首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 180 毫秒
1.
史宏 《中国农学通报》2018,34(21):14-22
旨在选育多四粒荚大豆品种,构建理想模型,为大豆高产超高产育种探索新途径。用spss 18分析‘汾豆96’生理生态特性,以椭圆叶形多四粒荚‘汾豆96’为主,结合34份披针叶形四粒荚材料,对其10项产量相关的农艺性状用逐步回归法构建理想模型。‘汾豆96’群体内四粒荚单株的存在率达85%以上,单株四粒荚最高达49个,占总荚数的30.25%,‘汾豆96’产量随四粒荚数的增加总体呈增加趋势。当R~2=0.939时,模型拟合最优:Y=-87.583+0.415X_1-5.155X_2+10.094X_3+13.459X_4。回归方程表明多四粒荚创新材料产量与生物产量(X_1)、株高(X_2)、百粒重(X_3)和主茎节数(X_4)呈显著线性回归关系。提升每荚粒数和选育多四粒荚品种,是高产超高产育种产量突破的新途径。大豆品种具备的理想模型是抗倒伏、多荚粒、适合机械化收获的短节间密荚类型。  相似文献   

2.
本文于1988~1991年在单、间作条件下分析了大豆品种若干性状与花荚脱落的相关性,研究表明:(1)株高、主茎节数、节间长、最低结荚节位、茸毛色等5个植株特征特性与花、荚脱落率呈正相关,除节间长和最低结荚高度之外间作条件下,大多数性状达显著、极显著水平,有限结荚习性(或亚有限),生长直立,株型收敛的品种花荚脱落率低;花色和生育日数对大豆的花荚脱落有密切关系。(2)叶部性状中以叶柄与主茎之间夹角及落叶性和花荚脱落关系较大,其中又以间作大于单作。(3)荚粒特征特性除种皮色和荚色与花荚脱落的关系不密切外,其余5个性状几乎达显著水平,尤以单株粒数、单株粒重与花荚脱落率呈显著负相关,经t测验单间作相比,单株有效荚数,单株粒数和单株粒重达极显著水平。(4)抗倒性,抗病虫害差的品种或单株,花荚脱落严重;影响花荚脱落的主要气象因子是光照强度和光照时数。  相似文献   

3.
不同施磷条件下大豆植株农艺性状与磷效率的关系   总被引:1,自引:0,他引:1  
【研究目的】为了寻找直观、简便、可靠的用于磷效率筛选的农艺性状指标,探讨大豆植株农艺性状与磷效率的关系,【方法】试验选用3个“磷低效”大豆基因型HND3、HND17和HND18及“磷高效”大豆基因型HND34、HND37和HND38,采用高、低磷土壤盆栽试验,对大豆基因型磷效率与植株农艺性状的关系进行了研究。【结果】结果表明,在相关分析中,低磷(-P)和高磷(+P)处理的x1(株高)、x4(单株荚数)、x5(单株粒数)、x8(地上部干重)和x9(根干重),(-P)处理x3(节数)和(+P)处理x2(分枝数)与磷效率(籽粒产量)均达到了显著或极显著水平。经逐步回归分析,建立了回归方程:(-P)处理:y=391.629+9.271x1-2.674x2+7.236x4+76.932x9;(+P)处理:y=699.882+3.572x1+22.956x4-191.103x6。在通径分析中,各农艺性状对籽粒产量的重要性依次为:(-P)处理:株高(0.456)〉单株荚数(0.360)〉根干重(0.267)〉分枝数(-0.021);(+P)处理:单株荚数(0.845)〉株高(0.126)〉每荚粒数(-0.117)。【结论】研究表明,在磷高效大豆基因型筛选中,应该考虑高、低磷条件下株高、单株荚数和根干重的综合表现。  相似文献   

4.
不同种植密度对3个小豆品种植株形态及产量的影响   总被引:1,自引:0,他引:1  
采用两因素随机区组设计,以直立型小豆品种冀红20、冀红21和唐红201602为材料,分析6个种植密度对不同小豆品种植株形态特征及产量性状的影响。结果表明,品种和种植密度对小豆形态特征和产量性状的影响较大;底荚高度和第一节间长随着密度的增加而增加,主茎节数、主茎分枝数、单株结荚数、单荚粒数和百粒重随着种植密度的增加而减小,产量随种植密度的增加呈先增加后减少趋势;相同品种不同种植密度间和相同种植密度不同品种间的产量差异极显著(F值分别为49.36、99.35),品种与种植密度互作对产量的影响差异显著(F=3.91)。种植密度与株高、底荚高度呈极显著正相关,与第一节间长呈正相关,与茎粗、主茎分枝数和主茎节数呈极显著负相关。增加种植密度可增加小豆株高、底荚高度和第一节间长,有效减少主茎分枝数,有利于机械化收获。  相似文献   

5.
绿豆主要农艺性状的相关分析   总被引:9,自引:0,他引:9  
对739份绿豆品种资源主要农艺性状进行了独立性检验、变异系数测定及相关分析。缫表明:(1)粒色与粒大小及种皮有无光泽呈极显著相关。(2)单株荚数、单株产量、主茎分枝数的变异度大,株高及百粒重的变异度较大,荚长、生育期的变异度中等,而单荚粒数变异度较小。(3)单株产量与单株荚数呈极显著的正相关,与生育期呈极显著的负相关。  相似文献   

6.
产量指标3000kg/hm^2以上,密度为9.75万~12.00万株/hm^2,单株角果数400个左右,每荚粒数17粒,千粒重3.8g以上。  相似文献   

7.
密度对超高产春大豆农艺性状的影响   总被引:13,自引:1,他引:13  
研究了超高产条件下,不同种植密度对春大豆植株性状、产量性状和产量的影响以及单株叶面积和叶面积指数变化特点。结果表明,随密度的增加,株高和底荚高度增高,茎粗、节数、分枝数、分枝总长度降低,倒伏加重,单株有效结荚数、单株粒数、单株籽粒重降低,百粒重与种植密度关系不显著。叶面积指数随密度增加呈上升趋势,以45.0万株/hm2处理最佳,产量达5547.81kg/hm2。  相似文献   

8.
玉米/红小豆间作模式中红小豆种植适宜密度研究   总被引:1,自引:0,他引:1  
为探讨玉米/红小豆间作模式中的红小豆适宜种植密度,对不同种植密度红小豆的产量及其构成因素进行了研究。结果表明,红小豆株高、主茎分枝、主茎节数、荚长、荚粒数以及百粒重变化均不大,而单株荚数和产量随着种植密度增加呈抛物线变化;各处理间玉米产量变化不大;红小豆种植密度在8.07万株/hm2时产量最高,达到2668.76kg/hm2。说明在仁寿县或者相似生态区,红小豆种植的密度为8.07万株/hm2。  相似文献   

9.
研究了超高产条件下,不同种植密度对春大豆植株性状、产量性状和产量的影响以及单株叶面积和叶面积指数变化特点。结果表明,随密度的增加,株高和底荚高度增高,茎粗、节数、分枝数、分枝总长度降低,倒伏加重,单株有效结荚数、单株粒数、单株籽粒重降低,百粒重与种植密度关系不显著。叶面积指数随密度增加呈上升趋势,以45.0万株/hm2处理最佳,产量达5547.81kg/hm2。  相似文献   

10.
种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响   总被引:3,自引:0,他引:3  
为了明确密植条件下春玉米茎秆特性和产量的变化及其相互关系,为贵州春玉米密植高产提供理论依据和实践指导。以贵州广泛种植的玉米品种先玉1171和新中玉801为材料,设置3.0、4.5、6.0、7.5、9.0和10.5万株hm-26个密度,于2018—2019年开展田间试验,研究种植密度对春玉米茎秆形态特征和力学特性、空秆率、倒伏率和产量的影响。结果表明:(1)春玉米株高和穗位高随密度增加先增高后降低;增密后第3节长增幅最大,第3节单位茎长干重、穿刺强度和抗折力,第7节茎粗、干重和横截面积下降幅度最大;密度对茎秆横截面扁率影响不显著。品种之间比较,先玉1171节间长,第3、5节的节间干重和第3节穿刺强度显著高于新中玉801,第7节干重、节间粗、单位茎长干重、节间横截面积、横截面扁率和抗折力显著低于新中玉801。(2)倒伏率和空秆率随密度增加而增大,增密后先玉1171倒伏率显著高于新中玉801,空秆率显著低于新中玉801。(3)产量随密度增加先增加后降低,先玉1171和新中玉801分别在9.3万株hm^-2和8.6万株hm^-2时产量最高。增密后先玉1171比新中玉801增产10.28%,有效穗数和穗粒数更高。(4)相关和多元回归分析表明,株高、穗位高与倒伏率显著正相关,节间粗和单位茎长干物质对玉米茎秆抗折力的正向影响显著。产量与茎秆性状密切相关,株高对产量的正向影响最大。可见,不同春玉米茎秆抗倒伏性能和籽粒产量对密度的响应有差异,新中玉801增密后茎秆节间短而粗,单位茎长干重较大,抗倒伏能力较强。而先玉1171由于在高密度下空秆率比新中玉801低,有较高的有效穗数和穗粒数,因此高密度下产量更高。综合考虑茎秆性状和产量,先玉1171和新中玉801在贵州适宜密度分别为9.0万株hm^-2和8.5万株hm^-2。  相似文献   

11.
黑龙江省中熟大豆品种主要农艺性状演变趋势分析   总被引:1,自引:0,他引:1  
黑龙江省近20年来中熟大豆品种遗传改进的明显趋势是株高、有效节数、一二粒荚数、三四粒荚数、单株荚数、单株粒数、每荚粒数和单株粒重增加,底荚高度略有增加。分枝数、蛋白质含量呈现先增后减的趋势.脂肪含量呈现先减后增的趋势,百粒重变化不大。株高、有效节数、三四粒荚数、单株荚数、单株粒数、百粒重与单株粒重呈显著或极显著的正相关。各性状对单株粒重的贡献大小依次为单株粒数、单株荚数、三四粒荚数、株高、有效节数、百粒重。提高单株粒数、单株荚数、三四粒荚数.兼顾株高、有效节数、百粒重是该区大豆育种的主攻方向。  相似文献   

12.
The number of seeds per unit land area, the major yield component in soybean (Glycine max (L.) Merrill) is largely determined after the beginning of flowering, particularly from R3 to R6. Environmental factors increasing crop growth rate (e.g. radiation) or extending the duration of the reproductive phases (e.g. photoperiod) increase the number of seeds. We aimed to compare the mechanisms by which photoperiod and radiation affect the definition of final seed number during the critical period of R3–R6. Two field experiments were conducted with indeterminate soybeans at intermediate maturity group. All plots in each experiment were grown under natural conditions until the beginning-pod stage (R3); and from then onwards different treatments were imposed. Treatments consisted of the factorial combination of two levels of radiation (natural or shading) and two photoperiod regimes (natural or extended). Extended photoperiod increased the duration of reproductive phases, the number of nodes and the number of pods produced on the nodes that flowered during or after the applications of the treatments. Shading had negligible effects on development and node number, but reduced crop growth rate and also reduced the number of pods produced on most nodes of the plants. The number of seeds was positively related to the crop growth rate during R3–R6, but photoperiod increased the number of seeds produced per unit of crop growth rate, due to the lengthening of the phase. The number of seeds was therefore even better related to accumulated growth during R3–R6, irrespective of the factor that increased the accumulated biomass (higher daily radiation or longer duration of the phase) suggesting that long photoperiods increased the number of pods and seeds established per unit land area, mainly through increasing the total resource availability during a phase that is critical for the determination of seed number in soybean. However, photoperiod regulation involved additional changes in the development, evidenced by changes in the pod distribution pattern within the canopy.  相似文献   

13.
Growth trials were conducted outdoors in the UK to determine the yield, yield components and plant architectural differences between determinate and indeterminate Phaseolus vulgaris bean plants. F3 lines derived from crosses between ‘Prelude’, a determinate cultivar and ‘V8’, an indeterminate landrace, were grown together with the parents and ‘Carioca’, an indeterminate landrace from Brazil. Data were recorded on flowering date, number of nodes on main stem at flowering, plant height at maturity, number of pods/plant, number of seeds/pod, number of seeds/plant, 100-seed weight, seed mass/plant, percentages of diseased and healthy seeds/plant. Determinate F3 lines had significantly lower (P < 0.05) seed mass/plant, fewer pods/plant, fewer seeds/pod, fewer seeds/plant, lower harvest index, shorter stems, earlier date of flowering, fewer nodes at flowering and fewer healthy seeds/plant than indeterminate F3 lines. However, determinate genotypes had significantly larger (P < 0.05) pods to accommodate their larger seeds compared with indeterminate lines. A similar situation was found when the yield and yield components of ‘V8’, ‘Prelude’ and ‘Carioca’ were evaluated; the highest seed mass/plant was given by ‘V8’ and the lowest by ‘Prelude’. Furthermore, some indeterminate genotypes with Type IV growth habit yielded significantly higher (P < 0.05) than the high-yielding parent, ‘V8’, indicating a positive influence on seed yield by crossing different genotypes.  相似文献   

14.
The effects of four row spacings (17.5, 35.0, 52.5 and 70.0 cm) and five seeding rates (50, 100, 200, 400 and 800 viable seeds m?2) on seed yield and some yield components of forage turnip (Brassica rapa L.) were evaluated under rainfed conditions in Bursa, Turkey in the 1998–1999 and 1999–2000 growing seasons. Plant height, stem diameter, pods/terminal raceme, total pods/plant, seeds/pod and primary branches/plant were measured individually. The number of plants per unit area was counted and the lodging rate of the plots was scored. The seed yield and 1000‐seed weight were also determined. Row spacing and seeding rate significantly affected most yield components measured. The number of plants per unit area increased with increasing seeding rate and decreasing row spacing. Plant height was not greatly influenced by row spacing and seeding rate, but higher seeding rates reduced the number of primary branches and the stem diameter. The number of pods/main stem was affected by row spacing and but not by the seeding rate. Also, the number of seeds per pod was not affected by either the row spacing or the seeding rate. In contrast, the number of pods per plant clearly increased with increasing row spacing, but decreased with increasing seeding rate. The plots seeded at narrow row spacings and at high seeding rates were more sensitive to lodging. Seeding rate had no significant effect on seed yield in both years. Seed yield was similar at all seeding rates, averaging 1151 kg ha?1. However, row spacing was associated with seed yield. The highest seed yield (1409 kg ha?1) was obtained for the 35.0‐cm row spacing and 200 seeds m?2 seeding rate combination without serious lodging problems.  相似文献   

15.
Information about the effect of the preceding crop or crop combination on the seed yield of oil-seed rape is extremely scarce. Experiments were carried out in northwest Germany to investigate the effect of different preceding crops on the growth, seed yield and yield components of oil-seed rape. The two directly preceding crops, wheat and oil-seed rape, had only a negligible and non-significant effect on the seed yield of the following oil-seed rape crop. Oil-seed rape grown after wheat had more pods per plant, due to an increase in the number of pods on the higher category branches. In contrast, the seed yield and yield components were more affected by the cropping sequence, i.e. the crops 2 years before. Averaged over two experimental years, the greatest yields were observed in oil-seed rape following the sequence peas-wheat (694 g m−2), whereas the smallest seed yield occurred after 2 years of oil-seed rape cropping (371 g m−2). The differences in the seed yield were again associated with more pods per plant, which compensated for the lower number of plants m−2, whereas the number of seeds per pod and the mean seed weight were almost unaffected by the previous cropping. It was not possible to relate the described differences to the crop development, since differences in the biomass caused by the previous cropping were only significant at maturity. Oil-seed rape grown after 2 years of oil-seed rape had the highest ratings of stem canker (Leptosphaeria maculans) as well as verticillium wilt (Verticillium dahliae). But the general level of the diseases was low, and therefore other causes for the effects described must be considered.  相似文献   

16.
对来自于中国黄淮海大豆产区、北方大豆产区和南方大豆产区的316个大豆品种的主要农艺性状进行了鉴定和比较。结果表明,育成品种的分枝数、分枝荚数、单株总荚数明显不及农家品种,而其它性状如主茎荚数、单株粒重、单株粒数和百粒重优于农家品种。以育成品种和农家品种分别所作的相关分析表明,主茎荚数、分枝荚数、单株总荚数均与单株粒数和单株粒重呈显著的正相关;主茎节数与株高、主茎荚数、单株总荚数、单株粒重、单株粒数呈显著正相关;分枝数与分枝荚数、单株总荚数、单株粒数和单株粒重呈极显著或非显著正相关,但与主茎荚数呈负向显著相关;单株粒数与单株粒重显著正相关,百粒重与单株粒重正向显著相关,与单株粒数负相关显著。通过比较和分析,就百粒重、生育期和株高筛选出一些具有极端值的品种,可以用作品种选育的亲本和大豆分子育种如转基因受体或分子标记作图群体的遗传材料。  相似文献   

17.
I. Ofori 《Euphytica》1996,91(1):103-107
Summary Direct and indirect effects of components of seed yield upon seed yield and those of leaf number and leaf size upon components of seed yield were examined using path analysis, in bambara groundnut germplasm from Ghana. The number of pods per plant and 100-seed weight had direct positive effects on seed yield, but the two traits were negatively correlated. The number of pods per plant gave the best indication of seed yield status. The number of leaves was more important in determining seed yield in the bunch types, but leaf size was rather more important in the spreading types. Seed size is genetically determined and the genes for seed size may have pleiotropic effects on leaf size. The genes for seed size may also be linked to genes for leaf size. Selection for varieties with high and stable number of pods per plant should improve production level of bambara groundnut.  相似文献   

18.
The beginning and duration of the seed set in the growth cycle determine the level and stability of the yield of a pea (Pisum sativum L.) genotype. The objective of the present study was to identify criteria for selecting genotypes, both in terms of timing of seed set and productivity. Genotypes were initially compared in field experiments for two different levels of inter-plant competition, but using the same photo-thermal conditions. These experiments showed that the initiation and, particularly, the duration of seed set were affected by plant growth rates, indicating that selection on these variables must be done by comparing genotypes under regular cropping conditions. When measuring seed production of the whole plant, we found that mean dry seed weight per podded node all over the plant and the number of podded nodes on any fertile stem were similar to those on the main stem. These results confirmed that branches and main stems have a similar reproductive pattern, and thus that any podded stem of the canopy is representative of every stem of the plant. Lastly, we showed that, when associated, the number of podded nodes, the mean dry seed weight per podded node on the main stem (or on any reproductive stem of the canopy), and the number of basal branches per plant are suitable criteria for selecting for productivity among genotypes with a similar duration of seed set. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
In Hawaii, soybeans planted in November through January will produce yields of 25 to 50 percent compared with those planted through June. Yield components were studied for several soybean cultivars to determine which one was the most sensitive to planting dates and if there were differences between cultivars.
Soybean cultivars, Amsoy 71, Davis, Forrest, Kahala, P.I. 297,550 , and Williams were planted each month for two years. One November planting was lost, so there were 23 tests representing different environments. Each test consisted of 24 plots, six cultivars in four replications in a randomized block.
Analysis of variance of combined tests indicated significant differences between number of plants, pods per plant, seeds per pod, seed weight, yield of seed, plant height, and oil content of the seed that were due to data of planting, cultivar, and date × cultivar interaction.
Regression analysis indicated a closer relationship between pods per plant and yield during stress conditions (November through January plantings), whereas number of seeds per pod was more closely associated with yield during non-stress environments (April through June plantings).  相似文献   

20.
Seed size, determined by 100-seed weight, is an important yield component and trade value trait in kabuli chickpea. In the present investigation, the small seeded kabuli genotype ICC 16644 was crossed with four genotypes (JGK 2, KAK 2, KRIPA and ICC 17109) and F1, F2 and F3 populations were developed to study the gene action involved in seed size and other yield attributing traits. Scaling test and joint scaling test revealed the presence of epistasis for days to first flower, days to maturity, plant height, number of pods per plant, number of seeds per plant, number of seeds per pod, biological yield per plant, grain yield per plant and 100-seed weight. Additive, additive?×?additive and dominance?×?dominance effects were found to govern days to first flower. Days to maturity and plant height were under the control of both the main as well as interaction effects. Number of seeds per pod was predominantly under the control of additive and additive?×?additive effects. For grain yield per plant, additive and dominance?×?dominance effects were significant in the cross ICC 16644?×?KAK 2, whereas, additive?×?additive effects were important in the cross ICC 16644?×?JGK 2. Additive, dominance and epistatic effects influenced seed size. The study emphasized the existence of duplicate epistasis for most of the traits. To explore both additive and non-additive gene actions for phenological traits and yield traits, selection in later generations would be more effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号