首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
本研究利用岗46B/A232构建的重组自交系(F10)176个家系为作图群体,运用QTL Ici Mapping4.0软件对2016和2017年RIL群体的粒形性状和千粒重性状进行QTL检测及其遗传效应分析。结果表明,两年共检测到28个粒形和粒重QTL,分别分布在第1、第2、第3、第4、第5、第6、第8、第9和第12染色体上。其中粒长相关QTL 10个,贡献率为4.90%~31.96%;粒宽相关QTL 6个,贡献率为3.38%~48.76%;谷粒长宽比相关QTL 9个,贡献率为5.70%~30.32%;粒厚相关QTL 6个,贡献率为6.06%~34.09%;千粒重相关QTL6个,贡献率为6.94%~21.22%。本研究中,有9对QTL两年均在同一位置被检测到:3对粒长QTL,1对粒宽QTL,1对谷粒长宽比QTL,2对粒厚QTL和2对千粒重QTL,说明他们受环境影响小,能稳定表达,可用于水稻分子标记辅助育种。第5染色体上RM1089~RM18119区间上稳定检测到控制粒长、粒宽、谷粒长宽比、粒厚和千粒重QTL,多数染色体的多处区段上均检测到一因多效性。  相似文献   

2.
水、旱栽培条件下稻谷粒型和粒重的相关分析及其QTL定位   总被引:8,自引:4,他引:4  
为了解水、旱栽培条件下水稻粒形和粒重的表型及QTL变化,以陆稻品种IRAT109和水稻品种越富构建的双单倍体群体为材料,系统分析了稻谷粒长、粒宽、粒重及长宽比在水、旱栽培条件下的相关性,并进行了数量性状基因位点的比较定位。结果表明,水、旱条件下,粒长与长宽比和粒重均呈极显著正相关;粒宽与长宽比呈极显著负相关,与粒重极显著正相关,4个性状在水、旱条件间相关性都达极显著正相关。其中粒长的相关系数最高,达0.817,粒宽的相关系数最低,为0.457。表明粒长受水分影响最小而粒宽受水分影响较大。粒重、长宽比介于二者之间。两种条件下共检测到14个QTLs,分布于水稻1、5、6、7、10和12染色体上,其中控制粒长的5个,LOD值为1.93~5.11,贡献率为5.97%~28.85%;控制粒宽的1个,LOD值为2.39,贡献率为12.76%;控制长宽比的3个,LOD值为2.08~4.6,贡献率为7.78%~21.89%;控制粒重的5个,LOD值为2.68~9.45,贡献率为4.1%~14.8%。其中控制粒长的qGL-5及控制粒重的qGWt-1a和qGWt-1b在水、旱条件下均能检测到,在抗旱育种中可用于分子标记辅助选择籽粒性状。QTL分析的结果进一步验证了表型分析结果,粒宽相对易受土壤水分影响,粒长、粒重和长宽比,受水分胁迫影响较小,遗传比较稳定。  相似文献   

3.
利用B73与By804构建的高油玉米群体为材料,分析粒重、粒长、粒宽、粒长宽比、粒厚、子粒油分、子粒体积、粒重体积比的表型变异及相关性分析.结果显示,粒长、粒宽、粒厚、子粒体积、粒重体积比均与粒重呈极显著正相关,而粒长宽比与粒重呈极显著负相关;同时粒长宽比与子粒油分也呈极显著负相关;粒重体积比与子粒油分呈极显著正相关.  相似文献   

4.
基于高密度遗传图谱的玉米籽粒性状QTL定位   总被引:4,自引:1,他引:4  
籽粒大小及百粒重是决定玉米产量的重要因素。为解析籽粒性状遗传基础,本研究以玉米自交系黄早四(HZS)和Mo17为亲本,构建包含130个重组自交系(recombination inbred line,RIL)的RIL群体。基于GBS(genotypingby-sequencing)技术获得的高密度多态性SNP(single nucleotide polymorphism)位点,构建了包含1262个Bin标记的高密度遗传图谱。采用完备区间作图法,对5个环境条件下的粒长、粒宽、百粒重、粒长/粒宽4个性状分别进行QTL(quantitative trait locus)定位,共检测到30个QTL。利用5个环境性状均值,共检测到11个QTL。其中粒长主效QTL qklen1、粒长/粒宽主效QTL qklw1在3个单环境条件下均被检测到,且定位在第1染色体相邻区域,物理位置分别为210~212 Mb、207~208 Mb,表型贡献率分别为22.60%和26.79%,被认为是控制玉米籽粒形状的主效位点。针对第1染色体207~212 Mb区间,采用成组法t检验,对黄早四(受体)和Mo17(供体)构建的BC3F1回交群体进行单标记分析。结果表明,在BC3F1群体中qklen1和qklw1同样具有显著的遗传效应。本研究结果不仅为分子标记辅助选择籽粒性状提供了实用标记,而且为主效基因的进一步精细定位和候选基因挖掘奠定了基础。  相似文献   

5.
本研究利用两个具有粒型差异的籼稻材料14931和R1961进行杂交、自交获得F2代分离群体。利用在亲本间有多态性的102对SSR标记进行基因型分析,同时对粒长、粒宽、长宽比和粒重4种性状进行了表型鉴定,并采用完备区间作图法(ICIM)对上述性状进行QTL定位。结果表明:上述粒型性状在F2群体均呈正态连续分布,表现为由多基因控制的数量性状,共检测到12个与粒型性状相关的QTLs,分布于第1、第2、第5、第8、第10和第11染色体上。除qgl2-1和qgl2-2之外,其余有10个增效等位基因来自于小粒亲本材料R1946。粒长、粒宽和粒重均分别检测到4个QTLs,但籽粒长宽比未能检测到QTL。其中,qgl1、qgw5-1和qkgw5-1对表型变异的贡献率分别为14.55%、26.28%和15.25%,为主效QTL,并且检测到控制粒长的qgl1可能是新的QTL位点。研究结果可为进一步解析和克隆新的粒型QTLs奠定基础。  相似文献   

6.
大豆籽粒大小与形状性状的QTL定位   总被引:2,自引:0,他引:2  
大豆籽粒大小和粒形性状不仅与产量和外观品量紧密相关,还对机械化播种有着一定的影响。本研究采用大粒栽培品种冀豆12与小粒半野生地方品种黑豆(ZDD03651)杂交衍生的包含188个重组自交系的F6:8和F6:9群体为材料,对粒长、粒宽、粒厚、长宽比、长厚比和宽厚比的遗传结构进行分析,并分别以WinQTLCart 2.5、QTLNetwork 2.1和IciMapping 4.1 3种模型对以上性状的加性效应QTL,QE互作效应及上位性互作效应进行检测。6个性状的广义遗传率介于64.01%~79.57%,遗传力较高,且除粒厚外的其他性状受环境影响显著。共定位到加性效应QTL38个,单个QTL的贡献率介于2.21%~10.71%之间,分布在12条染色体的17个标记区间内,且12个染色体区段至少与两种性状相关。两种及以上模型同时检测到的QTL有24个,3种模型均能检测到的QTL共8个,分别为qSL-17-1、qSL-18-1、qSW-6-1、qST-2-1、qST-6-1、qSLT-2-2、qSWT-2-1和qSWT-20-1。检测到7对上位性互作QTL,分别涉及粒长、粒宽、长宽比、长厚比和宽厚比,互作效应贡献率介于0.78%~6.20%之间。QE互作效应贡献率均较低,介于0.0005%~0.3900%之间。以多种模型同时检测结果准确性较高,可为分子标记辅助育种工作提供可靠理论基础。  相似文献   

7.
利用BC2F2高代回交群体定位水稻籽粒大小和形状QTL   总被引:6,自引:3,他引:3  
以我国优良籼稻恢复系蜀恢527为轮回亲本, 以来自菲律宾的Milagrosa为供体亲本, 培育了样本容量为199株的BC2F2高代回交群体。选取85个均匀分布在12条染色体上的多态性SSR标记进行基因型分析, 同时对粒长、粒宽、长宽比和千粒重4种性状进行了表型鉴定。采用性状-标记间的单向和双向方差分析对上述性状进行了QTL定位。单向方差分析(P<0.01)共检测到了10个控制粒长、粒宽、长宽比和千粒重的QTL, 其中有3个具有多效性。由于粒长和长宽比的高度相关性, 控制长宽比的2个QTL均能在粒长QTL中检测到。位于第3染色体着丝粒区域的qgl3b是一个控制粒长、长宽比和千粒重的主效QTL, 它可以分别解释粒长、长宽比和千粒重表型变异的29.37%、26.15%和17.15%。该QTL对于粒长、长宽比和千粒重均表现较大的加性效应(来自蜀恢527的等位基因为增效)和负向超显性。位于第8染色体的qgw8位点是一个控制粒宽的主效QTL, 同时也是控制千粒重的微效QTL, 能解释粒宽表型变异的21.47%和千粒重表型变异的5.16%。该QTL对粒宽和千粒重均具有较大的加性效应(来自蜀恢527的等位基因为增效)和正向部分显性。双向方差分析(P<0.005)共检测到61对显著的上位性互作, 涉及54个QTL, 其中23个是能同时影响2~4个性状的多效位点, 且有8个位点与单向方差分析检测到的相同。控制长宽比的13对上位性互作位点中, 与控制粒长的上位性互作位点完全相同的有8对。以上结果为进一步开展水稻籽粒大小和形状有利基因的精细定位、克隆和分子设计育种奠定了基础。  相似文献   

8.
利用BC2F2高代回交群体定位水稻籽粒大小和形状QTL   总被引:1,自引:0,他引:1  
以我国优良籼稻恢复系蜀恢527为轮回亲本, 以来自菲律宾的Milagrosa为供体亲本, 培育了样本容量为199株的BC2F2高代回交群体。选取85个均匀分布在12条染色体上的多态性SSR标记进行基因型分析, 同时对粒长、粒宽、长宽比和千粒重4种性状进行了表型鉴定。采用性状-标记间的单向和双向方差分析对上述性状进行了QTL定位。单向方差分析(P<0.01)共检测到了10个控制粒长、粒宽、长宽比和千粒重的QTL, 其中有3个具有多效性。由于粒长和长宽比的高度相关性, 控制长宽比的2个QTL均能在粒长QTL中检测到。位于第3染色体着丝粒区域的qgl3b是一个控制粒长、长宽比和千粒重的主效QTL, 它可以分别解释粒长、长宽比和千粒重表型变异的29.37%、26.15%和17.15%。该QTL对于粒长、长宽比和千粒重均表现较大的加性效应(来自蜀恢527的等位基因为增效)和负向超显性。位于第8染色体的qgw8位点是一个控制粒宽的主效QTL, 同时也是控制千粒重的微效QTL, 能解释粒宽表型变异的21.47%和千粒重表型变异的5.16%。该QTL对粒宽和千粒重均具有较大的加性效应(来自蜀恢527的等位基因为增效)和正向部分显性。双向方差分析(P<0.005)共检测到61对显著的上位性互作, 涉及54个QTL, 其中23个是能同时影响2~4个性状的多效位点, 且有8个位点与单向方差分析检测到的相同。控制长宽比的13对上位性互作位点中, 与控制粒长的上位性互作位点完全相同的有8对。以上结果为进一步开展水稻籽粒大小和形状有利基因的精细定位、克隆和分子设计育种奠定了基础。  相似文献   

9.
稻米垩白和粒形的主效QTL定位分析   总被引:1,自引:0,他引:1  
本研究用珍佳B(佳辐占/珍汕97B//珍汕97B的回交重组自交系F11,即BC1F11)×珍汕97B的F2群体,对稻米粒长、粒宽、长宽比、粒厚和垩白粒率性状进行遗传分析与QTL定位.结果表明,粒宽、长宽比、粒厚和垩白粒率均属于由多基因控制的数量性状,而粒长受一个主效基因控制.共检测到13个控制糙米粒长、粒宽、长宽比、粒...  相似文献   

10.
利用极端材料定位水稻粒形性状数量基因位点   总被引:1,自引:0,他引:1  
利用极端大粒材料GSL156(千粒重71.9 g)与特小粒材料川七(千粒重12.1 g,轮回亲本)杂交、回交获得的BC2F2 216个个体为作图群体,在北京进行稻谷粒长、粒宽、粒厚、长宽比、千粒重等粒形性状的鉴定。采用单标记分析和复合区间作图法,利用SSR标记对粒形性状进行数量性状基因座检测。结果表明,上述粒形性状在BC2F2群体均呈正态连续分布,表现为由多基因控制的数量性状;共检测到与粒形性状相关的QTL 28个,分布于第1、2、3、4、5、6和12染色体上。其中qGL3-2、qGL3-3、qGT12-1、qGT2-1、qGT5-1、qGW1-1、qGW12-1、qGW2-1、qGW5-1、qRLW3-1、qTGW12-1、qTGW2-1、qTGW3-3和qTGW5-1对表型变异的贡献率分别为13.70%、52.51%、21.13%、18.79%、20.92%、14.59%、18.33%、30.03%、20.05%、24.53%、13.47%、11.43%、21.30%和15.68%,为主效QTL。其中,第3染色体上检测出来的QTL最多。在所有检测到的28个QTL中,6个QTL的增效等位基因来源于小粒亲本川七,而其余QTL的增效等位基因均来源于大粒亲本GSL156,基因作用方式主要表现为加性或部分显性。第3染色体RM7580~RM8208区间是分别与粒宽、长宽比和千粒重相关的3个主效QTL的共同标记区间,第2染色体的RM7636~RM5812区间、第5染色体的RM3351~RM26区间和第12号染色体的RM1103~RM17区间是分别与粒宽、粒厚和千粒重相关的3个主效QTL的共同标记区间,这些区间对粒形贡献率较大,为进一步精细定位或克隆这些新的粒重或粒形QTL奠定了基础。同时大粒亲本对稻谷粒长、粒宽、粒厚和千粒重等性状的增效作用显著。  相似文献   

11.
花生籽仁大小相关性状是决定花生产量的直接因素。为发掘与花生籽仁大小相关的QTL,本研究以中花16×J11构建的RIL群体为材料,得到了一张包含289个SSR标记、21个连锁群、覆盖长度为947.3cM的遗传连锁图谱。连续2年对籽仁大小相关性状鉴定表明,各性状在群体中变异广泛,呈典型正态分布,且大部分性状间显著相关。结合本研究构建的遗传图谱,利用WinCart2.5进行QTL定位分析,2年共检测到66个QTL,贡献率为3.23%~33.01%。与籽仁长(SL)、籽仁宽(SW)、籽仁长宽比(LWR)和百仁重(HSW)相关的QTL分别有18、16、18和14个。在这些QTL中,A05染色体上的区间A05A1500-A05A1530同时存在控制籽仁长(qSLA05.1和qSLA05.2)和百仁重的相关的QTL(qHSWA05.1);B06染色体上的区间A06B135-A06B113同时存在控制籽仁宽(qSWB06.2和qSWB06.4)和百仁重相关的QTL (qHSWB06.4),这些稳定存在的主效QTL将为花生产量相关性状的精细定位和分子育种奠定基础。  相似文献   

12.
Wheat (Triticum aestivum L.) yield is directly proportional to physio-morphological traits. A high-density genetic map consisting of 2575 markers was used for mapping QTL controlling stay-green and agronomic traits in wheat grown under four diverse water regimes. A total of 108 additive QTL were identified in target traits. Among them, 28 QTL for chlorophyll content (CC) were detected on 11 chromosomes, 43 for normalized difference vegetation index (NDVI) on all chromosomes except 5B, 5D, and 7D, five for spikes per plant (NSP) on different chromosomes, nine for plant height (PH) on four chromosomes, and 23 for thousand-kernel weight (TKW) on 11 chromosomes. Considering all traits, the phenotypic variation explained (PVE) ranged from 3.61 to 41.62%. A major QTL, QNDVI.cgb-5A.7, for NDVI with a maximum PVE of 20.21%, was located on chromosome 5A. A stable and major PH QTL was observed on chromosome 4D with a PVE close to 40%. Most distances between QTL and corresponding flanking markers were less than 1 cM, and approximately one-third of the QTL coincided with markers. Each of 16 QTL clusters on 10 chromosomes controlled more than one trait and therefore could be regarded as pleiotropic regions in response to different water regimes. Forty-one epistatic QTL were identified for all traits having PVE of 6.00 to 25.07%. Validated QTL closely linked to flanking markers will be beneficial for marker-assisted selection in improving drought-tolerance in wheat.  相似文献   

13.
水稻种子耐低温发芽力的QTL定位及上位性分析   总被引:2,自引:0,他引:2  
利用种植在不同环境[南京(2002)、海南(2002—2003)、南京(2003)]下的Kinmaze/DV85重组自交系(RILs)群体, 对水稻种子萌发第10天的低温发芽力进行QTL分析。利用QTL mapping 2.0软件共检测到11个QTL, 其中qLTG-7和qLTG-11可在3个环境中稳定表达, 且最大贡献率均达到27.93%, 增强低温发芽的基因分别来自Kinmaze和DV85。与前人的研究比较发现, 这2个QTL可以在不同环境下和遗传背景中稳定表达。进一步上位性分析的结果表明, qLTG-11并不参与上位性互作, 而qLTG-7虽参与互作但其贡献率较小。1  相似文献   

14.
利用非条件和条件QTL解析油菜产量相关性状的遗传关系   总被引:1,自引:0,他引:1  
基于前期研究中构建的Sollux/Gaoyou DH群体在9个环境中的表型数据和新版遗传图谱,对油菜角果长度进行QTL定位,估测QTL的加性、上位性和环境互作效应。并通过条件QTL方法,解析角果长度与角果粒数和粒重之间的遗传关系,以期利用标记辅助,探讨通过选择角果长度基因型以增加角果粒数、提高千粒重,最终达到增加产量的可能性。结果共检测到在3个环境以上稳定表达的控制角果长度QTL 8个,加性效应值在0.09~0.26 cm之间,效应总和解释群体遗传总变异的60%。8对上位性QTL效应值在0.035~0.075 cm之间,效应总和为加性总效应的38%。QTL与环境互作效应只在少数位点和个别环境中显著。条件QTL研究表明,q SLA2、q SLC1-2和q SLC8-1位点,角果长度的变化对角果粒数影响较大;而通过选择q SLA7、q SLC1-2、q SLC8-1和q SLC8-2长角果标记基因型,可望同时提高角果粒数和千粒重。6个主效QTL 11个连锁标记基因型和表现型的关联分析,验证了条件QTL分析结果,表明通过对q SLA2、q SLA7、q SLC8-1和q SLC8-2位点6个连锁标记(ZAAS423、SUC1-3、ZAAS12a、ZAASA7-28、ZAAS433和ZAAS437)长角果基因型的聚合,可增长角果约2 cm,间接增加角果粒数2粒,同时提高千粒重0.4 g,从而可望实质性地提高油菜产量水平。  相似文献   

15.
大豆粒形性状QTL的精细定位   总被引:2,自引:0,他引:2  
在溧水中子黄豆×南农493-1衍生的504个F2:6家系中选择Satt331~Satt592目标区间7个杂合单株和168个重组单株,衍生成356株RHL-F2个体(群体I)和168个重组体家系(群体II)。群体II来自142个F2:6家系,若每个F2:6家系只保留1个重组家系则构成群体III。采用lasso和复合区间作图(CIM)法检测3个群体粒形性状2种指标的QTL。结果表明, lasso法检测到的粒长关联标记是O19和S21/Satt331,而CIM检测到的QTL区间是S21~S22和O23~O19;lasso法检测到的粒宽关联标记是O19/O21,而CIM检测到的QTL区间是O23~O19/O19~O21;长宽比与S21~S22关联是由于粒长QTL引起的,与O23~O19 /O19~O21关联是由于粒长和粒宽QTL引起的。将原Satt331~Satt592目标区间的粒长QTL剖分为与标记S21~S22和O23~O19/O19~O21关联的2个多效性QTL。根据大豆基因注释数据库,Glyma10g35240和Glyma10g34980可能是控制粒形性状发育的候选基因。  相似文献   

16.
17.
杂草稻种子休眠数量性状位点的定位   总被引:1,自引:0,他引:1  
利用杂草稻与粳稻品种衍生的分离群体对控制种子休眠性的遗传基础进行了研究。检测到4个控制种子休眠性的QTL, 分别位于第1、第2和第6(2个)染色体上, 贡献率分别为7.8%、7.1%、5.5%和4.5%, 其中第2染色体上的QTL可能是一个新的控制种子休眠性的位点, 多项方差分析表明这4个位点的作用具有累加效应。种子发芽率与开花时间存在显著的负相关关系, 检测到的唯一一个控制抽穗期的QTL与位于第6染色体上的一个控制种子休眠性的QTL连锁或具有多效性, 这可能是造成其显著相关的主要原因。  相似文献   

18.
小麦穗部性状与单株产量密切相关。本研究以小麦骨干亲本燕大1817与优良品系北农6号衍生的269个重组自交系为材料,通过在北京和河北石家庄的2年田间试验数据,利用本实验室已构建的高密度SNP和SSR遗传连锁图谱进行穗长、穗粒数和穗粒重QTL定位。采用完备复合区间作图法共检测到29个穗部性状加性效应QTL,其中10个穗长QTL分布于1B、2D、3A、3B、4A、5A、5B、6A和7D染色体上,解释的表型变异率为2.96%~9.63%,QSl.cau-4A.2在所有5个环境中均能被检测到,解释的表型变异为5.89%~9.62%,另有7个QTL能在2个或2个以上环境中被检测到;8个穗粒数相关QTL分布于1A、3A、3D、4A和5B染色体上,解释的表型变异为4.06%~11.17%,为单个环境QTL。11个与穗粒重相关QTL分布于1A、1B、2A、2D、3A、4D、5A、5B和6B染色体上,解释的表型变异为2.79%~16.12%,其中QGws.cau-1B、QGws.cau-3A和QGws.cau-6B.2在2个或者2个以上环境中能被检测到。另外,鉴定出6个分布于1A、2D、3A、4A和5B染色体上的QTL富集区段。  相似文献   

19.
利用Bayes分层广义线性模型剖析大豆籽粒性状的遗传基础   总被引:1,自引:0,他引:1  
以溧水中子黄豆(P1)和南农493-1(P2)组合的504个正反交F2:3~F2:7家系群体为材料, 调查大豆粒长、粒宽、粒厚、长宽比、长厚比、宽厚比和百粒重性状在2007—2011年的表型观测值, 扫描F2群体SSR分子标记信息, 用Bayes分层广义线性模型方法检测了上述性状的主效QTL、QTL´环境(QE)互作、QTL´细胞质(QC)互作和QTL´QTL(QQ)互作。共检测到89个主效QTL、33对QE、20对QC和35对QQ互作。上述7个性状的主效QTL分别有7、10、10、19、19、17和7个; QQ互作分别有1、10、6、0、6、9和3对, 没有检测到显性´显性互作; QE互作分别有5、7、6、3、6、2和4对; QC互作分别有2、1、3、8、4、2和0对。主效、QQ互作、QC互作和QE互作QTL的总贡献率分别为12.42%~61.79%、0~23.21%、0.35%~1.51%和0~14.16%, 表明主效QTL贡献最大, QQ互作次之, QE互作最小。各类QTL都有一因多效现象, 同一基因座可通过不同方式影响性状表达。这些结果揭示了大豆粒形性状的遗传基础, 为标记辅助育种提供了参考信息。  相似文献   

20.
利用98个家系组成的日本晴(粳稻)/Kasalath(籼稻)//日本晴回交重组自交系(backcross inbred lines, BILs) 群体(BC1F10),研究水稻光合功能相关的数量性状基因座(QTL)。基于水稻抽穗后7 d叶片全氮含量(TLN)、叶绿素a/b比值(Chl.a/b)和叶绿素含量(Chl),共检测到8个QTL,其LOD值为2.61 ~ 6.42  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号