首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Citrus, especially K innow (Citrus deliciosa × Citrus nobilis), fruit yield and quality in Pakistan is not competitive with that of other countries which could be mainly attributed to the lack of good nutrient management for citrus orchards. The yield losses in this fruit crop occur mainly due to heavy fruit dropping. Experiments to overcome these problems were conducted at four different sites one each in Faisalabad, Toba Tek Singh, Jhang and Sargodha districts of Punjab, Pakistan. The soil and leaf chemical analysis showed severe deficiency of Zn and our pervious results have shown that soil amendment with potassium (K) at 75 K2O kg ha?1 improved the citrus fruit yield and quality at all selected sites. In the present experiments, effect of foliar application of Zn and K alone or in combination was studied on nutrient uptake, fruit yield, fruit dropping and juice quality. The fruit trees were pretreated with a selected K level of sulfate of potash (SOP) or muriate of potash (MOP), i.e., 75 kg K2O ha?1 along with recommended nitrogen (N) and phosphorus (P) doses. Zinc [Zn, 1% zinc sulfate (ZnSO4) solution], K [1% potassium sulfate (K2SO4) solution] and Zn + K (solution containing 0.5% each of ZnSO4 and K2SO4) were sprayed at the onset of spring and flush of leaves or flowers, fruit formation and at color initiation on fruit. Overall, application of Zn, K or Zn + K was effective in improving the nutrient uptake, yield and quality parameters of citrus fruit at all sites. Fruit dropping was also reduced by the foliar spray of Zn, K or Zn + K but the most promising results were recorded with foliar spray containing both Zn and K.  相似文献   

2.
Citrus, especially Kinnow, fruit yield and quality in Pakistan is not competitive with other countries, which could be mainly attributed to a lack of good nutrient management for citrus orchards. Many of the soils under these orchards have been reported as deficient in potassium (K). Therefore, work was initiated for improving citrus fruit yield, size, and quality through K nutrition management. Experiments were conducted in four districts of Punjab including Faisalabad, Toba Tek Singh, Jhang, and Sargodha and four rates of potash, i.e., 0, 50, 75 and 100 kg dipotassium oxide (K2O) ha?1 were applied using sulfate of potash (SOP) along with recommended rates of phosphorus (P) and nitrogen (N). Soils of all the selected sites were clay loam or sandy clay loam and deficient in K. The leaf analysis also showed that all the selected orchards were deficient in K. Application of K increased the fruit yield and quality but K at100 kg K2O ha?1 was more effective in increasing the fruit weight and size, and peel thickness than other K rates in all the selected orchards. Juice volume and percentage significantly increased when K was applied at 75 kg K2O ha?1 at all sites. Nutrient uptake like K, P, and N enhanced with the increase in K application rate, however, the highest calcium (Ca)+ magnesium (Mg) was recorded at 50 kg K2O ha?1. The results indicated that all rates of K application improved the fruit yield and quality and reduced fruit dropping, however, 75 kg K2O ha?1 rate was more effective as juice volume and percentage, total soluble solid (TSS)/acid ratio and nutrient uptake showed significant improvement.  相似文献   

3.
A potato field experiment was conducted for 2 consecutive years to determine the effects of nitrogen (N) and potassium (K) fertilization rates on the yield and quality of potato cv. Spunta cultivated on soil low in N and K. A 3?×?4 complete factorial experiment was used with three rates of nitrogen (330, 495, and 660 kg N ha–1) and four rates of potassium (112, 225, 450, and 675 kg K2Ο ha–1). An additional treatment without fertilization was used as the control. On soils low in N and K, potatoes showed low yield response to K fertilizer. The greatest tuber yields for both years were achieved at 495 kg N ha–1 and 112 kg K2O ha–1 (29.81 t ha–1) and 225 kg ha–1 (27.13 t ha–1), respectively. Differences in mean fresh weight due to treatment application were not significant. Application of 495 kg N ha–1 significantly reduced harvest index (the ratio of tuber dry weight to the total dry weight at harvest) compared to 330 kg N ha–1, but at 660 kg N ha–1 harvest index achieved the greatest significant value. Potassium fertilization had no significant influence on harvest index. Nitrogen rates positively influenced the number of tubers. The addition of 450 kg K2O ha–1 significantly enhanced the number of tubers compared to the lower K rates, and the number was significantly decreased by the application of 675 kg K2O ha–1. Tuber dry-matter concentration was significantly promoted by N fertilization in both cultivation years, but it was negatively affected by K fertilization in the first year of cultivation. There was no change in tuber N with N application, but N application strongly increased nitrate (NO3) concentration, which fluctuated between 360 and 1382 mg kg–1 wet mass. Tuber NO3 was negatively correlated with tuber yield, indicating that high levels of NO3 in tubers can adversely affect yield. Tuber response to K fertilization was not in accordance with the rate of applied nutrient.  相似文献   

4.
《Journal of plant nutrition》2013,36(7):1295-1317
Abstract

A field experiment was conducted at Central Cotton Research Institute, Multan, Pakistan on Miani soil series, silt loam soil (Calcaric, Cambisols and fine silty, mixed Hyperthermic Fluventic Haplocambids) to assess the response of four cotton (Gossypium hirsutum L.) cultivars to potassium (K) fertilization. The treatments consisted of four cotton cultivars (CIM-448, CIM-1100, NIAB-Karishma, S-12), four potassium rates (0, 62.5, 125, 250 kg K ha?1), and two sources of potassium fertilizer [muriate of potash (KCl) and sulphate of potash (K2SO4)]. The cotton cultivars differed significantly in response to various potassium fertilizer levels and its sources with respect to seed cotton yield and its components. The highest yield was obtained with the application of 250-kg K ha?1, however, it was economical to add 125 kg K ha?1. Seed cotton yield of cv. CIM-448 was considerably greater than that of the other cultivars in K-unfertilized treatments, which was related to cultivar differences in K uptake efficiency in utilizing native potassium nutrient. Potassium added as muriate of potash caused a significant depression in seed cotton yield than that of sulphate of potash. The increase in yield seemed to have resulted largely from the higher K concentration of leaf tissues at bloom stage and available soil-K because of potassium application. A significant relationship between the yield and number of bolls per plant (r = 0.92**) and boll weight (r = 0.85**) indicated that these two growth attributes were responsible for enhancing the quantum of final harvest of seed cotton.  相似文献   

5.
Vertisols are characterized by deficiency of nutrients and recently, potassium (K), a major plant nutrient in crops, is gaining attention because of crop removal, fixation by clay minerals and leaching. A field experiment was conducted during the 2015 and 2016 main cropping seasons to test the effect of potash fertilizer on Vertisols of East Gojjam at Gudalima and Dejen/Tik sites using teff crop. The K rates (applied as muriate of potash) were 0, 50,100, and 150?kg ha?1. The experiment was laid out in a randomized complete block design in three replications. The results indicated that the plant height, panicle length, number of effective tillers, dry matter and grain yield of teff increased significantly (P?<?0.05) with applied K. The highest dry matter and grain yield (6966.4 and 2418.2 kg ha?1, respectively) were obtained from the application of 100 kg ha?1 KCl. Total uptake of N, P, and K were enhanced significantly with K treated plots than those without and K efficiency was improved due to the rate of K. The present study demonstrated the importance of K application to supplement NPS for optimum dry matter and grain yield of teff on Vertisols of the study sites.  相似文献   

6.
A two-year field study was conducted to determine the effect of two zinc (Zn) levels [0 and 10 kg zinc sulfate (ZnSO4) ha?1] in respect with four potassium (K) levels (0, 20, 40 and 60 kg K2O ha?1) on growth, yield and quality of forage sorghum. The soil of the experimental field was loamy sand (Inceptisol), carrying 70, 08, 77, and 0.51 mg nitrogen (N), phosphorus (P), K, and Zn kg?1 soil, respectively. Increasing K levels significantly improved most of the growth, yield, and quality attributes gradually irrespective of the Zn levels. Zinc applied at 10 kg ZnSO4 ha?1 proved significantly better than no zinc application at various K application rates. The benefit of zinc application increased progressively with increasing K rates for most of the parameters studied, indicating significant response of the crop to positive K × Zn interaction in plants in respect with K and Zn application to the soil. Accordingly, 60 kg K2O ha?1 applied with10 kg ZnSO4 ha?1 boosted most of the attributes maximally. It resulted in about 20–40% increase in growth attributes, 25% increase in fresh matter yield, 36–38% increase in dry matter yield, and 38% increase in protein yield compared to the comparable K level applied without zinc. It also enhanced N uptake by 38%, P uptake by 5–19%, K uptake by 40–42%, and Zn uptake by 114–144%. Across the K rates, application of 10 kg ZnSO4 surpassed no zinc application by 30–35% in N uptake, by 8–15% in P uptake, by 33–36% in K uptake, by 120–140% in Zn uptake, by 19–21% in fresh matter yield, by 29–31% in dry matter yield, and by 30–34% in protein yield.  相似文献   

7.
Abstract

Limited information on the agronomic performance of polyhalite (K2SO4.MgSO4.2CaSO4.2H2O) motivated us to establish two field trials in Sao Paulo, Brazil. The objective was to evaluate the comparative responses of tomato to muriate of potash (MOP), sulfate of potash, potassium magnesium sulfate, and polyhalite at different graded doses of potassium (K) application supplying varied amount of secondary nutrients. Under very low soil K conditions, polyhalite resulted in significantly higher marketable fruit yield, and higher foliar and fruit K and sulfur (S) concentrations than other K sources. This was not the case under medium soil K levels, that is, 101?mg?kg?1. Likewise, polyhalite enhanced postharvest residual soil calcium (Ca), magnesium (Mg), and S than other evaluated sources. Depending on soil nutrient status and the cost of polyhalite, tomato farmers of Brazil could consider polyhalite as an option to meet crop K and secondary nutrient requirements.  相似文献   

8.
An antagonistic reaction between calcium (Ca) and magnesium (Mg) and potassium (K) may lead to low absorption of K and Mg by plants from soils with high Ca contents even when levels of K and Mg should be adequate. Two separate field studies were carried out in 2009 and 2010 to determine the effects of potassium (0, 40, 80, 120 kg K2O ha?1; as potassium sulfate) and magnesium (0, 20, 40, 60 kg magnesium oxide (MgO)ha?1; as magnesium sulfate) applied to a soil with high lime content either separately or in combinations, on the grain yield and yield components of maize for grain in semi-arid Central Anatolia in Turkey. One dose of the K, Mg-fertilizers was applied during sowing in both years. According to the results, increasing the dosage of K increased yield components more than increases in Mg dosages. Combinations of K and Mg tended to maximize the yield components. Moreover, the greatest plant heights, first ear lengths, grain weights per ear and protein ratios were obtained for the K80Mg40 dose.  相似文献   

9.
Abstract

Polyhalite (PH), a naturally occurring multinutrient fertilizer containing potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S), has improved tomato (Solanum lycopersicum L.) production in Brazil but a specific response by tomato to the S in PH is not confirmed. We compared four S sources – PH, sulfate of potash (SOP), sulfate of potash magnesia (SOPM), and single super phosphate (SSP) – applied at a target application rate of 40?kg?S?ha?1 to fertilizers with no S (muriate of potash, MOP), and no K or S at commercial application rates in three commercial fields in Brazil with nitrogen (N), phosphorus (P), and K applied at recommended rates of 355, 500, and 200–300?kg?ha?1, respectively. Consistent across locations, PH increased total yields over the control, MOP, and SSP, with SOP and SOPM higher than the control but not MOP or SSP. Only PH increased marketable yields compared to the control. Yields increased linearly with fruit numbers per plant which were higher for PH than the control or MOP, indicating higher fruit set in PH contributed to yield differences. While fertilizers increased leaf K and S concentrations and soil test K and SO4–S, yield differences did not appear to be related solely to either K or S fertilization, nor to Mg fertilizers to which there was no response. Leaf and fruit Ca concentrations were higher in PH than the control and MOP at some locations suggesting Ca improved fruit set in PH. Results suggest tomato likely responded to the multinutrient content or solubility pattern of PH.  相似文献   

10.
Knowledge of forms of potassium (K) in soil is of great importance for formulating sound fertilizer recommendation to banana. Field experiments were conducted to study the effect of graded levels of potash application on forms of potassium at juvenile, grand growth, shooting, and harvest stages of banana on Vertic Haplustept soil. The negative balance of soil-available K was observed in the treatments of 0, 100, and 200 g K2O plant?1. However, at 300-g K2O plant?1 level, the balance was a mere –11 kg ha?1, and positive balance was observed in the treatments of 400 and 500 g K2O plant?1. Significant positive correlation among different forms of K indicated the interdependency and dynamic equilibrium between K forms. Application of K2O above the level of 300 g plant?1 for banana resulted in the build-up of potassium fractions in soil.  相似文献   

11.
ABSTRACT

Glauconite is a potassium (K) bearing mineral, which generally contains 6–10% K2O and mostly available in various natural deposits in India. Glauconite mineral was converted to nano-particle form by grinding in a high-energy ball mill. The release of K from glauconite nano-particle in soil was studied in a pot culture experiment. Five different treatments viz., 0 mg K2O kg?1, 100 mg K2O kg?1, 150 mg K2O kg?1, 200 mg K2O kg?1 used glauconite nano-particle (GNP) as a K source and 100 mg K2O kg?1 from muriate of potash (MOP), were applied in soil to grow maize (Zea mays L.) plant. The highest K+ concentration was observed in shoot at the application of 200 mg K2O kg?1 through GNP and recorded 2 times more K+ concentration in shoots as compared to 0 mg K2O kg?1 treatment whereas 1.1 times more than the MOP treated soil at 5th harvesting stage. Selected plant physiological parameters namely electrical conductivity of plant cell, height, leaf area and nitrate reductase activity were also recorded maximum at 200 mg K2O kg?1 GNP treated soil. Overall, glauconite nano-particle could supply K throughout the growth period and enhanced biomass yield of maize plant without showing any K deficiency symptom.  相似文献   

12.
This research was carried out to determine the effects of potassium [0, 40, 80, 120 kg potassium oxide (K2O) ha?1] and magnesium (0, 20, 40, 60 kg magnesium oxide (MgO) ha?1) applied into soil separately and together on the grain yield and yield components of sunflower for oil grown in two farmer fields in the semi-arid Central Anatolia in 2009 and 2010. The experiments were set as factorial experiment design in randomized blocks and 4 replicates. Potassium and Mg-fertilizers were used in the single time into base in the sowing. According to the results, K application in the increasing doses increased yield components more than that of Mg. Together giving of the K and Mg in certain combinations took the yield components to maximum levels. The highest grain yields were obtained by the K40Mg40 in the first year (7313 kg ha?1) and by the Mg60 in the second year (6510 kg ha?1).  相似文献   

13.
Ustochrept soil was collected from a major potato-growing area in Pakistan for a potassium (K) adsorption isotherm experiment. Adsorption data were fitted to Freundlich and Langmuir adsorption models. Results showed that the Freundlich model (R2?=?0.96**) fit the data better than did the Langmuir model. Fertilizer rates were calculated based on the Freundlich model and targeted solution K levels at 0, 3, 6, 9, 12, 15, 18, 21, 24, and 27 mg K L?1. A field experiment was then conducted on the soil to assess the effect of various soil solution K levels (0–27 mg L?1, with K fertilizer rates at 0, 24, 49, 75, 101, 128, 155, 182, 210, and 237 kg ha?1), on tuber yield and quality along with 300 kg N and 250 kg P2O5 ha?1 as basal doses. Yield response models (linear plus plateau, quadratic, square root, quadratic plus plateau, and exponential) were used to calculate the optimal fertilizer rate for potato crop. Linear plus plateau model fit the data with less bias than the other models. There was a significant effect of K use on the yield and quality of potatoes. Potassium fertilizer application at 130 kg K ha?1, which is equivalent to a soil solution level of 12 mg K L?1, maximized the tuber yield of potato. However, for the improvement in tuber dry matter, reducing sugars, protein contents, and starch contents, the soil solution K level required was as high as14.62 mg L?1 (157 kg ha?1). Even greater rate of K, 17.74 mg L?1 (190 kg ha?1), was needed to maximize vitamin C content in potato.  相似文献   

14.
In a field study, potassium (K) applied as muriate of potash (MOP) significantly reduced methane (CH4) emission from a flooded alluvial soil planted to rice. Cumulative emission was highest in control plots (125.34 kg CH4 ha−1), while the lowest emission was recorded in field plots receiving 30 kg K ha−1 (63.81 kg CH4 ha−1), with a 49% reduction in CH4 emission. Potassium application prevented a drop in the redox potential and reduced the contents of active reducing substances and Fe2+ content in the rhizosphere soil. Potassium amendment also inhibited methanogenic bacteria and stimulated methanotrophic bacterial population. Results suggest that, apart form producing higher plant biomass (both above- and underground) and grain yield, K amendment can effectively reduce CH4 emission from flooded soil and could be developed into an effective mitigation option, especially in K-deficient soils.  相似文献   

15.
A study was conducted to assess fertilizer effect on pearl millet–wheat yield and plant-soil nutrients with the following treatments: T1, control; T2, 100% nitrogen (N); T3, 100% nitrogen and phosphorus (NP); T4, 100% nitrogen, phosphorus and potassium (NPK); T5, 100% NPK + zinc sulfate (ZnSO4) at 25 kg ha?1; T6, 100% NPK + farmyard manure (FYM) at 10 t ha?1; T7, 100% NPK+ verimcompost (VC) at 2.5 tha?1; T8, 100% NPK + sulfur (S) at 25 kg ha?1; T9, FYM at 10 t ha?1; T10, VC at 2.5 t ha?1; T11, 100% NPK + FYM at 10 t ha?1 + 25 kg S ha?1 + ZnSO4 at 25 kg ha?1; and T12, 150% NPK treatments. Treatments differed significantly in influencing soil-plant nutrients and grain and straw yields of both crops. Grain yield had significant correlation with soil-plant N, P, K, S, and zinc (Zn) nutrients. The study indicated superiority of T11 for attaining maximum pearl millet grain yield (2885 kg ha?1) and straw yield (7185 kg ha?1); amounts of N (48.9 kg ha?1), P (8.8 kg ha?1), K (26.3 kg ha?1), S (20.6 kg ha?1), and Zn (0.09 kg ha?1) taken up; and amounts of soil N (187.7 kg ha?1), P (13.7 kg ha?1), K (242.5 kg ha?1), S (10.1 kg ha?1), and Zn (0.70 kg ha?1). It was superior for wheat with grain yield (5215 kg ha?1) and straw yield (7220 kg ha?1); amounts of N (120.7 kg ha?1), P (13.8 kg ha?1), K (30 kg ha?1), S (14.6 kg ha?1), and Zn (0.18 kg ha?1) taken up; and maintaining soil N (185.7 kg ha?1), P (14.5 kg ha?1), K (250.5 kg ha?1), S (10.6 kg ha?1), and Zn (0.73 kg ha?1). Based on the study, 100% NPK + FYM at 10 tha?1 + Zn at 25 kg ha?1 + S at 25 kg ha?1 could be recommended for attaining maximum returns of pearl millet–wheat under semi-arid Inceptisols.  相似文献   

16.
ABSTRACT

Experiments were carried out with the objectives to reduce the yield gap of plant and subsequent ratoon crops, evaluate juice quality, as well as soil properties. A 3-year field experiment was utilized to assess the use of organic materials and inorganic fertilizers on plant and subsequent ratoon crops. The organic materials included press mud, farmyard manure (FYM), and green manure (GM) of Sunhemp (Crotalaria juncea); the fertilizers were urea, triple superphosphate (TSP), muriate of potash (MOP), gypsum, and zinc sulphate. Farm yard manure was applied at a rate of 15 t ha?1 accompanied with a chemical fertilizer (N178P53K54S26Zn2.6kg ha?1), which produced yield of 108.4, 96.8, and 73.5 t ha?1 in plant cane, first, and second ratoon crops, respectively. Cane yields in the first were recorded in plant cane first and second ratoon crops, respectively. Cane yields in the first and second ratoon crops were 89.3 and 67.8% of plant crop, respectively. Juice quality parameters viz., Brix, pol and purity percent progressively increased in ratoons crops as compared to corresponding plant cane. The organic carbon, total N, and available P, K, &; S contents of soils increased slightly due to incorporation of organic materials. The result of the study revealed that 25% reduction of inorganic fertilizer with FYM or press mud at 15 t ha?1 in plant cane and addition of 50% more N with same amount of fertilizer suggested for plant cane showed better yield and improved juice quality in first and second ratoon crops of sugarcane.  相似文献   

17.
ABSTRACT

Potassium (K) is closely associated to the improvement of sugarcane quality, acting in the conversion of reducing sugar (RS) to recoverable sugars (TRS). The present study aimed to evaluate the effect of different levels of K-fertilization on the yield and technological quality of sugarcane ratoons grown under edaphoclimatic conditions in the Brazilian central region. The experiment was carried out using the sugarcane variety CTC-4, in a Distrofic Latosols, medium texture (270 g clay kg?1). The study was arranged in a randomized complete block design, with five treatments (0; 50; 100; 150 and 200 kg K2O ha?1), and five replicates. Potassium content in soil and plant, biometric variables, stalk yield and the technological quality at harvest were evaluated. The 200 kg ha?1 dose increased the K content in 160, 156, 56 and 3% in 0–0.20 and 0.20–0.40 m layers at 180 and 360 days after budding (DAB), respectively, promoting greater absorption of the nutrient by plants (X ? = 15.22 g kg?1). The higher potassium absorption reflected in yield gains, with an increasing of 7.9%, compared to the control treatment, yielding 100.37 t ha?1. However, soil K fertilization did not affect the technological quality of the sugarcane ratoon.

Abbreviations: K: potassium; RS: reducing sugars; TRS: recoverable sugars; DAB: days after budding; SB: Sum of Bases; CEC: Cation Exchange Capacity; V: Saturation Base; Kcl: potassium chloride; AWC: Available water capacity; PC: Pol percent in sugarcane; Brix: total soluble solids; dRYL: Dystrophic Red Yellow Latosol; eRYA: Eutrophic Red Yellow Argisol.  相似文献   

18.
To study the influence of potassium (K) fertilizer rate on soil test K values, crop yield, and K-leaching in sandy soils, four long-term fertilizer experiments (0–60–120–180 kg K ha?1 a?1) were initiated in 1988 in northern Germany on farmers fields. Clay content of the plow layer was about 4%, and organic matter between 2% and 5%. Plant available soil K was estimated with the double lactate (DL) method. Small grain cereals (rye and barley) did not respond to K fertilization in the 7-year period even though the soil test value of the K-0 plots decreased from ca. 90 to ca. 30 mg KDL kg?1 within 3 years. This value remained almost constant thereafter. Crop removal (including straw) of 75 kg K ha?1 a?1 was therefore apparently supplied from nonexchangeable K fractions. Compared to the optimum, no K application reduced the yield of potato by up to 21%, and that of white sugar yield up to 10%. Maximum potato yield was obtained by annually applying 60 kg K ha?1 which resulted in a test value of 60 mg KDL kg?1 soil. Maximum potato yield was also obtained at 40 mg KDL kg?1 soil, however, with a single application of 200 kg K ha?1. Similar results were obtained with sugar beet. This indicates that for maximum yield, even for K demanding crops, it is not necessary to maintain KDL values above 40 mg K kg?1 soil throughout the entire crop rotation. Soil test values increased roughly proportional to the K fertilizer level. About 120 kg fertilizer K ha?1 a?1, markedly more than crop K removal, was required to maintain the initial KDL of 90 mg kg?1. The K concentration of the soil solution in the top soil measured after harvest was increased exponentially by K fertilizer level and so was K leaching from the plow layer into the rooted subsoil. The leached quantity increased from 22 kg K ha?1 a?1 in the plot without K application to 42.79 and 133 kg Kha?1 a?1 in plots supplied with 60, 120 and 180 kg K ha?1 a?1 respectively. Soil test values around 100 mg KDL kg?1 on sandy soils, as often found in the plow layer of farmers fields, lead to K leaching below the root zone that may exceed the critical K concentration of 12 mg K T?1 for drinking water.  相似文献   

19.
Five levels of water stress cycle (control flooded, control saturated, 5, 10, and 15 days of irrigation interval) and three potassium fertilization levels [80 kg, 120 kg, and kg 160 dipotassium oxide (K2O) ha?1] were exposed to investigate the influence of potassium fertilizer for minimizing water stress effect and maximizing productivity of rice. Different phyto-physiological parameters as well as uptake of major nutrient elements [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe)] were examined. It was observed that rice yield, harvest index, and other physiological parameters reduces with increasing duration of water stress while application of additional potassium fertilizer has progressive impact on those parameters. From our observation, 10 days of watering cycle with potassium fertilization at 120 kg K2O ha?1 produces highest grain yield and harvest index. Uptake of major nutrient elements was also enhanced by potassium fertilizer. Therefore, it can be stated that additional potassium fertilizer application could be useful to mitigate water stress effect in rice.  相似文献   

20.
A 2-year field trial was conducted in processing grade potato cv. Kufri Chipsona-3. The treatments comprised recommended dose of fertilizer (RDF) (200:150:150 N:P2O5:K2O kg ha?1) with or without boron (B) application (soil and foliar). The results revealed that B fertilization significantly increased tuber number and yield. Three sprays of 0.1% boric acid (at 40, 50 and 60 days after planting) produced the maximum number and yield of tubers and enhanced B uptake in potato tuber, haulm as well as in total plant accounting 85.8, 182.0 and 169.8% more than control, respectively. The same treatment came up with greatest net return and benefit: cost ratio. B fertilization exerted significant influence on available N and B status of post-harvest soil, while the effect was non-significant on available P and K. Results suggest that right dose and method of B application is vital for optimizing tuber yield and B-use efficiency for processing grade potato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号