导元件或光诱导相关元件如G-box、Box I、CATT-motif、GATA-motif和GT1-motif等,推测OsTFL2基因通过上述作用元件参与调控水稻花发育及开花.通过PCR检测共筛选获得16株阳性转基因植株,对其进行GUS组织化学染色,结果发现水稻的外颖、花、花药、柱头和子房中均可检测到明显的GUS色斑,而在叶片、茎尖和根尖无明显的GUS色斑,说明OsTFL2启动子能驱动GUS基因在水稻外颖、花药和子房中表达.[结论]OsTFL2基因启动子具有启动活性和组织表达特异性,可在一定程度上影响OsTFL2基因表达,对水稻花生长发育和开花发挥重要调控作用.  相似文献   

6.
水稻基因启动子OsBTF3p的克隆和启动活性分析   总被引:3,自引:1,他引:2  
 【目的】分子克隆水稻基因OsBTF3启动子片段,明确其对靶基因表达的启动作用,为抗病转基因水稻研究提供理论依据和启动子元件材料。【方法】对OsBTF3编码区上游1387 bp的启动子(OsBTF3p)序列进行了克隆和序列分析,构建了OsBTF3p∷GUS融合基因植物表达载体pCAM-OsBTF3p,利用农杆菌介导的水稻遗传转化,获得了39株OsBTF3p∷GUS转基因植株,对OsBTF3p进行了启动活性、组织特异性及病原菌诱导性分析。【结果】分子克隆了OsBTF3p片段,其序列与GenBank中的已知序列一致。在转基因水稻愈伤组织中能够检测到GUS活性,表明该启动子具有启动活性。在转基因水稻叶片维管束组织和根部组织能检测到GUS活性。水稻白叶枯病菌(Xoo)侵染后OsBTF3p驱动的GUS活性明显地上调表达。【结论】OsBTF3p具有驱动GUS基因表达的启动活性、组织表达特异性和病原菌诱导性。  相似文献   

7.
为将高效特异的启动子用于转基因水稻研究,利用PCR技术从水稻‘中花11’基因组DNA中克隆了rbcS启动子,序列分析表明,扩增片段(2 746 bp)与已报道的该基因序列相应区域的同源性达99.2%。将rbcS启动子与GUS报告基因融合构建了由rbcS启动子引导GUS基因的植物表达载体,经农杆菌介导法导入到水稻中。对转基因水稻植株中GU S活性的定性与定量测定结果表明,rbcS启动子可驱动GUS报告基因在转基因水稻植株叶片中的特异性表达,其表达水平高于C aMV 35S组成型启动子,而在转基因水稻植株根和种子等器官中不表达或表达活性极弱,表现出明显的组织特异性。  相似文献   

8.
【目的】建立转基因水稻中GUS蛋白质的免疫学检测方法,并了解花椰菜花叶病毒(CaMV)35S启动子驱动的GUS蛋白质在转基因水稻中的表达特征。【方法】以细菌基因组DNA为模板,PCR扩增GUS基因后克隆到表达载体pET30a中,测序验证的重组子转入大肠杆菌表达菌BL21中,IPTG诱导获得重组表达的GUS蛋白质,用HIS-tag beads纯化后作为免疫原免疫小鼠制备GUS蛋白质特异的抗体,通过免疫印迹分析筛选高特异性的单克隆抗体,用Broadford法对重组的GUS蛋白质进行定量,对不同浓度的GUS蛋白质进行免疫印迹分析,绘制检测GUS蛋白质的标准曲线,通过与标准曲线的比较对水稻叶片中GUS蛋白质进行定量分析。提取不同时期、不同部位的水稻总蛋白质,包括苗期的地上部、地下部,分蘖期的茎、茎节、叶鞘、叶枕、叶片上部、叶片中部和叶片下部,孕穗期的茎、穗轴、叶鞘、叶枕、叶片、幼穗(长度分别为1、2、10和20 cm),开花期的茎、穗轴、叶鞘、叶片、穗子,成熟期的茎、叶片、授粉后不同时期的种子(分别为授粉后10、20、30和40 d)、乳熟期的胚、胚乳和颖壳、成熟种子的全种子、胚、胚乳和颖壳以及不同时期的叶片和根部材料等。SDS-PAGE分离后用抗体检测其GUS蛋白质的丰度。【结果】筛选获得了高特异性的抗GUS单克隆抗体(编号为#27),用该抗体检测转基因水稻中及重组的GUS蛋白质均呈现特异条带,没有可见的背景信号,用本研究建立的免疫印迹方法对重组GUS蛋白质的检测下限约为4 ng,可检出转基因水稻单粒大米2.5%样品中(约0.6 mg)的GUS蛋白质。在不同时期的转基因水稻叶片中GUS蛋白质的表达丰度基本稳定,而在水稻根部的GUS丰度随生长急剧减少,5叶期根中的表达量不到3叶期的三分之一,到6叶期检测不到GUS蛋白质。在水稻苗期叶片中,GUS蛋白质约占鲜重的0.02‰。另外,除分蘖期以后的根部之外,GUS蛋白质几乎在所有的水稻组织部位中呈组成型表达,只是不同组织中的表达量略有差异,如在孕穗期和开花期的茎及颖壳中的表达量较低。【结论】建立了具有应用价值的对转基因水稻中GUS蛋白质丰度检测的免疫印记方法。该方法特异性高、样品用量少、不依赖于GUS蛋白质的酶活性、测定结果易于在不同实验室间比较。证明了35S启动子驱动的GUS蛋白质在转基因水稻中基本呈组成型表达。  相似文献   

9.
克隆水稻尿苷二磷酸葡萄糖焦磷酸化酶基因(OsUgp1)的启动子,并与大肠杆菌β-葡萄糖苷酸酶(β-glucuronidase,GUS)报告基因连接后转化水稻,采用GUS组织化学染色检测启动子驱动GUS基因在水稻转化植株中的表达情况,发现在水稻的根、茎、叶、内外稃、子房、柱头等组织,以及减数分裂时期的花药及不同发育时期的...  相似文献   

10.
将OsN1基因上游881 bp启动子(OsN1p)序列取代pBI121中gus基因上游的35S启动子,构建植物表达载体pBIN1p,经农杆菌介导转化水稻品种‘日本晴’,获得转基因植株。GUS组织化学染色结果表明,由该启动子驱动的gus基因能在愈伤组织中较低水平地表达;稻瘟病菌接种转基因植株24 h后,GUS活性为未接种前的4.2倍;5 mmol.L-1水杨酸(SA)和0.5 mmol.L-1茉莉酸甲酯(MeJA)分别喷施转基因植株叶面6 h后,GUS活性分别为处理前的5.9和2.4倍。表明,OsN1p启动子具有启动活性,同时明显具有受稻瘟病菌、SA和MeJA诱导表达的特性。  相似文献   

11.
利用农杆菌介导法将含报道基因β-glucuronidase(GUS)无启动子的转化载体pCAMBIA1300GUSAHyg导入籼稻明恢86获得水稻启动子捕获系.水稻启动子捕获系潮酶素抗感分离比χ2分析表明:39个水稻启动子捕获系中有28个为单T-DNA位点插入.2 653个水稻启动子捕获系报告基因GUS表达检测结果表明...  相似文献   

12.
【目的】研究水稻HD-ZipⅠ转录因子家族的成员OsHOX6基因启动子的表达。【方法】通过构建水稻OsHOX6基因启动子与GUS基因融合表达载体,利用农杆菌(Agrobacterium)介导,以未成熟水稻胚作为试验材料,转化到水稻IR64,通过PCR检测和潮霉素抗性筛选出阳性的转基因植株,从不同组织取样品,进行X-Gluc染色并观察。【结果】转基因植株的叶、根、茎、花等器官经过X-Gluc染色后,主要在侧根、花粉以及组织损伤部分出现蓝色斑点,其它组织均未检测出蓝色斑点,观察根解剖结构,绿色斑点集中在根内皮层。【结论】 水稻OsHOX6基因启动子能够驱动GUS基因,在转基因水稻侧根和花粉上特异表达。  相似文献   

13.
为了挖掘水稻中的逆境诱导型启动子,挑选了1个受干旱胁迫强烈诱导的水稻内源基因Oshox24,分离出该基因的启动子(命名为Oshox24P),通过酶切连接的方法构建GUS报告基因表达载体并转化到受体材料中花11中,通过对转基因后代在不同逆境胁迫下的GUS活性检测,证明该启动子强烈地受到干旱胁迫的诱导,上调表达倍数至十几倍...  相似文献   

14.
一个水稻谷胱甘肽-S-转移酶启动子的特性分析   总被引:1,自引:0,他引:1  
从水稻基因组文库中筛选得到1个水稻谷胱甘肽-S-转移酶基因,命名为OsGSTL1。为了研究OsGSTL1启动子在植物体内的表达特性,将OsGSTL1起始位点5′-端上游不同长度的调控序列与报告基因GUS融合,并在洋葱表皮瞬间表达和拟南芥中稳定表达。研究表明:在洋葱表皮细胞中,160 bp及更长的上游调控序列均能启动GUS基因的表达;而在转基因拟南芥中,含有2 155 bp的上游序列的PGL2.1::GUS具有时空表达的特性,在转基因的早期幼苗中GUS基因在子叶中特异性表达,但在根中没有表达;而在幼苗生长的后期,根、茎、叶中都有少量的表达。但包含1 224 bp的上游序列的PGL1.2::GUS却表现为组成型表达的特性。由此推测,OsGSTL1启动子启动的基因表达可能与幼苗的营养代谢相关;而OsGSTL1启动子的时空表达相关元件可能位于GST起始位点5′-端上游-2 155 bp~-1 224 bp范围内。  相似文献   

15.
植物钙依赖型蛋白激酶(CDPK)调控钙信号途径下游组分,与植物的生长发育及各种逆境生理过程密切相关。通过对本课题组克隆的水稻OsCPK9基因的cDNA序列与NCBI中的水稻基因组数据库进行比对、定位,结合生物信息学的方法,预测到基因上游的一段启动子序列。进而利用PCR的方法从水稻‘日本晴’(Oryza sativa L. cv. Nipponbare)基因组DNA中克隆到了水稻OsCPK9基因5’端上游约2 kb的DNA序列,命名为POsCPK9。PLANTCARE在线分析表明,POsCPK9序列除包含植物启动子所必备的基本元件如TATA box 和CAAT box外,还含有多个与逆境和信号物质相关的顺式表达元件。将克隆到的POsCPK9取代pBI121中的CaMV 35S 启动子,构建成POsCPK9与GUS的融合表达载体POsCPK9 GUS;通过农杆菌介导的方法在烟草的根、茎、叶中进行瞬时表达。结果显示,该启动子驱动的GUS基因在烟草的根、茎、叶中都有不同程度的表达。说明OsCPK9基因上游2 kb具有启动子活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号