首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 376 毫秒
1.
查尔酮合成酶是植物中黄酮类物质生物合成的第一关键酶,在植物抗性生理中扮演重要作用。本研究利用RT-PCR技术从泡核桃中成功克隆获得一个受冷害诱导的查尔酮合成酶基因(Js CHS1),其基因全长1 490 bp,包含1个内含子,开放阅读框全长为1 170 bp,编码389个氨基酸,登录号为:KX657834。JSCHS1与核桃查尔酮合成酶蛋白序列同源性高达98%,而泡核桃和核桃查尔酮合成酶基因内含子DNA同源性为95%,核桃CHS内含子与泡核桃相比有8个碱基的缺失。系统进化树分析显示其与核桃形成一个独立分支。半定量PCR显示:泡核桃在常温及低温(4℃)处理后都有微弱表达,而在低温处理6 h后强烈表达,这说明Js CHS1是典型的受冷害诱导的查尔酮合成酶基因。本研究为揭示泡核桃抗寒机理以及查尔酮合成酶在冷害胁迫下的作用提供研究基础,并为利用基因工程手段培育抗寒新品种提供理论依据。  相似文献   

2.
小麦作物查尔酮合成酶(CHS)及其基因生物信息学分析   总被引:1,自引:1,他引:0  
对已在NCBI上注册的普通小麦、蓝粒小麦、天蓝偃麦草查尔酮合成酶(chalcone synthase,CHS)核酸和氨基酸序列进行分析。利用生物信息学软件研究3种作物查尔酮合成酶的酶学特性,对其组成成分、理化性质、亚细胞定位、跨膜结构、分子进化、蛋白质二级结构和结构域进行预测和推断。3种作物查尔酮合成酶基因长度均约为1.2 kb,编码394个氨基酸,三者氨基酸同源性很高,在蛋白质的其他预测中,发现三者均为不稳定蛋白,疏水性较强,二级结构以α-螺旋为主,但其他结构中有所差异,在进化树中可以看出蓝粒小麦与长穗偃麦草亲缘关系较近。通过分析发现,小麦类作物查尔酮合成酶有着与其他植物中该酶相同的特性,为进一步研究其他特殊的小麦类作物相关酶及其基因提供理论依据。  相似文献   

3.
类黄酮(Flavonoids)是植物体内一类重要的次生代谢产物,它以结合态(黄酮苷)或自由态(黄酮苷元)形式存在于水果、蔬菜、豆类和茶叶等许多植物中,对植物的生长发育有着重要的调节作用。查尔酮合成酶(Chalcone synthase,CHS,EC2.3.1.74)是植物类黄酮合成途径的第一个关键酶,在调控类黄酮的生物合成以及类黄酮的成分起着决定作用。本研究基于番茄全基因组测序数据,利用生物信息学方法,鉴定了查尔酮合成酶基因家族成员,分析其内含子-外显子的结构特征、系统发育关系,序列结构的保守性以及染色体上的分布。研究表明:查尔酮合成酶(SlCHS)是含有8个成员的多家族基因,蛋白质序列编码位于160(SlCHS05)~438(SlCHS08)个氨基酸之间;相似性在33.7%(SlCHS02和SlCHS06)~92.0%(SlCHS04和SlCHS07)之间,表明这些序列之间具有较高的遗传多样性;此外,结构分析发现这些基因均含有较少的内含子(0~2个);序列比对表明这些基因具有较高的保守性;它们不均匀分布在番茄的1、5、6、9和12号染色体上。该研究不仅有助于未来了解该基因家族的进化起源提供参考,而且可为我们进一步分析该基因家族成员的功能奠定基础。  相似文献   

4.
查尔酮是植物体形成的一类次级代谢产物,在植物花色形成、育性及抵抗胁迫中发挥重要作用。前期研究发现粉葛与野葛中总黄酮的含量和葛根素的含量差异较大,而查尔酮合成酶是黄酮类化合物合成中的首个关键酶。为了研究野葛与粉葛中的查尔酮合成酶(CHS)基因是否存在差异性,利用同源克隆的方法,根据已报道的野葛CHS基因序列设计引物,从粉葛中克隆CHS基因,对其进行蛋白相对分子质量、二级结构及亚细胞定位预测等生物信息学分析并构建植物表达载体。结果显示,成功克隆到粉葛CHS基因,将其命名为PtCHS,该基因cDNA序列长1187 bp,包含一个长1179 bp完整的ORF框,推导编码389个氨基酸,预测蛋白相对分子质量为42.8 kD,理论等电点为5.96,无跨膜结构域,为稳定的亲水性蛋白,二级结构主要由α-螺旋、延伸链、β-转角和无规则卷曲组成,同时亚细胞定位预测结果显示蛋白位于细胞质;氨基酸序列多重比对发现,粉葛的查尔酮合成酶基因(PtCHS)所编码的氨基酸与已报道的野葛CHS基因编码的氨基酸同源性为100%,与大豆、赤豆、菜豆及木豆的氨基酸同源性均在95%以上;蛋白互作预测分析得出,CHS与CHI、C4H及REDUCTASE发生互作的可能性较大;用PtCHS与植物表达载体pBI121构建重组子pBI121-PtCHS,为葛根查尔酮合成酶基因的功能验证提供重要的参考依据。  相似文献   

5.
红花檵木CHS基因的克隆与序列分析   总被引:2,自引:1,他引:1  
查尔酮合酶(chalcone synthase, CHS)是进入类黄酮和花色素苷次生代谢的第1个关键酶。根据植物查尔酮合成酶保守区序列设计引物,以红花檵木(Loropetalurn chinense var. rubrum)大叶红的嫩叶为材料,用RT-PCR方法,分离得到了一个查尔酮合成酶基因的cDNA(GenBank登录号为JQ609678),将该基因命名为LcvrCHS1。该序列长927 bp,编码232个氨基酸残基。其核苷酸序列与GenBank已登录的同样来源的核桃、山茶属植物CHS序列同源性达83%,与其他科植物(绣球花、葡萄、桃、马铃薯、甘草、领春木属)CHS序列同源性也达到80%以上;其编码的氨基酸序列与山茶属、葡萄、鳄梨、洋梨、沙梨、映山红CHS基因编码的氨基酸序列同样具有高度同源性,同源性高达98%。  相似文献   

6.
植物花青素合成酶的研究进展   总被引:6,自引:0,他引:6  
本文重点介绍了植物体内花青素生物合成途径以及其合成酶(查尔酮合成酶、查尔酮异构酶、黄烷酮3-羟化酶、二羟基黄酮醇还原酶、花色素苷合成酶以及类黄酮3-O-糖基转移酶)的分子生物学研究进展。  相似文献   

7.
根据植物查尔酮合成酶基因保守区序列设计引物,以发育18d的天然棕色棉纤维为材料,用RT-PCR结合RACE技术分离得到了一个查尔酮合成酶基因的全长cDNA(GenBank登录号:EU921263),将该基因命名为GhCHS1。实时荧光定量PCR检测显示,GhCHS1基因在棕色棉纤维细胞中优先表达,且在棕色棉纤维中的表达量远高于其近等基因系白色棉,但是该基因在绿色棉中几乎检测不到。这些试验结果暗示,该基因可能在棕色棉纤维色素形成中发挥重要作用。  相似文献   

8.
本研究共收集来自于39个不同植物物种的59个查尔酮合成酶基因(CHS)序列,采用生物信息学方法对参试的CHS序列进行基因组成及结构分析,进而通过邻接法构建CHS超基因家族系统进化树。结果显示,CHS广泛分布于不同物种,整个超基因家族序列具有较高同源性;CHS超基因家族在其进化过程中分为2个亚家族,2大亚家族之间遗传距离为0.048,其进化分异程度呈保守态势。参试的所有CHS基因在其指导蛋白合成从而实现性状表达水平较为统一。  相似文献   

9.
以汉中栽培2种黑稻(黑丰,黑米B)和1种白稻(香粘)为材料,根据水稻查尔酮合成酶(chalcone synthase,CHS)基因DNA序列的保守区域设计3对引物,进行PCR扩增,获得CHS外显子Ⅱ部分序列,测序并与籼稻CHS基因(X 89589.1)比对,发现有13处SNP,这些SNP可能是黑稻种子黄酮类物质含量差异的重要原因之一.稻和其他植物CHS基因外显子Ⅱ序列的进化分析表明,CHS基因虽然整体上反映进化关系,但由于不同基因的进化历史不同,因此单独用CHS基因的进化树来反映物种的进化关系是不确切的,而应尽量选择多位点进行研究.研究结果为高黄酮类物质含量的黑稻育种和黑稻CHS基因在分子系统分类方面提供了必要数据.  相似文献   

10.
竹叶花椒查尔酮合成酶基因克隆与表达   总被引:1,自引:0,他引:1  
查尔酮合成酶(chalcone synthase, CHS)是植物次生代谢途径中的关键酶。本研究依据转录组数据设计特异性引物,采用RT-PCR方法成功地从竹叶花椒(Zanthoxylum armatum)中克隆得到一个全新的CHS基因的全长cDNA序列,命名为ZaCHS (NCBI登录号:MK953733)。序列分析结果表明,ZaCHS包含完整的cDNA开放阅读框(OFR),由1 173 bp组成,编码390个氨基酸。Blast比对结果显示该蛋白属于CHS家族蛋白;系统进化树结果显示竹叶花椒ZaCHS与芸香科植物甜橙、克里曼丁桔等的CHS亲缘关系较近。荧光定量PCR检测显示,ZaCHS在竹叶花椒中的表达量从高到低分别为:嫁接树的叶、嫁接树的茎、实生树的茎、实生树的叶。通过对竹叶花椒CHS基因进行克隆与分析,为后续深入研究竹叶花椒类黄酮代谢途径相关基因、CHS基因表达调控以及CHS基因家族进化提供帮助。  相似文献   

11.
蔗糖代谢中蔗糖磷酸合成酶(SPS)的研究进展   总被引:25,自引:1,他引:24  
蔗糖磷酸合成酶(sucrose phosphate synthase,SPS)参与植物的生长发育,而植物生长发育所需要的光合产物大部分以蔗糖的形式供应和运输,其中蔗糖磷酸合成酶是蔗糖进入各种代谢途径所必需的关键酶之一。本文综述了蔗糖磷酸合成酶生物学功能,基因表达调控及进化,SPS基因的克隆及遗传转化植株的表现;并进一步对蔗糖磷酸合成酶的研究作出设想。  相似文献   

12.
苦荞中查尔酮合成酶基因(CHS)的克隆   总被引:1,自引:1,他引:0  
获得完整的苦荞查尔酮合成酶基因(CHS)信息并评价其进化地位,对分子辅助选育高黄酮含量的苦荞品种具有重要的指导意义。用RACE法克隆苦荞CHS基因,用生物信息学手段分析预测苦荞CHS基本理化性质和同源性,用临接法构建了该酶的系统发生树。获得1250 bp的CHS cDNA全长,含241 bp的3’UTR和185 bp的5’UTR;等电点(pI)和分子量(Mr)分别为5.33和35340.75 Da;克隆获得975 bp的开放性阅读框(ORF)。预测该基因编码含325个氨基酸残基的蛋白,氨基酸同源比对结果表明,苦荞CHS与蓼科的虎杖相似性很高;临接法构建的系统发生树结果表明,苦荞CHS与其他双子叶植物有共同的起源,与蓼科的金荞麦、甜荞、虎杖及石竹科的满天星亲缘关系较近。成功获得苦荞CHS基因的cDNA全长,克隆出完整的ORF,并确定了苦荞中该酶的进化地位和方向。  相似文献   

13.
植物蔗糖合成酶功能与分子生物学研究进展   总被引:10,自引:2,他引:8  
蔗糖合成酶在植物生长发育过程中有着举足轻重的作用。叶片光合产物向“库”器官运输的主要形态是蔗糖,而蔗糖合成酶是蔗糖进入各种代谢途径所必需的关键酶之一。在此,综述了蔗糖合成酶(SuSy)在高等植物蔗糖代谢中的作用,SuSy基因的克隆、表达调控机理以及SuSy转基因植株的表现;并进一步对蔗糖合成酶的研究作出设想。  相似文献   

14.
棉花4个脂肪酸合成相关基因的克隆和表达特征分析   总被引:1,自引:0,他引:1  
董佳  魏利斌  胡艳  张天真  郭旺珍 《作物学报》2010,36(12):2084-2090
脂肪酸合成相关代谢在控制油的合成和抗非生物胁迫中均起着重要作用。其脂肪酸合成相关基因的时空表达水平直接影响油的含量和脂肪酸合成相关酶的活性。本研究克隆了4个脂肪酸合成相关基因,分别命名为GhKASII、GhKASIII、GhFAD和GhGPAT,其中GhKASIII、GhFAD和GhGPAT基因cDNA全长通过电子克隆和同源克隆得到。而GhKASII通过筛库和5'-RACE途径得到。组织表达分析表明, 上述4个基因在根、茎、叶及纤维发育不同时期均有表达,属于组成性表达基因。其中GhKASII、GhKASIII在25 DPA种子中表达量最高,GhGPAT在0 DPA胚珠和15 DPA纤维中表达量很高,GhFAD在0DPA胚珠, 15 DPA种子,20 DPA纤维中表达量均很高。不同非生物胁迫的诱导表达分析表明,上述4个基因均不同程度被茉莉酸甲酯,ABA,创伤和冷害等逆境诱导表达。  相似文献   

15.
高等植物ACC合成酶基因的克隆及其表达调控的研究进展   总被引:1,自引:1,他引:0  
主要对高等植物ACC合成酶基因的克隆、结构及其表达调控等方面研究进展进行综述,旨在揭示ACC合成酶基因的分子特征,为运用基因工程技术探索控制果实成熟、软化和衰老的关键ACC合成酶基因,更进一步地通过转基因技术调控果实内乙烯的含量从而延长水果货架期提供思路。  相似文献   

16.
链霉菌能产生许多具有重要价值的次级代谢产物如农用抗生素、植物生长调节剂等。链霉菌的基因克隆和重组为发展次级代谢产物和开发新型抗生素提供了可能,抗生素生物合成基因簇的鉴定为其生物合成、调控、自身抗性机制的研究提供了巨大的信息。本文重点介绍了抗生素生物合成基因簇的克隆策略。  相似文献   

17.
类钙调蛋白(CaM-likeprotein,CML)在植物抵抗逆境中发挥了重要的作用,因此研究CML基因是植物抗逆分子育种的一个重要分子基础。本实验室在前期工作中筛选得到1个片段大小为264 bp的大豆CML基因,对该基因序列设计特异性引物,利用PCR技术对该基因进行扩增,并获得大小为264 bp的片段,利用无缝克隆技术连接到pMD18T载体上,获得克隆载体。通过对该基因的核苷酸序列分析,在NCBI上发现该基因序列与大豆Calcium-binding protein(CML38-like)基因序列相似度为98.53%。目前对CML38-like基因的功能还未见报道,本研究根据克隆测序得到的基因序列构建系统进化树并分析,随后对该基因的蛋白质二级结构和蛋白质三级结构进行预测,发现该基因可能对大豆抗旱有着一定的影响。最后通过克隆载体构建CML38-like基因的过表达载体以及RNA干扰表达载体。本研究为鉴定大豆CML38-like基因的功能和了解该基因对大豆的非生物胁迫反应的影响提供了理论依据。  相似文献   

18.
植物内生真菌次生代谢产物研究进展   总被引:4,自引:1,他引:3  
易晓华 《中国农学通报》2009,25(21):255-260
综述了近5年来对植物内生真菌次生代谢产物的研究进展,对内生真菌次生代谢产物在抑菌、杀虫、抗肿瘤活性、对植物生长调节作用及其他活性等方面进行了概述,并就其研究中存在的问题和今后可能的研究方向做了一些探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号