首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
籽粒硬度是小麦品质改良的重要目标性状之一,主要由5D短臂上的Hardness(Ha)位点的两个主效基因,即Puroindoline a(Pina-D1)和Puroindoline b(Pinb-D1)控制,同时受基因Grain Softness Protein-1(Gsp-1)的影响。本研究以一粒小麦(T.monococcum)DV92作为Pinam、Pinbm和Gspm基因的供体,将三基因各自完整的表达盒串联连接到载体pGEM-TEasy上,构建Pinam-Pinbm-Gspm三基因串联的表达载体。利用基因枪介导的转化方法转化普通小麦科农199幼胚,共轰击5608个小麦幼胚愈伤,经Biolaphos(化学除草剂)筛选,获得933株再生植株,经PCR检测,鉴定出11株阳性植株,有关转基因小麦的籽粒硬度还需进一步实验验证;本实验实现了串联三基因在普通小麦中的遗传转化,为利用基因枪介导的遗传转化方法改善小麦籽粒硬度提供了可行性。  相似文献   

2.
子粒硬度是决定小麦市场分类及其最终质量的重要特征之一。根据硬度的不同,可以将小麦分为三个硬度等级:软麦、混合麦、硬麦。不同硬度等级的小麦具有不同的使用价值。Puroindoline基因是控制小麦子粒硬度的主要遗传因子。着重阐述了小麦子粒硬度的分子遗传基础,使人们更好地了解Puroindoline基因突变对子粒硬度的影响,为今后小麦的育种工作提供更好的科学依据。  相似文献   

3.
小麦是世界上一半人口的稳定粮食。小麦的最终利用品质主要决定于籽粒硬度或结构。Puroindoline基因.Piha和Pirib是与籽粒粉质度相关的15-kDa friabilin蛋白质的主要组成。Piha和Pirib基因在二倍体小麦物种中表达,而在四倍体小麦中沉默。六倍体或面包小麦中的活性Puroindoline来源于D染色体组二倍体供体Aegilops tauschii Coss.。  相似文献   

4.
正近日,新疆农业科学院品资所主持完成的国家自然科学基金项目"新疆小麦籽粒硬度(Puroindoline)近等基因系与小麦品质相关研究"顺利通过国家自然科学基金委员会验收。该项目以含有新疆小麦籽粒硬度主导基因型的小麦地方品种为供体亲  相似文献   

5.
籽粒硬度是小麦重要的加工品质性状,直接影响磨粉品质和食品加工品质.决定籽粒硬度的蛋白是分子量为15kD的Friabilin蛋白,由多种成分组成,其主要成分是两种富含色氨酸(Trp)的蛋白质Puroindoline a和Puroindoline b(Pina和Pinb),分别由位于5 DS染色体Hardness(Ha)住点的基因Pina和Pinb编码.本研究选取了我国长江流域和黄淮麦区南部、西南麦区和南方冬麦区104份小麦品种,分别用Pina和Pinb特异的引物通过PCR分子检测基因的有无和长度的多态性.结果表明,在检测的104种小麦中,有6个品种无Pina目标条带,7个品种无Pinb条带,12个品种既无Pina也无Pinb,属于双缺失类型.本实验条件下,无论Pina还是Pinb,PCR产物长度均无明显变化.推测,大多数硬质小麦均是由Pina或Pinb基因的单核苷酸变化、较小的插入或缺失突变引起的.本研究为进一步筛查Pina和Pinb基因突变奠定了基础.  相似文献   

6.
利用转基因技术改良小麦品质的研究进展   总被引:2,自引:0,他引:2  
小麦作为世界丰要粮食来源,其转基因遗传改良受到广泛关注.随着生活水平的提高,人们对面食品各种品质的需求也越来越高,利用转基因技术对小麦进行品质改良成为近几年小麦研究的热点.小麦品质包括加工品质和营养品质,加工品质又包括磨粉品质和食品加工品质.目前的小麦品质改良中,磨粉品质的改良主要通过提高籽粒硬度(grain hardness)基因pin的含量;食品加工品质的改良主要通过提高小麦高分子量谷蛋白业基(high-molecular-weight glutenin subunit,HMW-GS),尤其是1ny10、1Dx5及1Ax1亚基的含量;小麦的营养品质改良主要是提高赖氨酸及铁结合蛋白的含量;面粉白度是衡量面粉品质的重要性状之一,利用转基因技术从遗传因素进行的面粉白度改良主要集中在对多酚氧化酶(polyphenol oxidase,PPO)的抑制上;淀粉品质是小麦品质的一个重要方面,淀粉品质改良的研究主要集中在对支链含量相关淀粉基因的研究上.本文就应用转基因技术对小麦品质在这五个方面的改良进行了概括介绍,并对其中存在的问题进行了探讨.  相似文献   

7.
为了研究不同硬度等位基因与小麦籽粒淀粉组分含量及特性的关系,为小麦品质改良提供依据,以7个硬度Puroindoline b位点近等基因系为试材,研究了不同硬度基因型对小麦籽粒淀粉组分含量及特性的影响。结果表明,Pina-D1b/Pinb-D1a基因型的籽粒硬度值、支链淀粉含量最高;Pina-D1b/Pinb-D1a基因型的淀粉溶解度最高,而Pina-D1a/Pinb-D1d溶解度最低,两者差异达显著水平;不同基因型之间籽粒淀粉酶解力没有显著差异;冻融失水率以基因型Pina-D1a/Pinb-D1b最低,表明Pina-D1a/Pinb-D1b基因型冻融稳定性最好,可能较适宜冷冻食品的制作;对于抗性淀粉,Pina-D1a/Pinb-D1b基因型的抗性淀粉含量最高、Pina-D1a/Pinb-D1d最低,表明Pina-D1a/Pinb-D1b基因型有助于籽粒中抗性淀粉含量的提高。  相似文献   

8.
类萌发素蛋白(germin-like protein, GLP)是一类含有cupins结构域的糖蛋白, 在植物基础抗性等方面起着重要作用。本研究人工合成了甜菜GLP基因BvGLP1, 并利用基因重组技术构建了受韧皮部特异表达启动子RSS1P驱动的BvGLP1基因单子叶植物表达载体pA20-RSS1P::BvGLP1。通过基因枪介导法将其转入小麦品种扬麦18中, 对转基因扬麦18的T0至T3代植株中BvGLP1进行了PCR、半定量RT-PCR和荧光定量QPCR检测, 并对转基因小麦进行根腐病和纹枯病抗性鉴定。结果表明, BvGLP1已转入转基因小麦扬麦18, 并能在转基因小麦中遗传、转录表达; 5个转BvGLP1基因小麦株系的根腐病抗性比受体品种扬麦18有显著提高, 说明BvGLP1过表达增强了转基因小麦对根腐病的抗性。  相似文献   

9.
全蚀病和根腐病是小麦(Triticum aestivum)重要的土传真菌病害。PgPGIP1是人参(Panax ginseng)的一种多聚半乳糖醛酸酶抑制蛋白,可以抑制部分病原真菌分泌的多聚半乳糖醛酸酶的活性。本研究人工合成了PgPGIP1基因,并构建PgPGIP1基因的单子叶植物表达载体pA25-PgPGIP1,通过基因枪介导法将其转入小麦品种扬麦18中。对转PgPGIP1基因的T0至T4代植株进行PCR、RT-PCR和Q-RT-PCR分析,并对其全蚀病和根腐病抗性进行鉴定。结果表明,PgPGIP1基因能够在4个转基因小麦株系中遗传、转录与表达。与未转基因的小麦扬麦18相比,4个转基因小麦株系对全蚀病与根腐病的抗性明显提高,说明PgPGIP1表达增强了转基因小麦对全蚀病与根腐病的抗性。  相似文献   

10.
明确不同硬度等位基因与加工品质的关系对小麦品质改良具有重要意义。本文以7个Puroindoline b位点近等基因系为材料,研究了不同硬度等位基因对小麦面粉及面包和馒头品质的影响。结果表明,Pina-D1b/Pinb-D1a基因型的籽粒硬度值、蛋白质含量以及破损淀粉含量较高;而Pina-D1a/Pinb-D1d基因型的出粉率、面粉亮度较高,具有较好的磨粉品质。和面仪参数中的峰高、峰宽和8 min尾高均以Pina-D1b/Pinb-D1a基因型数值最高,Pina-D1a/Pinb-D1d 基因型最低,且两者之间的差异均达到显著水平;Pina-D1b/Pinb-D1a基因型的衰落角最小。Pina-D1a/Pinb-D1c和Pina-D1a/Pinb-D1d基因型具有较高馒头色泽和张弛性评分,较好的馒头制作品质;Pina-D1a/Pinb-D1e和Pina-D1a/Pinb-D1g基因型次之。Pina-D1a/Pinb-D1f基因型的面包总评分略优于其他基因型。  相似文献   

11.
籽粒硬度是决定小麦品质优劣的重要性状,控制硬度的主效基因为pinA和pinB(统称为puroindoline基因)。本研究利用含有能促进外源基因高效表达的Ω序列、Kozak序列和poly(A)序列的pG4AB及含有Ubi启动子和筛选基因bar的pAHC25,成功构建了含有puroindoline基因的单子叶植物高效表达载体pUBPa和pUBPb。目的是将来通过转基因植物研究,进一步明确pinA和pinB的功能,为通过基因工程方法快速改良我国现有小麦优良品种的籽粒硬度奠定基础。  相似文献   

12.
小麦根腐病是一种难以防治的小麦土传病害。TaMYB86是一个小麦中受根腐病菌诱导表达的MYB编码基因。本文构建了TaMYB86的过表达转基因载体pUbi:MYC-TaMYB86,利用基因枪介导法将其转入推广小麦品种扬麦16。对转TaMYB86基因小麦T0-T3代植株进行分子特征分析和抗病鉴定。PCR检测结果表明,外源TaMYB86已转入3个转基因小麦株系中; qRT-PCR结果显示,TaMYB86在3个转基因小麦株系中的表达量显著高于在未转基因扬麦16中,约为未转基因扬麦16中的5~6倍,表明TaMYB86可在转基因小麦中过量转录; Western杂交结果表明,引入的TaMYB86可在上述3个转基因小麦株系中翻译表达。对转TaMYB86基因小麦与未转基因扬麦16进行根腐病菌接种与抗病鉴定表明,3个转TaMYB86基因小麦株系在T1-T3代的根腐病病情指数分别为31.75、50.00、45.00; 37.75、37.50、38.50; 41.75、31.25、37.50; 在3次鉴定中未转基因扬麦16的根腐病病情指数分别为75.04、54.17、65.38,转TaMYB86基因小麦T1~T3代的根腐病抗性均显著高于未转基因扬麦16 (P < 0.01)。与未转基因扬麦16相比,转TaMYB86基因小麦中3个下游防卫基因(PR10、PR17c和Chit1)的转录水平也显著上调。以上结果说明,TaMYB86过表达可显著增强转基因小麦的根腐病抗性,在小麦防御根腐病过程中起正向调控作用。  相似文献   

13.
为探讨TiERF1和RC7基因对小麦抗全蚀病的防御反应,本研究对转TiERF1-RC7双价基因小麦进行了分子检测以及全蚀病抗性的室内和田间鉴定。结果表明,转入的TiERF1和RC7基因在转基因小麦中可以遗传和转录;与受体扬麦18相比,5个转TiERF1-RC7小麦株系在整个生育期抗病性显著提高,苗期的全蚀病严重度在10%以下,成熟期的白穗率在13%以下,而扬麦18的严重度为62.98%,白穗率为26.09%。电子显微镜观察结果表明抗病转基因小麦根表的全蚀病原菌菌丝数量及生长势明显低于感病材料。上述结果说明,转入的TiERF1和RC7基因抑制了全蚀病原菌的侵染及在转基因小麦中繁殖,进而提高了转基因小麦对全蚀病的抗性。  相似文献   

14.
籽粒硬度是小麦加工品质的重要影响因素.籽粒硬度生化标记Friabilin蛋白主要由Puroindoline A(PinA)和Puroindoline B(PinB)构成,它们的编码基因puroindoline a(Pina)和puroindoline b(Pinb)紧密连锁,位于Ha(hardness)位点,是控制籽粒硬度的主效基因.根据小麦Pina、Pinb的保守序列,设计合成了2对特异性引物,对粘果山羊草Aegilops kotschyi(UUSS)3个材料的基因组DNA和胚乳RNA进行Pina、Pinb基因克隆、序列测定和表达分析,发现了3个新型Pina等位基因和4个新型Pinb等位基因.新型puroindoline等位基因全长447bp,编码148个氨基酸残基,具有麦类作物puroindoline基因特有的信号肽序列和色氨酸结构域.与Pina-D1a相比较,新型Pina等位基因核苷酸同源性分别为98.7%、98.4%、97.5%,氨基酸同源性分别为96.6%、95.9%、93.9%.等位基因Pina-allele-2包含一个位于色氨酸结构域内的突变位点(Lys70Arg).新型Pinb等位基因与Pinb-D1a相比较,其核苷酸同源性分别为93.3%、94.6%、94.6%、94.4%,氨基酸同源性分别为90.5%、93.2%、93.2%、92.6%.等位基因Pinb-allele-1含有一个紧邻色氨酸结构域的突变位点(Val66Phe).Southern blot分析结果表明,3个材料中Pina和Pinb基因都含有2个拷贝.RT-PCR和Western blot都证实了Pina、Pinb基因在籽粒胚乳中的表达.研究结果显示山羊草中包含着与小麦差异较大的籽粒硬度控制基因,为小麦分子育种提供了丰富的的遗传资源.  相似文献   

15.
为了对转1Dx5基因小麦的T1进行遗传分析,将优质高分子量麦谷蛋白亚基(HMW-GS)基因1Dx5转入新疆耐盐小麦品种新冬26,在蛋白质水平上经SDS-PAGE检测,有37粒小麦种子1Dx5基因表达。经过继代培育,得到37个T1转基因株系,SDS-PAGE分析T1转基因小麦籽粒的HMW-GS组成,结果表明:在蛋白质水平,HMW-GS的组成在T1小麦种子中有3种表型:表型Ⅰ,外源1Dx5基因没有表达;表型Ⅱ,外源1Dx5基因表达;表型Ⅲ,内源1Dx2基因没有表达。这3种表型出现的概率分别约为34.3%,45.9%和19.8%。该研究成功获得了新的HMW-GS组成的小麦,为选育优质小麦提供分子依据。  相似文献   

16.
兼抗全蚀病和白粉病小麦新种质的创制与鉴定   总被引:1,自引:0,他引:1  
TaLTP5是从小麦中分离到的一个脂质转移蛋白编码基因。利用基因枪介导法将TaLTP5表达载体pA25-TaLTP5转入抗白粉病的小麦品种扬麦18 (含抗白粉病基因Pm21)中, 旨在选育兼抗全蚀病和白粉病的小麦新种质。对转基因小麦T0~T3代植株中引入TaLTP5基因进行分子检测和抗病性鉴定。PCR检测、Southern杂交分析结果表明, 外源TaLTP5基因已转入、整合到3个转基因小麦株系的基因组中, 并能稳定遗传; 荧光定量RT-PCR的分析以及全蚀病菌的接种与鉴定结果表明, 与受体小麦扬麦18相比, 这3个转基因小麦株系中TaLTP5表达量显著提高, 其对全蚀病的抗性也明显增强。对3个转基因株系的Pm21分子标记和白粉病抗性鉴定表明, 外源TaLTP5基因的导入没有影响受体小麦对白粉病抗性, 说明这些转基因株系为兼抗全蚀病和白粉病小麦新种质。  相似文献   

17.
抗纹枯病、根腐病的转SN1基因小麦的获得与鉴定   总被引:3,自引:0,他引:3  
SN1是源于马铃薯的一种抗菌肽, 可以抑制多种植物病原菌的生长。小麦纹枯病(主要病原菌为禾谷丝核菌Rhizoctonia cerealis)和根腐病(主要病原菌为平脐蠕孢菌Bipolaris sorokiniana)是小麦的主要土传真菌病害本研究利用基因工程技术构建了SN1基因的单子叶植物表达载体pA25-SN1, 它受玉米泛素(ubiquitin)启动子的控制;采用基因枪法将pA25-SN1转化小麦推广品种扬麦18幼胚愈伤组织4 000块, 获得203株再生植株, 通过PCR检测出阳性植株55株, 转化率为1.38%。对转SN1基因小麦T0~T2代植株, 进行外源基因的PCR、Southern blot、RT-PCR、荧光定量RT-PCR(Q-RT-PCR)分析和小麦纹枯病菌与根腐病菌接种及其抗病性鉴定。结果表明, 转入的SN1基因已经整合到转基因小麦的基因组中, 能够在转基因小麦中遗传、转录与表达。SN1基因的表达提高了转基因植株对小麦纹枯病和根腐病的抗性, 其抗病性可以遗传。  相似文献   

18.
转bar基因小麦的抗性遗传及农艺性状分析   总被引:1,自引:1,他引:0  
【研究目的】以皖麦48和扬麦87158两个小麦品种的转bar基因株系为材料,探讨bar基因在转基因小麦自交后代的遗传表现及对农艺性状的影响。【方法】利用涂叶法和PCR法研究bar基因在转基因植株自交后代T1、T2的遗传表现,并对产量及品质等主要农艺性状进行比较分析。【结果】证实抗除草剂bar基因已经整合到小麦基因组中,并能稳定表达;遗传分析显示bar基因能稳定的遗传给后代,符合孟德尔遗传规律;在产量及品质等主要农艺性状方面,转bar基因小麦与对照相比无显著差异。  相似文献   

19.
中国黄淮麦区小麦籽粒硬度Puroindoline基因等位变异检测   总被引:2,自引:0,他引:2  
籽粒硬度是小麦品质性状改良的重要目标之一,研究黄淮麦区核心种质资源小麦籽粒硬度基因型分布规律,能够为中国小麦品质改良和种质资源利用提供信息。以来自中国黄淮麦区的244份小麦核心种质为材料,采用单籽粒谷物特性测试仪和特异引物的PCR扩增对其SKCS硬度及其基因型进行鉴定。结果表明,黄淮麦区小麦核心种质资源以硬质类型为主,占总参试材料的56.6%,其硬质麦基因型共有Pina-D1b、Pina-D1r、Pina-D1s、Pina-D1l、Pinb-D1b、Pinb-D1p、Pinb-D1ac、Pinb-D1e、Pinb-D1t和Pinb-D1u共10种单倍型,其分布比例分别为2.1%、5.3%、4.5%、0.8%、25.8%、15.7%、0.4%、0.4%、0.8%和0.8%。可以看出,Pinb-D1p在参试材料硬质麦中占据主导地位,PINA蛋白缺失类型也有广泛的分布。不同来源小麦品种籽粒硬度基因型分布表明,山西、河南、云南和新疆小麦品种籽粒硬度基因型较为丰富。不同类型小麦品种籽粒硬度基因型分布表明,农家种小麦籽粒硬度基因型更为丰富。在各Puroindoline变异类型中,拥有PINA-null类型的小麦品种SKCS籽粒硬度显著高于拥有Pinb-D1b和Pinb-D1p类型的小麦品种。本项研究表明黄淮麦区核心种质资源具有丰富的籽粒硬度主效基因变异类型,结合先前研究中认为的PINA-null类型的磨粉品质和面包烘烤品质均劣于Pinb-D1b类型,但拥有相对较好的印度薄饼加工品质,因此品质育种过程中可依据育种目标有选择的利用黄淮麦区小麦核心种质资源。  相似文献   

20.
研究抗黄花叶病毒病转基因小麦新品系的利用价值,对小麦黄花叶病抗性遗传稳定性、农艺性状、主要品质特性和其他主要病害抗病性进行鉴定.结果表明:抗黄花叶病毒病转基因小麦新品系N12、N13、N14和N15抗性稳定,具有分蘖力强、成穗率高及穗粒数多、品质好等优点,可作为优异种质资源利用.通过回交育种技术,成功地将抗黄花叶病毒病基因转入到当地推广品种或中间材料中,已育成的1个兼抗黄花叶病和白粉病新品系04T19,以及聚合Wax基因、Pm基因与抗黄花叶病毒病转基因的材料6株,在丰产性、抗病性等方面均较N12、N13、N14和N15有较大提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号