首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

The effectiveness of nitrogen (N)+ zinc (Zn) soil and foliar fertilizer applications on growth, yield, and quality of apple (Malus domestic Borkh ‘Golden Delicious’) fruit was studied in the Zanjan province, Iran. There were eight treatments 1) control (no fertilizer), 2) soil applied N, 3) soil applied Zn, 4) soil applied N+Zn, 5) foliar applied N, 6) foliar applied Zn, 7) foliar applied N+Zn and 8) combined soil and foliar applied N+Zn. The N source was urea [CO(NH2)2, 46% N] applied at 276 N tree? 1 yr?1 and the Zn source was zinc sulfate (ZnSO4,7H20, 23% Zn) applied at 110 g Zn tree? 1 yr? 1. The soil treatments of N and Zn, were applied every two weeks during June through August (total of 6 times/year) in a 1 m radius around the tree trunk (drip line of trees). The foliar solutions of N (10 g l? 1 urea) and Zn [8 g l? 1 zinc sulfate (ZnSO4)] were sprayed at the rate of 10 L tree? 1 every two weeks at the same times as described for soil applications. The highest yield (49 kg tree? 1), and the heaviest fruits (202 g) were obtained in the soil and foliar combination of N+Zn treatment. The lowest yield (35 kg tree? 1), and the smallest fruits (175 g) were recorded in the control. Nitrogen, and to a lesser extent Zn, foliar application resulted in decreasing fruit quality (caused russeting, and lower soluble solid), but increasing N leaf and fruit concentrations (2.4% DW and 563 mg kg? 1, respectively). There were significant differences among yield and leaf mineral nutrient concentration in different treatments. But there was no significant difference between fruit mineral nutrient concentration (except N). Ratio of N/calcium (Ca), potassium (K)/Ca, and [magnesium (Mg)+K]/Ca in fruits were found suitable for fruit quality prediction. Combining the zinc sulfate with urea in the foliar applications increased the concentration of Zn from 0.7 to 1.5 mg per kg of apple tissue. Leaf N concentration varied during growth season. Foliar applied nutrient can be more efficient than soil applied, but a combination of soil and foliar applications is recommended for apple tree nutrient management.  相似文献   

2.
ABSTRACT

Zinc (Zn) deficiency is the most prevalent nutritional disorder in citrus orchards world over. The management strategy of Zn deficiency today is still governed by the efficacy of two conventionally used methods of Zn supply to plants via soil or foliar fertilization. A field experiment with 12-yr-old ‘Nagpur’ mandarin (Citrus reticulata Blanco) orchard was, therefore, carried out during 2004–07 comparing soil application versus foliar application of Zn, each at three levels viz., 100, 200, and 300 g tree?1 with constant doses of N (600 g tree?1), P (200 g tree?1), K (300 g tree?1), and Fe(60 g tree?1) on Haplustert soil type with reference to response on flowering intensity, fruit set, tree volume, fruit yield, changes in soil fertility/leaf nutrient status, fruit quality, and transformation of native soil Zn fractions. Soil application of Zn at all the three levels, produced significantly higher increase in tree volume over foliar application on equivalent rates viz., T1 (2.53 m3) vs. T4 (2.06 m3) and T2(4.30 m3) vs. T5 (2.23 m3). The yield-determining parameters like flowering and fruit set intensity (no. m?1 shoot length) were, respectively, much higher with soil applied (135.74 and 21.90) than foliar applied Zn (31.20 and 11.6). These observations set the favorable conditions required for yield response, e.g., all the three treatments involving soil application of Zn, T1 (32.1 kg tree?1), T2 (52.6 kg tree?1), and T3 (51.8 kg tree?1) were correspondingly superior over T4 (22.5 kg tree?1), T5 (34.3 kg tree?1), and T6 (42.1 kg tree?1) as foliar application treatments. All the three major fruit quality parameters (juice, acidity, and TSS) were likewise more influenced by soil application than foliar application of Zn. Improvements in soil Zn fractions (mg kg?1) viz., exchangeable Zn (0.25–0.60), complex-Zn (2.71 to 4.86), organically bound Zn (0.86 to 2.0), and Zn-bound to carbonates and acid soluble minerals (2.56–4.96) were observed in response to Zn fertilization with treatments T1–T3. On the other hand, foliar applied Zn treatments (T4–T6) produced no such changes in any of the soil Zn fractions.  相似文献   

3.
During the cultivation period of 2005–2007, a project was carried out in the region of Eirinoupolis, prefecture of Imathia, Macedonia, northern Greece. The study investigated the application of boron (B) timing (flowering, fruit set, fruit growth) and method (soil and foliage) on the vegetative growth, fruit yield and quality, and nutritional status of the cling-stone peach variety Andross. The cultivar was grafted onto an 8-year-old rootstock GF 677. The results showed that the greatest marketable yield (135 kg tree–1) was achieved in peach trees where B was applied on soil during the flowering stage in combination with a balanced nitrogen–phosphorus–potassium (NPK) basal application. Boron concentration in fruits of that treatment was increased in both cultivation years compared to most of the applied treatments. Foliar application of B at flowering, fruit set, and fruit growth, primarily in combination with foliar calcium (Ca) application, showed fruits to be less affected by cracking and Monilinia over all treatments. However, foliar application of Ca did not significantly promote leaf or fruit Ca concentration.  相似文献   

4.
ABSTRACT

Three field experiments at three sites in east Zhejiang Province were conducted to determine the influence of applications of boron (B) on growth, yield, and quality of the red bayberry trees (Myrica rubra Sieb. et Zuca) with a manure species of “Buqizhong” in Linhai city. Ground B application or foliar B spraying significantly improved length and incidence rates of spring and summer shoots and increased fruit set rates, which resulted in the increases in fruit yield (13.7–17.5% for ground B application or 13.2–27.3% for foliar B spraying) and in improvement of fruit quality. The optimum yields were recorded with the treatments of ground B application of 40 g tree?1 of borax or foliar B spraying of 2.0 g L?1 of borax. Spring shoot incidents for the treatment of ground application of 50 g borax tree?1 every year during the experiment (4B50) were significantly higher than that for the treatment of ground application of 50 g borax tree?1 only in the first year of the experiment (B50), but the yield difference between them was not significant at P = 0.05. The increased yield effect of ground B application could last for 3 years. Boron application of red bayberry trees can be carried out by foliar-spraying 2.0 g borax L?1 every year or ground application of 50 g borax tree?1 every 3 years. The results of this study showed that application B could significantly improve the growth and increased fruit yield and quality of the red bayberry trees not exhibiting any vegetative symptoms of B deficiency.  相似文献   

5.
ABSTRACT

The objective of the experiment was to examine the effect of postharvest sprays of boron (B) and urea on apple tree yield and fruit quality. The study was conducted during 2002–2003 at a commercial orchard in central Poland on mature ‘Jonagold’ apple trees/M.26 planted on a sandy loam soil with low B status. All experimental trees received soil-applied nitrogen (N) at a rate of 50 kg ha?1 at bud break. The following spray treatments were performed: (1) postharvest B spray three to four weeks before leaf abscission at a rate of 1.2 kg ha?1; (2) postharvest urea-N spray at the same time as B spraying at a rate of 18.4 kg ha?1; and (3) combined B spray with urea at the same time and at the same rates as in the combination of treatments (1) and (2). Trees not sprayed with B and urea served as a control. The results showed that all spray treatments damaged leaves, but only postharvest urea spray and combined B spray with urea caused defoliation. Postharvest B spray with/without urea improved flower B status, fruit set, and tree yield. However, the efficiency of combined B spray with urea in improving reproductive growth was lower than that of foliar B application without the addition of urea. Postharvest sprays of B and urea had no effect o n blushing, flesh firmness, or soluble solids concentration of apple fruit. These results indicated that under B-deficiency conditions, postharvest B sprays are successful in improving reproductive growth and should be recommended without the addition of urea. It is suggested that combined B sprays with urea may be applied in the autumn to apple trees with limited soil B and N availability.  相似文献   

6.
Apparent utilization of zinc (Zn) and potassium (K) fertilizers was examined in rice (Oryza sativa L.)-wheat (Triticum aestivum L.) using combinations of no K; soil applied K levels and no Zn; soil and foliar applied Zn. Application of 33.2 kg K ha?1 in rice and 24.9 kg K ha?1 in wheat along with foliar spray of 2 kg Zn ha?1 at 30 and 60 days gave the highest mean grain yields. Foliar application of zinc increased Zn concentration in flag leaves, grain, and straw of rice and wheat and K concentration in flag leaves of rice and straw of wheat significantly. Potassium application increased Zn concentration in rice grain and straw and K concentration in wheat straw significantly. Zinc and K increased the uptake of each other in grain; straw and total uptake by both crops significantly. Zinc fertilizer enhanced the utilization of soil K. Potassium fertilizer enhanced the utilization of applied Zn.  相似文献   

7.
An experiment was conducted to assess the zinc (Zn) availability to wheat in alkaline soils during Rabi 2009–2010. Wheat seedlings in pots having 2 kg alkaline sandy soil per pot were treated with 5, 10 and 15 kg Zn ha?1 as soil and with 0.5 and 1.0% zinc sulfate (ZnSO4) as foliar application. Results showed that Zn increasing levels in soil helped in phosphorus uptake up to boot stage but its conversion to grain portion lacked in Zn treated plants. Potassium (K) uptake also increased up to 6.24% in boot stage with treatment of 10 kg Zn ha?1 + 1.0% ZnSO4 foliar spray. Zinc (Zn) concentration increased in plant tissues with the increasing level of Zn application but this disturbed the phosphorus (P)-Zn interaction and, thus, both of the nutrients were found in lesser quantities in grains compared to the control. Despite of the apparent sufficient Zn level in soil (1.95 mg kg?1), improvement in growth and yield parameters with Zn application indicate that the soil was Zn deplete in terms of plant available Zn. The above findings suggest that the figure Zn sufficiency in alkaline soil (1.0 mg kg?1) should be revised in accordance to the nature and type of soils. Furthermore, foliar application of Zn up to 1.0% progressively increased yield but not significantly; and it was recommended that higher concentrations might be used to confirm foliar application of Zn as a successful strategy for increasing plant zinc levels.  相似文献   

8.
ABSTRACT

The objective of the experiment was to examine the effects of soil and foliar applications of boron (B) on tart cherry (Prunus cerasus L.) tree vigor, yield, and fruit quality. The study was conducted during 2003–2004 on mature ‘Schattenmorelle’ tart cherry trees grown at a commercial orchard in central Poland on coarse-textured soil with low B content. Trees were supplied with B as foliar sprays or via soil application. Foliar B sprays were performed: (1) in the spring, at the white bud stage, when 5%–10% of flowers were at full bloom, and 5 d after petal fall, at a rate of 0.2 kg B ha?1 per each spray treatment; and (2) in the fall, approximately six weeks before the natural leaf fall, at a rate of 0.8 kg B ha?1. Soil B application was made at the bud-break stage at a rate of 2 kg ha?1. Trees untreated with B served as a control. Spring and fall B sprays increased flower B concentrations, but had no effect on summer leaf B status. Leaf B concentrations of trees with B supplied to the soil were higher than those of the control trees. However, soil B application had no influence on flower B level. Vigor and yield of tart cherry trees were not influenced by B fertilization. Also, mean fruit weight and titratable acidity of fruit did not differ among treatments. Fruit of trees with B supplied to the soil had higher soluble solids concentration (SSC) than those of the control plants. In conclusion, high yield of tart cherry can be obtained on soils with water-soluble B concentrations as low as 0.32 mg kg?1. It is also postulated that at low soil-B availability, under conditions of low-light intensity during fruit ripening, soil-B application increases SSC in tart cherry fruit.  相似文献   

9.
The comparative efficacy of organic sources on cropping behavior, nutrient dynamics, physico-chemical and biological properties of soil and fruit quality under rain-fed agroecosystem on “Silver King” nectarines was investigated. Bio-organic nutrients, namely vermi-compost (VC), biofertilizer (BF), farmyard manure (FYM), compost (comp), vermiwash (VW) and cow urine (CU) were evaluated in 11 different treatment combinations. The treatment application of VC at 25 kg tree?1, BF at 40 g tree?1, FYM at 30 kg tree?1, comp at 15 kg tree?1, VW1:10 and CU1:10 significantly improved plant growth and fruit quality characteristics of nectarine trees. This superior combination also enhanced physico-chemical and biological properties of the rhizosphere soil when compared to control as conventional chemical fertilizer application nitrogen, phosphorus and potassium (NPK) fertilizers. Different treatments of bio-organic sources changed pH of the soil to neutral. Available macronutrient contents of soil (viz. N, P, and K) increased by 57.8%, 27.7%, and 16.4%, respectively. Microbial biomass of soil fungi, total bacteria, actinobacteria, and arbuscular mycorrhizal fungi improved 66.0%, 73.8%, 133.3% and 350.0%, respectively, over control. Considerably, a higher amount of leaf macronutrients, N (3.53%), P (0.23%), and K (3.2%), was also recorded over control.  相似文献   

10.
Abstract

The present study investigated how foliar zinc (Zn) application affects seedling growth and Zn concentration of rice grown in a Zn-deficient calcareous soil with different soil Zn treatments. Seeds were sown in soil with five rates of Zn (0, 0.02, 0.1, 0.5 and 5.0?mg kg?1 soil) with and without foliar application of 0.5% ZnSO4. Seedlings were harvested at 35?days and separated into (i) the youngest leaves, (ii) the remaining shoot parts and (iii) roots. In soil with no Zn supply, shoot and root dry weight of the rice seedlings were significantly increased by foliar and soil Zn treatments. Plant growth was not clearly increased in low soil Zn treatments, while at each soil Zn treatment, foliar Zn application promoted growth of plants. Plants with adequate Zn supply had the highest Zn concentrations in the youngest leaf. Foliar Zn spray improved Zn concentration of the new growth formed after foliar spraying which shows that Zn is phloem mobile and moved from treated leaves into youngest new leaves. The results indicate clearly in rice seedlings that shoot growth shows more responsive to low Zn than the root growth. The results obtained in the present study are of great interest for proper rice growth in Zn-deficient calcareous soils but needs to be confirmed in other rice genotypes.  相似文献   

11.
The study was carried out between 2008 and 2010 on 8-year-old pomegranate (Punica granatum L.) trees cultivar ‘Kandhari Kabuli.’ The potential efficiency of bio-organics used along with chemical fertilizers on cropping behavior, quality attributes, nutrient availability, physico-chemical, and biological properties of soil were investigated. Bioorganic nutrient sources, namely, vermicompost (VC), biofertilizers (BF), farm yard manure (FYM), and green manure (GM), along with chemical fertilizers was evaluated in 13 different treatment combinations. Conjoint treatment application of VC at 20 kg tree?1, BF at 80 g tree?1, FYM at 20 kg tree?1, GM as sun hemp (Crotalaria juncea L.) along with 75% of the recommended dose of nitrogen–phosphorus–potassium (N–P–K) chemical fertilizers significantly resulted in maximum fruit set (52.03%) and fruit yield (34.02 kg tree?1). All of the fruit quality characteristics were also improved significantly when compared to nitrogen–phosphorus–potassium (N–P–K) chemical fertilizers. This superior combination also enhanced physical-chemical and biological properties of the rhizosphere soil. Microbial biomass of in terms of Pseudomonas, total culturable soil fungi, Azotobacter chroococcum, actinobacteria, and arbuscular mycorrhizal (AM) fungi improved 385.57, 60.26, 134.19, 168.02, and 39.87%, respectively, over control. This combination also resulted in considerable greater concentration of leaf macro-and micronutrients: N (2.63%), P (0.25%), K (1.57%), iron (Fe; 197.87 mg kg?1), copper (Cu; 14.65 mg kg?1), zinc (Zn; 59.36 mg kg?1), and manganese (Mn; 200.45 mg kg?1).  相似文献   

12.
Re-application of zinc (Zn) sulfate for corn (Zea mays L.) production in rotation of wheat-corn has varied effects on yield of crops grown in Zn deficient soils. Therefore, this study was done as split plots in a complete randomized block design (CRBD) where the main plots were control with and without Zn application in wheat (Triticum aestivum L.) production. Sub-plots were of control, without Zn fertilizer, base application of 75 kg per hectare (kg Zn ha?1), 25% and 50% less than base application and as foliar spray in combination with the 4 soil Zn treatments for corn production. Effect of previous Zn application on grain Zn concentration of corn was significant (P < 0.01). Zinc concentrations in treatments of without previous Zn (nil Zn) application and with Zn application were 28.1 and 31.8 mg kg?1, respectively. Soil application of 75 kg ha?1 and foliar application of Zn sulfate gave the highest yield (8853 kg ha?1) showed an increase of 25 percent in compared with nil-Zn. Although re-application of Zn has small effect on yield, but resulted in was the highest grain concentration.  相似文献   

13.
Citrus, especially K innow (Citrus deliciosa × Citrus nobilis), fruit yield and quality in Pakistan is not competitive with that of other countries which could be mainly attributed to the lack of good nutrient management for citrus orchards. The yield losses in this fruit crop occur mainly due to heavy fruit dropping. Experiments to overcome these problems were conducted at four different sites one each in Faisalabad, Toba Tek Singh, Jhang and Sargodha districts of Punjab, Pakistan. The soil and leaf chemical analysis showed severe deficiency of Zn and our pervious results have shown that soil amendment with potassium (K) at 75 K2O kg ha?1 improved the citrus fruit yield and quality at all selected sites. In the present experiments, effect of foliar application of Zn and K alone or in combination was studied on nutrient uptake, fruit yield, fruit dropping and juice quality. The fruit trees were pretreated with a selected K level of sulfate of potash (SOP) or muriate of potash (MOP), i.e., 75 kg K2O ha?1 along with recommended nitrogen (N) and phosphorus (P) doses. Zinc [Zn, 1% zinc sulfate (ZnSO4) solution], K [1% potassium sulfate (K2SO4) solution] and Zn + K (solution containing 0.5% each of ZnSO4 and K2SO4) were sprayed at the onset of spring and flush of leaves or flowers, fruit formation and at color initiation on fruit. Overall, application of Zn, K or Zn + K was effective in improving the nutrient uptake, yield and quality parameters of citrus fruit at all sites. Fruit dropping was also reduced by the foliar spray of Zn, K or Zn + K but the most promising results were recorded with foliar spray containing both Zn and K.  相似文献   

14.
Abstract

The aim of this work was to assess how potassium (K) and nitrogen (N) fertilization might affect the variation of leaf and fruit nutrient concentrations in carob tree (Ceratonia siliqua L.) under low precipitation. A field study was conducted in 1997, 1998, and 1999 in a calcareous soil. Four fertilization treatments were tested: no fertilizer (C), 0.8 kg N tree?1 (N treatment), 0.83 kg K tree?1 (K treatment), and 0.80 kg N tree?1 plus 0.83 kg K tree?1 (NK treatment). During the hydrological cycle 1998/1999, only 250 mm of rain were recorded. Because of this, from 1998 to 1999 a decrease in the concentrations of mobile nutrients N, phosphorus (P), and K and an increase in calcium (Ca), iron (Fe), and manganese (Mn) were observed in leaves. The application of N led to higher leaf N concentration compared with other treatments. This response allowed the establishment of a linear model that relates soil plant analysis development (SPAD) readings with leaf N concentrations (r2=0.55; P<0.05). Compared with leaves, fruits showed similar amounts of N and P; less Ca, Mg, Fe, and Mn; and high concentrations of K. Fertilization did not change considerably the mineral composition of fruits, and because of large variation among trees, yield was similar for all treatments.  相似文献   

15.
The influence of foliar application of 1% urea and four rates of urea (100, 200, 300 and 400 g tree?1) as soil application (deep fertilizer placement) were studied on leaf nutrients concentrations, yield and fruit quality of ‘Malas e Torsh e Saveh’ pomegranate (Punica granatum L.) during 2010 and 2011 growing seasons. Trees that received 300 and 400 g urea as soil application showed positive significant response on fruit yield, average fruit weight, aril weight percent of fruit, 100 arils weight, fruit diameter and TSS. Foliar application of urea had also significant effects on average fruit weight, aril weight percent of fruit and 100 arils weight. Nitrogen concentration increased linearly in leaves with the increase in rate of urea-applied. According to results, deep soil application of urea under the conditions of this study was more effective on pomegranate fruit yield and quality characters than foliar application of urea.  相似文献   

16.
ABSTRACT

Zinc (Zn) and iron (Fe) deficiency-related health problems in humans may be solved by improving their concentration in edible grains. The study, conducted in 2015–16 and 2016–17, investigated the effects of soil and foliar application of Zn and foliar application of urea on grain Zn and Fe accumulation of chickpea grains. Soil application of ZnSO4 @ 25 kg ha?1 + foliar spray of ZnSO4 @ 0.5% at flowering and pod formation stages resulted in the highest Zn (45.06 & 44.69 mg Zn kg?1 grain in the first and second year of study) and Fe (59.74 & 62.88 mg Fe kg?1 grain) content. Urea application @ 2% at flowering and pod formation stages also resulted in the highest grain Zn (41.12 & 40.26 mg Zn kg?1 grain) and Fe (58.95 & 61.95 mg Fe kg?1 grain) content. Grain yield and protein content were significantly increased over control with these treatments. As compared to the sole application of Zn, the combined use of Zn and urea improved the grain Zn and Fe contents. Zinc and urea can be applied to improve Zn and Fe content in chickpea grains and, therefore, can help in ameliorating malnutrition in burgeoning human population.  相似文献   

17.
The aim of the study was to examine effects of postharvest sprays of nitrogen (N), boron (B), and zinc (Zn) on reproductive response of sweet cherry (Prunus avium L.) trees, fruit quality and plant nutrition. The experiment was conducted during 2007–2009 in central Poland on mature ‘Burlat’ sweet cherry trees/F12, grown on a coarse-textured soil with low level of organic matter, and optimal soil reaction. Soil status of phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), iron (Fe), manganese (Mn), Zn and copper (Cu) was optimal, whereas B – low. Sweet cherry trees were sprayed with boric acid-B, ethylenediaminetetraacetic acid (EDTA)-Zn, and urea-N at 30–40 d prior to initiation of leaf fall according to following schema: i) spray of N at a rate of 23 kg ha?1; ii) spray of B and Zn at a dose of 1.1 kg ha?1 and 0.5 kg ha?1, respectively; and iii) spray of N, B and Zn at the same rates as in the above spray combinations. The trees sprayed with water served as the control. The results showed that fall spray treatments had no influence on cold damage of flower buds, plant N status and soluble solids concentration in fruit. Postharvest spray of N and combined spray of N, B and Zn injured leaves in the fall but did not cause defoliation. Sprays of B and Zn with or without N increased status of Zn and B in fall leaves, and B in flowers and midsummer leaves. Those sprays also improved fruit set and yield. In one out of two years of the study, fall sprays of N with or without B and Zn decreased mean fruit weight. The above results indicate that only leaf-applied B in the fall improved reproductive response of sweet cherry trees. It is concluded that under conditions of B shortage in a soil and/or plant tissues, postharvest B sprays can be recommended in sweet cherry orchards to improve reproductive growth of the trees.  相似文献   

18.
ABSTRACT

The aim of the study was to examine response of mature phosphorus (P) deficient apple (Malus domestica Borkh.) trees to phosphorus fertilization and liming. The experiment was carried out during 2003–2005 in a commercial orchard in Central Poland on ‘Jonagold’ apple trees/M.26 planted in 1996 on a coarse-textured soil with low both pH (4.6) and organic matter (1.2%). Calcium-lactate soluble phosphorus concentration in the soil was within an optimal range despite appearance of leaf phosphorus deficiency symptoms. Soil and foliar applications of phosphorus, and soil liming were applied. Soil phosphorus fertilization was made in the first year of the experimental at a rate of 100 kg P per ha as triple superphosphate. Foliar sprays of a soluble compound containing organic phosphorus were performed 5 times per season at 2-week intervals, starting 4 weeks after full bloom. Soil liming was applied in the fall 2002 at a rate of 1100 kg Ca ha?1 as hydrated lime. Additional combination as soil phosphorus fertilization plus liming was also applied. Plots unsupplied with phosphorus and lime served as a control. The results showed that liming and liming plus soil P application increased soil pH, and phosphatase activity in the soil, and improved phosphorus nutrition, tree vigor, yield, fruit color, and firmness after storage; effect of these treatments was not found only in the first year of the study. In all years foliar phosphorus sprays improved phosphorus nutrition of apple trees, and fruit color and firmness after storage. In 2 out of 3 years foliar phosphorus application increased yield. The vegetative and reproductive responses of ‘Jonagold’ apple trees did not depend on soil phosphorus fertilization. It was concluded that maintaining an optimal pH of soils for apple trees limits the incidence of orchard phosphorus deficiency and that foliar phosphorus sprays should be applied in phosphorus-deficient apple orchards to improve yield, and fruit appearance and storability.  相似文献   

19.
Abstract

Long‐term no‐tillage has profound effects on soil properties which can affect the availability of plant nutrient elements. The objectives were to study the effects of tillage and lime treatments on soil pH and extractable soil micronutrients where poultry litter was used as a nitrogen (N) source. Surface soil samples were taken in the spring and fall for two years from a long‐term tillage experiment that had been in place for nine years. There were two tillage treatments [conventional (CT) and no‐tillage (NT)] and six lime/ gypsum treatments (control, 8,960 kg gypsum ha‐1 every fourth year, 4,480 kg lime ha‐1 every fourth year, and three treatments of 8,960 kg lime ha‐1 in a four‐year period divided by application times into 1, 2, and 4 treatments per year). Poultry litter was applied each year of the two‐year experiment at a rate of 8.96 Mg ha‐1 on a dry weight basis. The crop was corn (Zea maize L.). Soil samples were analyzed for pH and Mehlich‐1 zinc (Zn), manganese (Mn), and copper (Cu). Soil pH was higher for NT than CT and was higher in the spring than in the fall. Lime rates resulted in soil pH increases, but showed less difference for CT than NT. The three 8,960 kg ha‐1 per four yr treatments caused an interaction in that for CT the pH increased more for 2,240 kg ha‐1each year than for 8,960 kg ha‐1 every fourth year and the opposite was true for NT. Extractable Zn, Mn, and Cu all responded to this interaction being lower for the higher pH plots. Extractable Zn was higher for NT possibly due to high Zn from the poultry litter and non‐incorporation for NT. Extractable Cu was lower for NT as expected from the soil pH, whereas extractable Mn was not affected by tillage. Extractable Zn and Cu both increased over time due to inputs from the poultry litter. Neither extractable Zn nor Mn responded to increasing lime rates, however Cu decreased with increasing lime rate. Extractable Cu was influenced mainly by soil pH differences due to tillage and lime. Extractable Zn was influenced much more by tillage and from inputs by the poultry litter and not as much by pH differences. Extractable Mn was the least responsive to tillage and lime treatments of the three micronutrients studied.  相似文献   

20.
Abstract

Efficient nutrient and water use are two important considerations to obtain good harvests of wheat. This necessitates the development of an effective nutrient management technique that not only increases yield, but simultaneously can save nutrient and water use. In this context, a field experiment was conducted at Indian Agricultural Research Institute, New Delhi, India to evaluate the residual effect of sesbania and rice bean (in-situ), subabul (ex-situ) green manuring and Zinc (Zn) fertilization, using chelated Zn-ethylenediaminetetraacetic acid (Zn-EDTA) on nutrient use, yields and water productivity of wheat under rice–wheat cropping system. Among residual effects of green manure crops and Zn fertilization, sesbania and foliar spray of 0.5% chelated Zn-EDTA at 20, 40, 60 and 80 days after sowing (DAS) recorded significantly higher nutrient content and uptake and yields than other green manure crops and Zn treatments. Residual effect of sesbania saved about 46.5?×?103 and 30.5?×?103 L irrigation water per tonne of wheat over subabul and rice bean, respectively. Foliar spray of 0.5% chelated Zn-EDTA at 20, 40, 60 and 80 DAS saved about 55.5?×?103, 47?×?103 and 13?×?103 L irrigation water per tonne wheat over residual effect of 5?kg Zn ha?1 through chelated Zn-EDTA as soil application, 2.5?kg Zn ha?1 through chelated Zn-EDTA as soil application + 1 foliar spray of 0.5% chelated Zn-EDTA at flowering and foliar spray of 0.5% chelated Zn-EDTA at active tillering?+?flowering?+?grain filling, respectively. Correlation analysis showed positive correlation between Zn uptake and grain yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号