首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Imisun and CLPlus are two imidazolinone tolerance traits in sunflower (Helianthus annuus L.) determined by the expression of two alleles at the locus Ahasl1. Both traits differed in their tolerance level to imazapyr —a type of imidazolinone herbicide— when aboveground biomass is considered, but the concomitant herbicide effect over the root system has not been reported. The objective of this work was to quantify the root biomass response to increased doses of imazapyr in susceptible (ahasl1/ahasl1), Imisun (Ahasl1-1/Ahasl1-1) and CLPlus (Ahasl1-3/Ahasl1-3) homozygous sunflower genotypes. These materials were sprayed at the V2–V4 stage with increased doses of imazapyr (from 0 to 480 g active ingredient ha−1) and 14 days after treatment root biomass of each plant was assessed. Genotype at the Ahasl1 locus, dose of imazapyr and their interaction significantly contributed (P < 0.001) to explain the reduction in root biomass accumulation after herbicide application. Estimated dose of imazapyr required to reduce root biomass accumulation by fifty percent (GR50) differed statistically for the three genotypes under study (P < 0.001). CLPlus genotypes showed the highest values of GR50, 300 times higher on average than the susceptible genotypes, and almost 8 times higher than Imisun materials, demonstrating that both alleles differ in their root biomass response to foliar application of increased doses of imazapyr.  相似文献   

2.
Soil salinity has become a serious environmental abiotic stress limiting crop productivity and quality. The root system is the first organ sensing the changes in salinity. Root development under elevated salinity is therefore an important indicator for saline tolerance in plants. Previous studies focused on varietal differences in morphological traits of quinoa under saline stresses; however, variation in root development responses to salinity remains largely unknown. To understand the genetic variation in root development responses to salt stress of quinoa, we conducted a preliminary screening for salinity response at two salinity levels of a diverse set of 52 quinoa genotypes and microsatellite markers were used to link molecular variation to that in root development responses to salt stresses of represented genotypes. The frequency distribution of saline tolerance index showed continuous variation in the quinoa collection. Cluster analysis of salinity responses divided the 52 quinoa genotypes into six major groups. Based on these results, six genotypes representative of groups I to VI including Black quinoa, 2-Want, Atlas, Riobamba, NL-6 and Sayaña, respectively, were selected to evaluate root development under four saline stress levels: 0, 100, 200 and 300 mM NaCl. Contrasts in root development responses to saline stress levels were observed in the six genotypes. At 100 mM NaCl, significant differences were not observed in root length development (RLD) and root surface development (RSAD) of most genotypes except Black quinoa; a significant reduction was observed in this genotype as compared to controls. At 200 mM NaCl, significant reduction was detected in RLD and RSAD in all genotypes showing this as the best concentration to discriminate among genotypes. The strongest inhibition of root development was found for all genotypes at 300 mM NaCl as compared to lower saline levels. Among genotypes, Atlas of group III shows as a saline-tolerant genotype confirming previous reports. Variation in root responses to salinity stresses is also discussed in relation to climate conditions of origins of the genotypes and reveal interesting guidelines for further studies exploring the mechanisms behind this aspect of saline adaptation.  相似文献   

3.
氮、磷、钾肥对丹参根系生长及养分含量的影响   总被引:1,自引:0,他引:1  
采用田间小区试验方法,研究了氮、磷、钾肥对丹参根系生长及养分含量的影响。结果表明,氮、磷、钾肥能够促进丹参根系对氮、磷、钾的吸收,提高其含量,并且随着施用量的增加而提高,在N,P2O5,K2O的施用量分别为225,180,225 kg/hm2时,根的氮、磷、钾含量达到最高值;当施入N,P2O5和K2O分别为225,120,150 kg/hm2时,丹参根干质量、根长及根条数达到最高值,根的直径最适宜,此后随着磷钾肥施入量增加,根干质量及根长、根条数反而下降,根直径增加。所以氮、磷、钾合理配合施用能够提高丹参根的养分含量、根干质量、根长、根数及根直径。  相似文献   

4.
花后渍水逆境对冬小麦产量及氮磷钾营养状况的影响   总被引:3,自引:0,他引:3  
采用盆栽模拟渍水逆境试验方法,研究了花后渍水逆境对不同耐渍性小麦品种产量及N、P、K营养状况的影响。结果表明,花后渍水逆境显著降低不同小麦品种粒重和籽粒产量,影响N、P、K吸收、运转和分配,降低根系、茎鞘、功能叶片、籽粒N、P、K积累量,而对N、P、K素在地上部各器官中的分配比例的影响各异,渍水逆境导致根系、功能叶片N、P积累量占单株总积累量的比例下降,茎鞘和籽粒所占比例上升;而对K在地上部各器官中的分配比例影响较小。因此,基肥中施足P、K肥和拔节孕穗期及时追施速效N肥,对于减轻花后小麦渍害,提高受渍小麦粒重和产量具有非常重要的实际意义。  相似文献   

5.
结实期氮磷营养水平对水稻根系和籽粒氨基酸含量的影响   总被引:12,自引:0,他引:12  
以扬稻6号(籼稻)和扬粳9538(粳稻)为材料,在水培条件下自抽穗至成熟以0N (不施N)、1/2N (标准Espino营养液的1/2N)、0P (不施P)、1/2P (标准Espino营养液的1/2P)以及对照 (全NP,标准Espino营养液的N、P量) 5种处理,研究了根系分泌氨基酸和籽粒氨基酸含量与组分的变化。结果表明,结实期水稻根系分泌的各种氨基酸含量均随灌浆进程而逐渐降低。与对照相比,结实期氮素胁迫(0N)明显降低根系分泌的各种氨基酸和籽粒中各种氨基酸的含量;磷胁迫(0P)则显著增加了根系酸性和中性氨基酸的分泌,但显著降低籽粒氨基酸总量、必需氨基酸及其他氨基酸含量。结实前中期(抽穗后10 d和20 d)根系分泌的氨基酸与籽粒氨基酸相对含量、根系分泌的碱性氨基酸与籽粒的千粒重呈显著或极显著负相关。表明结实期根系分泌的氨基酸与籽粒氨基酸及粒重有密切关系;N、P营养水平对根系分泌的氨基酸和籽粒氨基酸组分和含量有调控作用,进而影响产量和稻米的营养品质。  相似文献   

6.
氮磷肥对旱地小麦土壤水分与根系特性的影响   总被引:2,自引:0,他引:2  
为给旱地小麦合理使用氮磷肥提供理论依据,于山西农业大学闻喜试验基地采用大田试验研究氮磷肥对旱地小麦土壤水分和根系特性的影响。结果表明:增加施氮量,可提高氮磷比为1:0.5返青至抽穗期土壤蓄水量和各生育期根系活力、根系总长、总体积、总面积和总投影面积,而降低了氮磷比为1:1各生育期土壤蓄水量、根系活力、根系总长、总体积、总面积和总投影面积。增加施磷量,可提高返青至抽穗期土壤蓄水量,而降低了开花期、成熟期土壤蓄水量,可增加各生育时期根系活力、根系总长、总体积、总面积和总投影面积,可增加0~80 cm各土层的根系长度、体积、根系面积和投影面积,且除60~80 cm土层根系体积,均达显著水平。总之,施氮量为150 kg/hm2,且氮磷比为1:1在旱地小麦水肥协作方面效果最佳。  相似文献   

7.
[Objective] Maintaining intracellular ion homeostasis is one of the important salt-tolerant mechanisms of crops. This study aims to analyze differences in response characteristics of cotton ionome and salt-tolerant gene expression under different saline-alkali stresses, which provides a basis for understanding the mechanism of salt tolerance and improving salt tolerance of cotton. [Method] Using Lumianyan 24 as the experimental material, three kinds of salt and alkali stress types (salt stress, alkali stress, and mixed salt-alkali stress) and two concentration gradients (low and high concentrations) were set under pot cultivation conditions. Meanwhile, non-saline-alkali stress treatment was set as control. The dry matter weight of cotton plants and root morphological parameters including root length, root surface area, and root volume were measured in this study. The concentrations of 13 elements such as P, Na, K, Ca and Mg in different organs of cotton plants were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The relative expressions of salt tolerance related genes GhDFR1, GhSOS1, GhNHX1 and GhAKT1 were determined by the quantitative real-time polymerase chain reaction method. [Result] 1) Salt and alkali stresses significantly inhibited cotton growth. The growth inhibition rate of cotton under mixed salt-alkali stress treatments (48.7%–57.9%) was significantly higher than that under salt stress (27.6%–49.9%) and alkali stress (21.2%–35.5%) treatments. Under salt stress and mixed salt-alkali stress treatments, both shoot and root growth of cotton were significantly inhibited, dry matter weight, root length, root surface area and root volume were significantly reduced, while root growth was less inhibited under alkali stress treatments. 2) Under three types of saline-alkali stresses, Na content and Mo content in different organs of cotton plant increased significantly, but N content in leaves and roots decreased. 3) Under salt stress treatments, the uptake of Ca, Mg, Fe, Mn and Zn in cotton was inhibited, and the ion balance was maintained by promoting the transport of these ions and P, K. 4) In addition to Ca, Mg, Fe, Mn and Zn, P uptake was also inhibited under alkali stress treatments, but K uptake and P, K, Ca, Mg, Fe, Mn and Zn transport were promoted. 5) Under mixed salt-alkali stress treatments, especially under high salinity and pH conditions, most of nutrients uptake was inhibited, and the transport capacity of Ca, Mg, Zn, Mn and Fe was reduced. 6) The relative expression of GhSOS1 and GhAKT1 genes increased significantly under salt stress treatments, but increased first and then decreased under alkali stress and mixed salt-alkali stress treatments. The relative expression levels of GhSOS1 and GhAKT1 genes under three types of saline-alkali stresses were alkali>salt>mixed saline-alkali stress. With the increase of soil salinity and pH value, the relative expression of GhNHX1 gene increased first and then decreased. The expression levels of GhNHX1 gene were salt>alkali>mixed salt-alkali stress. [Conclusion] Due to high salinity and pH value, mixed salt-alkali stress significantly inhibits cotton growth and ions uptake, which restricts the transport of P, K, Ca, Mg, Zn, Mn and Fe. The decrease of K and Na regulation ability leads to ions imbalance.  相似文献   

8.
Influence of form and placement of N- and P-fertilisation on the root development, the P-uptake, and the growth of sunflower ( Helianthus annum ) and sweet sorghum ( Sorghum bicolor ).
In pot- and rhizotrone-experiments with Sorghum bicolor and Helianthus annuus , a higher P-uptake was achieved by placement of diammonphosphate (DAP) than by either placement of triplesuperphosphate (TSP) or by broadcasting DAP or TSP, respectively. Dual placement of TSP and ammonia increased the P uptake but it was less effective than placement of DAP for sunflowers, but not for sweet sorghum. Placement of nitrogen resulted in a local root accumulation, where ammonia had a greater effect than nitrate for both of the species. Single placement of TSP had no effect on either P uptake or root development.
Thus, the higher P uptake at DAP placement could be attributed to three main factors: the local root accumulation caused by the placement of nitrogen, a specific physiological ammonia-effect, and the lower binding intensity of the phosphate in the DAP-band compared with placed TSP (W erner and S trasser 1993). The improvement in spatial availability caused by the NH4+ -induced root accumulation was of a greater importance for the P-uptake than was the improvement of chemical availability in the DAP-band. The better response of sunflowers in comparison with sweet sorghum was attributed to better acquisition ability in sweet sorghum.  相似文献   

9.
Biochar amendment to soil has the potential to improve soil quality and increase crop yield. Arbuscular mycorrhizal fungi (AMF ) provide beneficial plant services of stress alleviation with respect to phosphorus (P) deficiency and drought. The aim of this study was to explore interactive effects of biochar with AMF , P fertilization levels and irrigation strategies on growth of potato plants. Potato plants were amended with wood biochar of 0.74 % w/w (B+) or not (B?), fertilized with phosphorus of 0.11 mg P g?1 soil (P1) or not (P0), irrigated with full irrigation (FI ) or partial root‐zone drying irrigation (PRD ) and inoculated with AMF of Rhizophagus irregularis (M+) or not (M?) in split‐root pots in a sandy loam soil. Plants were analysed for growth performance, P and nitrogen (N) uptake and water use efficiency (WUE ). Biochar adsorption of mineral P and N in aqueous solution was tested in subexperiment. B+ significantly decreased plant biomass production except under P0 FI M?, where B+ increased plant biomass. This growth stimulation was counteracted by treatments of P1, PRD and M+. B+ significantly decreased plant leaf area, P and N uptake and WUE , but had no significant effect on root biomass and soil pH. The positive plant growth response to AMF was substantially reduced by biochar amendment. The wood biochar had no adsorption for mineral N, and it had 0.96 % adsorption for mineral P in aqueous solution. The results suggested that the negative effect of wood biochar application on plant growth may due to the reduced plant uptake of P and N and the possibility of phytotoxic effects of wood biochar on potato growth. It was concluded that the wood biochar used in current study had negative impact on plant growth and P/N uptake and it is not recommendable to apply this wood biochar to mycorrhizal agro‐system, to soil fertilized with high rate of P or to soil suffering water deficiency.  相似文献   

10.
常二华  张耗  张慎凤  王志琴  杨建昌 《作物学报》2007,33(12):1949-1959
以扬稻6号(籼稻)和扬粳9538(粳稻)为材料,在水培条件下自抽穗至成熟期进行0 N(不施N)、1/2 N(标准Espino营养液的1/2 N)、0 P(不施P)、1/2 P(标准Espino营养液的1/2 P)以及对照(全NP,标准Espino营养液的N、P量)5种处理,研究了水稻根系分泌物的变化及其与稻米外观品质、蒸煮食味品质及蛋白质组分的关系。结果表明,与对照相比,结实期氮素胁迫(0 N)明显降低了水稻的根系活力,降低了各种有机酸、氨基酸及离子的分泌量,加速了根系的衰老;磷胁迫(0 P)显著增加了根系有机酸、氨基酸及各种离子的分泌。相关分析表明,结实前中期(花后10 d和20 d)根系分泌的酒石酸、柠檬酸和氨基酸与籽粒垩白度、直链淀粉、崩解值呈显著或极显著负相关,与淀粉谱的消减值呈极显著正相关;根系分泌的苹果酸与籽粒垩白度、直链淀粉、崩解值呈极显著正相关,与淀粉谱的消减值呈极显著负相关;根系分泌的[Ca2+]、[K+]、[Na+]、[NO3-]、[NH4+]、[PO43-]与稻米的垩白度、直链淀粉含量、蛋白质组分也显著或极显著相关。表明根系分泌物与稻米品质的形成有密切的关系,N、P营养水平对根系分泌物有调控作用,进而影响稻米品质。  相似文献   

11.
As plants cannot relocate, they require effective root systems for water and nutrient uptake. Root development plasticity enables plants to adapt to different environmental conditions. Research on improvements in crop root systems is limited in comparison with that in shoots as the former are difficult to image. Breeding more effective root systems is proposed as the “second green revolution”. There are several recent publications on root system architecture (RSA), but the methods used to analyze the RSA have not been standardized. Here, we introduce traditional and current root-imaging methods and discuss root structure phenotyping. Some important root structures have not been standardized as roots are easily affected by rhizosphere conditions and exhibit greater plasticity than shoots; moreover, root morphology significantly varies even in the same genotype. For these reasons, it is difficult to define the ideal root systems for breeding. In this review, we introduce several types of software to analyze roots and identify important root parameters by modeling to simplify the root system characterization. These parameters can be extracted from photographs captured in the field. This modeling approach is applicable to various legacy root data stored in old or unpublished formats. Standardization of RSA data could help estimate root ideotypes.  相似文献   

12.
In saline soils, plant water supply is the most critical growth factor. To better understand water supply and growth of soil‐grown crops, research should focus on root water uptake in saline soils. Plant water supply and growth is complex. One has to consider, simultaneously, soil and plant parameters: (i) the soil physical parameters texture; pF curve; osmotic, matric and total water potential; salinity at the soil/root interface; and bulk soil salinity; and (ii) the plant parameters root mass and rooting density; root morphology; transpiration; and shoot growth. Technical devices for direct and simultaneous measurement of all parameters are not yet available. This study presents a vegetation technique (VeTe) that permits to determinate required data from continuous measurement of pot water losses and by indirect calculation. The VeTe was tested using young rape (Brassica napus, cv. Lingot) as the model plant, growing in a silty soil. Rape was selected for its efficient root system to explore soil determined growth factors. Basically, the VeTe requires two vegetation phases: a pre‐cultivation phase, and an experimental phase. The objective of the first phase is to grow young plants that are homogenous in their shoot and root development through well‐controlled water management. Varying rooting densities of soils are performed when plants are pre‐cultivated in different soil volumes. The experimental phase starts when plants are irrigated with water of different salt concentrations up to soil water contents of 30 vol.%. During the experiment, plants were grown under well‐controlled, climatic conditions, and pot water losses were measured bi‐hourly. Measurement of continuous water losses serves to calculate soil moisture contents, derive osmotic and matric heads and their impact on plant transpiration. The proposed technique provides a means for quantitatively studying the combined impacts of soil osmotic and matric stresses on water uptake by crops differing in their root morphologic traits at different rooting densities.  相似文献   

13.
Roots are essential organs for capturing water and nutrients from the soil. In particular, root system architecture (RSA) determines the extent of the region of the soil where water and nutrients can be gathered. As global climate change accelerates, it will be important to improve belowground plant parts, as well as aboveground ones, because roots are front-line organs in the response to abiotic stresses such as drought, flooding, and salinity stress. However, using conventional breeding based on phenotypic selection, it is difficult to select breeding lines possessing promising RSAs to adapted to abiotic stress because roots remain hidden underground. Therefore, new breeding strategies that do not require phenotypic selection are necessary. Recent advances in molecular biology and biotechnology can be applied to the design-oriented breeding of RSA without phenotypic selection. Here I summarize recent progress in RSA ideotypes as “design” and RSA-related gene resources as “materials” that will be needed in leveraging these technologies for the RSA breeding. I also highlight the future challenges to design-oriented breeding of RSA and explore solutions to these challenges.  相似文献   

14.
小麦/燕麦根系不同分隔方式及施锰对小麦锰营养的影响   总被引:1,自引:0,他引:1  
通过根系分隔的根盒试验,研究了小麦/燕麦间作体系中根系不同分隔方式及土壤施锰对小麦锰营养的影响。结果表明:与不施锰肥处理相比,施用锰肥显著提高了小麦的地上部干重和吸锰量,小麦/燕麦根系不同分隔方式对小麦的地上部干重、锰浓度和吸锰量均无显著影响。不同作物品种吸收活化土壤锰的能力不同,表现为燕麦>小麦;9023>川麦28;坝莜4号>坝莜3号。但在本试验条件下,与燕麦间作没能改善小麦的锰营养,可能是作物种植密度大,而根系生长空间较小造成的,其具体原因还有待于进一步研究  相似文献   

15.
旨在总结前人研究经验以及过去研究的不足,指出未来N沉降对于细根影响研究的发展方向。基于前人研究的成果,总结了N沉降是如何影响细根动态和形态特征,进而又如何影响生态系统C循环。详细分析了全球N沉降现状,表明N沉降呈逐年加重的趋势;分析了细根动态(细根周转和呼吸)和形态特征(根长、直径、生物量、化学组分)对N沉降的响应。既有研究提供了很多N沉降影响细根动态和形态特征的证据,这些证据对于未来开展细根综合研究具有重要借鉴意义。  相似文献   

16.
土壤渍水对孕穗期冬小麦氮磷钾营养的影响   总被引:1,自引:0,他引:1  
采用盆栽和池栽试验,研究了孕穗期土壤渍水逆境对不同小麦品种N、P、K素吸收、运输和分配影响。结果表明,孕穗期土壤渍水逆境显著影响小麦根系对N、P、K素的吸收,降低根系、茎鞘、功能叶片和全株N、P、K素相对含量和绝对含量,而对N、P、K素在地上部各器官中的分配比例影响较小。由于土壤渍水逆境影响了小麦根系正常吸收N、P、K素营养,严重影响小麦功能叶片正常光合性能,最终使小麦单穗结实粒数、粒重和产量下降。  相似文献   

17.
The faba bean is among the major grain legumes cultivated in Ethiopia and is used extensively as a break crop in the highlands. Although a blanket application of DAP (diammonium phosphate) at the rate of 100 kg · ha?1 has been practised in faba bean production in the country, this was not based on research results. In addition, little information is available on the response of the crop to N and P fertilizers under diverse environmental conditions. Hence, field experiments were carried out at three locations in 1991, seven locations during 1992 and 1993 and at one location in both 1993 and 1995 to determine faba bean response to N and P fertilization. Five levels of N (0, 9, 18, 27 and 36 kg N · ha?1 as urea) in factorial combinations with four levels of P (0, 23, 46 and 69 kg P2O5 · ha?1 as TSP [triple super phosphate]) were studied in a randomized complete block design with four replications in the first year. In the remaining years four levels of N (0, 18, 27 and 36 kg N · ha?1 as urea) in factorial combinations with four levels of P (0, 23, 46 and 92 kg P2O5 · ha?1 as TSP) were used in a randomized complete block design with three and four replications at one and seven locations, respectively. Results indicated that a positive linear response of faba bean seed yield was noted at all locations (except Debre Zeit and Burkitu) to P fertilization, while a significant quadratic response was also found at Holetta. In addition, plant height, above ground biomass and number of pods per plant were positively influenced by P application while the effect of N on these was mostly nonsignificant. Faba bean seed yield response to N was noted at only two out of eight locations; in most cases, nonsignificant and inconsistent seed yield responses to N fertilization were obtained. There was nonsignificant N × P rate interaction. In conclusion, we do not recommend supplemental N application to faba bean at six out of eight locations but we recommend the application of P fertilizer to faba bean at almost all locations (with the exception of Debre Zeit) and for other soils deficient in available P. Further work is recommended on the determination of critical levels for soil-available P, below which P fertilization should be practised for optimum faba bean seed yield.  相似文献   

18.
北方森林是全球第二大生物群区,约占全球森林面积的30%,尽管其细根生物量仅占森林生态系统很小的一部分,但其周转率更快,更易分解,因此,其对土壤碳循环和大气CO_2通量贡献很大。笔者综述了氮沉降和CO_2浓度升高的背景数据,总结了细根对二者变化的响应,主要从细根的形态特征、解剖结构和生理功能方面入手,探讨了其对氮沉降和CO_2浓度升高的响应。结论如下:(1)大气氮沉降量一直处于上升状态,与人类活动密切相关的有机氮量所占比例逐渐加大,而无机氮中NH_4~-N和NO_3~-N的变化趋势表现不同;(2)大气CO_2浓度一直呈上升趋势,细根形态特征、解剖结构和生理功能对其表现出明显的响应;(3)树种、年龄、土壤类型等都会改变细根形态、解剖结构和生理功能对氮沉降和CO_2浓度升高的响应结果,但改变的程度不同。研究结果可为北方森林乃至温带森林生态系统功能对氮沉降和CO_2浓度升高的响应提供参考依据和数据支持。  相似文献   

19.
稻种资源苗期氮素营养效率的分类、鉴定与评价   总被引:5,自引:0,他引:5  
程建峰  戴廷波  曹卫星  姜东 《作物学报》2005,31(12):1640-1647
在低氮(20 mg/kg)、中氮(40 mg/kg)和高氮(60 mg/kg)3个水平下,调查了88份稻种资源的苗期性状并测定了氮素营养效率,包括氮素利用效率(NUE)、氮素吸收效率(NAE)和氮素利用效率响应度(NUER)。结果表明,苗期不同性状对低氮、中氮和高氮的敏感性不同,不同氮素水平间的单株根体积、地上部干重、吸氮量和根干重等性状变异较大,低氮胁迫加大了种质间的差异。不同水稻苗期性状对氮素的响应度不同,性状在种质间的变异服从正态分布。通过分类、 鉴定和评价,供试稻种资源分为13种氮素营养效率类型,它们存在明显的基因型差异,呈典型的正态分布,即低效和高效的较少,以NUE、NAE和NUER中效类型最多。NUE、NAE和NUER三指标间还存在很强的互补性和拮抗性,极少存在两个以上指标同为低效或高效的稻种资源类型。水稻氮素营养效率类型较陆稻丰富,但分布较分散,总体分布明显偏向于低氮素利用效率一侧。籼稻氮素营养效率的类型略多于粳稻,而粳稻类型的总体分布明显偏向于低氟素利用效率一侧。地方晶种氮素营养效亭类型较多、分布较集中,总体分布明显偏向于高氮素利用效率一侧:杂交稻氟素营养效率的类型最少、分布最集中,而常规稻氮素营养效率类型最多、分布较分散,常规稻和杂交稻品种的总体分布明显偏向于低氮素利用效率一侧。上述研究结果对探讨稻种资源蓖素营养效率的遗传特性、选育高效氮素营养的新型种质及阐明高效氮素营养的生理机制等具一定参考价值。  相似文献   

20.
为了在全球大气N沉降增加和温度升高的背景下,细根生产和细根生理生态的潜在变化将如何影响森林土壤中的养分供应和陆地C循环。本研究基于34篇国内外已发表的北方森林N沉降、温度升高及其交互作用的170组细根数据,通过meta分析的方法,研究了细根对升温、增N以及二者交互作用的响应。结果表明:(1)增N显著抑制了北方森林细根生物量,明显增加了细根C、N含量,而P则显著减少,细根的呼吸速率显著增加,细根形态变得细长;(2)增温显著增加了土壤C素的有效性,细根的生物量、组织密度、N吸收速率、组织N浓度和呼吸显著增加,但是细根的C和N含量、比根长、直径和呼吸速率却随着温度的增加明显减少;(3)在升温增N的交互作用下,除组织N浓度受到抑制以外,细根生物量、呼吸速率、C、N含量均显著增加。研究表明:升温增N显著影响了北方森林细根的生物量、周转率、养分含量和形态特征,可为改进和完善C收支模型提供参考依据和数据支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号