首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
为解决大蒜机械化收获时损伤率与损失率较高的问题,结合大蒜物理特性和种植模式,该研究设计了一种双行手扶式大蒜联合收获机,主要由挖掘装置,矫正装置,夹持装置,切割装置,收集装置等组成,可一次完成大蒜的挖掘,姿态矫正,夹持输送,茎根切割,低损收集等作业工序。为提高大蒜收获作业质量,采用Box-Behnken中心组合试验方法,以前进速度、挖掘深度、链条距离为试验因素,以损伤率和损失率为评价指标,进行参数优化试验。建立各影响因素与指标之间的回归数学模型,分析各因素对响应值的交互影响,获得最优参数组合为:前进速度0.51 m/s、挖掘深度97.2 mm、链条距离7.6 mm,对应的损伤率、损失率分别为0.65%、1.28%,对优化结果进行验证试验,试验结果表明在最优参数组合下,损伤率为0.63%、损失率为1.25%,各评价指标与预测值均很接近。研究结果可为大蒜联合收获机进一步完善结构设计和工作参数优化提供参考。  相似文献   

2.
定量铺放自走式大葱联合收获机研制   总被引:3,自引:3,他引:0  
为了提高大葱的机械化收获水平,该文结合大葱种植模式和农艺制度,设计了一种自走式大葱联合收获机。该机能够一次完成大葱的挖掘、抖土、喂入、夹持输送、二次去土清杂、收集、成堆铺放作业,主要由挖掘抖土装置、柔性夹持输送装置、收集卸料装置等关键部件组成。通过作业过程的理论分析和计算,确定了各关键部件参数。运用Box-Behnken中心组合试验方法,以整机前进速度、挖掘铲水平倾角、抖土频率、气缸伸缩周期作为试验因素,以大葱含杂率和损伤率为评价指标,开展了四因素三水平正交试验。通过Design-Export 8.0.6.1数据分析软件,建立各试验因素与评价指标的数学回归模型,分析各试验因素对大葱含杂率和损伤率的影响,并对试验因素进行参数优化。试验结果表明:影响大葱含杂率的各因素显著性顺序为整机前进速度>抖土频率>挖掘铲水平倾角>气缸伸缩周期,影响大葱损伤率的各因素显著性顺序为挖掘铲水平倾角>抖土频率>气缸伸缩周期>整机前进速度;最优工作参数组合为整机前进速度0.7 m/s,挖掘铲水平倾角35°,抖土频率4.3 Hz,气缸伸缩周期2.5 s,此时大葱含杂率的模型预测值为3.00%、损伤率为1.66%,田间试验的大葱含杂率为3.14%、损伤率为1.74%,与模型预测值的相对误差均小于5%。研究结果可为自走式大葱联合收获的结构完善和作业性能优化提供参考。  相似文献   

3.
大蒜果秧分离试验装置的设计与测试   总被引:5,自引:5,他引:0  
为提高大蒜联合收获果秧分离作业性能,解决果秧分离过程中留茎长、伤损率高等问题,该文研制了一种大蒜联合收获果秧分离试验装置,该试验装置由夹持输送装置、排序-对齐装置、切割装置、机架等组成,能够完成大蒜的夹持、排序、对齐、切割分离等工序的作业。并进行了大蒜果秧分离试验台作业参数优选试验,得出最优组合参数为夹持高度190 mm,夹持角度79o,主夹持链速度1.06 m/s,此时大蒜的平均留茎长度为37.56 mm,伤损率为2.33%,满足大蒜果秧分离作业质量的要求。该研究可为大蒜联合收获果秧分离机构的研发提供参考。  相似文献   

4.
大蒜联合收获切根试验台设计与试验   总被引:3,自引:1,他引:2  
为了提高大蒜联合收获切根作业性能,解决大蒜切根过程中根系一次清除率低、蒜头损伤率高等问题,该文设计了一种大蒜联合收获切根试验台,该试验台主要由毛刷辊、前旋转切刀、夹持输送机构、排序-对齐机构、浮动切根机构等组成,可一次性完成蒜株的根系清理和预切、蒜株排序和对齐、根系浮动切割等作业工序。该文确定了切根装置关键结构参数和作业参数,并对影响切根作业质量的主要因素开展了试验研究。试验结果表明,影响切根作业质量的主次作用因素为夹持输送速度、夹持角度、浮动切刀转速,较优参数组合方案为夹持输送速度1.05 m/s、夹持角度79°、浮动切刀转速2 200 r/min(切割线速度为17.3 m/s),此时根系去净率为96.1%,蒜头伤损率为2.39%,满足大蒜切根作业质量要求。该文研究结果可为大蒜联合收获切根装置的设计提供参考。  相似文献   

5.
4DL-5A型蚕豆联合收割机关键部件设计与优化   总被引:2,自引:2,他引:0       下载免费PDF全文
针对国内蚕豆机械化收获作业中存在的含杂多、损失大、破碎高等难题,该研究对集切割、输送、脱粒、清选、收集于一体的蚕豆联合收割机的关键部件进行设计。首先对4DL-5A型蚕豆联合收割机关键部件进行设计与分析,确定割台装置、脱粒装置、清选装置主要工作参数,然后采用二次正交旋转组合试验方法设计试验并用Design-Expert进行数据处理,以含杂率、损失率、破碎率作为响应指标,重点研究4DL-5A型蚕豆联合收割机收获作业中前进速度、滚筒转速和风机转速对响应指标的影响规律,建立含杂率、损失率和破碎率的回归数学模型,通过响应曲面方法分析各因素交互作用影响,对回归模型进行多目标优化,得出4DL-5A型蚕豆联合收割机作业参数的最优组合为:前进速度0.57 m/s,滚筒转速400.45 r/min,风机转速1265.16 r/min,此时,含杂率3.23 %,损失率3.00 %,破碎率2.72 %。对优化参数进行田间试验验证,测得含杂率3.49 %,损失率2.87 %,破碎率2.83 %,与优化值相对误差分别为8.05 %、4.33 %、4.04 %,结果较吻合。该研究结果可为蚕豆联合收割机设计、结构改进和作业参数调整提供参考。  相似文献   

6.
4UZL-1型甘薯联合收获机薯块交接输送机构设计   总被引:1,自引:1,他引:0  
为了解决4UZL-1型甘薯联合收获机作业过程中损失率大、伤薯率高等问题,该研究在分析4UZL-1型甘薯联合收获机整机结构的基础上开展薯块交接输送机构设计。以薯块交接输送过程中伤薯率和损失率为主要评价指标,在单因素试验基础上运用Box-Benhnken试验方法,以挖掘输送机构角度、刮板链输送角度、挖掘输送机构速度、刮板链输送速度为试验因素,对4UZL-1型甘薯联合收获机薯块交接输送机构工作参数进行四因素三水平试验研究,建立了评价指标对各因素的多元回归模型,分析了各因素对作业质量的影响,并得到了最优结构和作业参数。试验结果表明:各因素对损失率从大到小的影响顺序为刮板链输送角度、挖掘输送机构速度、刮板链输送速度、挖掘输送机构角度;各因素对伤薯率从大到小的影响顺序为挖掘输送机构速度、挖掘输送机构角度、刮板链输送速度、刮板链输送角度;当机器前进速度为1 m/s,挖掘输送机构角度为20°、刮板链输送角度为68°、挖掘输送机构速度为1.2 m/s、刮板链输送速度0.67 m/s时,薯块损失率为1.12%、损伤率为0.94%,与预测值相比,误差分别为3.4%和1.1%。研究结果可为甘薯联合收获机的结构完善和作业参数优化提供参考。  相似文献   

7.
甘薯茎尖收获机研制   总被引:4,自引:4,他引:0  
为填补中国菜用甘薯茎尖机械化收获技术空白,该文研制了菜用甘薯茎尖收获机。在分析整机机械结构基础上详细介绍了菜用甘薯茎尖收获机工作原理,开展了切割装置、拨禾装置、输送装置和收集装置等关键部件设计。为了提高茎尖完整率,降低漏收率和留茬高度,提升菜用甘薯茎尖收获机收获作业质量,在单因素试验基础上利用Box-Benhnken的中心组合试验方法对菜用甘薯茎尖收获机的工作参数进行试验研究,以前进速度、拨禾轮转速以及往复割刀线速度进行三因素三水平二次回归正交试验设计。建立了响应面模型,研究并分析了各因素对于机器作业质量影响,最后实现对工作参数的优化。试验结果显示:各因素对茎尖完整率影响显著顺序为拨禾轮转速往复割刀线速度前进速度;各因素对漏收率影响显著顺序为前进速度往复割刀线速度拨禾轮转速;各因素对留茬高度影响显著顺序为拨禾轮转速前进速度往复割刀线速度;田间试验数据显示:最优工作参数组合是前进速度为0.38 m/s,拨禾轮转速为26 r/min,往复割刀线速度为0.60 m/s,此时茎尖完整率为97.10%,漏收率为12.11%,留茬高度为62.09 mm,与理论优化值对比误差控制在了5%范围内。相较于单个人工采摘效率仅为0.001 hm2/h,本机作业效率一般为0.1 hm2/h,作业效果较人工有明显提升,较好地满足菜用甘薯机械化收获要求。研究结果可为今后中国菜用甘薯茎尖收获装备发展提供了有力支撑和理论基础。  相似文献   

8.
圆盘切割式蓖麻采摘装置设计与试验   总被引:3,自引:3,他引:0  
针对现有蓖麻收获装备采摘损失率较高、对低矮植株收获适应性差的问题,该研究结合蓖麻植株的生理特性,设计一种圆盘切割式蓖麻采摘装置。该装置配套于水稻或玉米联合收获机,通过双圆盘刀对蓖麻植株进行切割分离,再经过收割机的清选完成蓖麻收获。通过对装置关键部件的受力及作业原理分析,设计其关键结构参数。并以割茬高度差和采摘损失率为评价指标,以刀盘结构、刀盘转速、前进速度为试验因素进行三因素三水平的正交试验,在保证割茬高度差的前提下,以采摘损失率为主要指标,利用综合平衡法确定较优参数组合。田间验证试验表明:刀盘结构类型为波浪形,刀盘转速为600 r/min,前进速度为1.1 m/s时,平均割茬高度差为0.85 mm、平均采摘损失率为3.13%,切割过程平稳、损失率低,对种植农艺适应性好,满足蓖麻收获的田间作业要求。该研究可为蓖麻收获装备的研究和设计提供参考。  相似文献   

9.
旱区全膜双垄沟播履带式玉米联合收获机的设计   总被引:1,自引:1,他引:0  
针对中国北方旱地全膜双垄沟播玉米种植方式,解决玉米收获过程中的摘穗啃伤、田间作业垄上行走稳定性差及玉米茎秆回收再利用问题,设计了一种履带式玉米穗茎兼收型联合收获机,以及配套的立辊式摘穗割台和茎秆切碎抛送装置。设计的非对称立辊式对行收割结构,可适应玉米全膜双垄沟播收获作业要求,实现了穗茎兼收,提高了秸秆利用率,并总结了立式割台“间隙夹持-倾斜喂入-滑动摘穗”的立式摘穗收获机理。利用立式摘穗试验样机,以机具前进速度、主动链轮转速、摘穗辊直径、切碎刀轴转速为影响因素,果穗损失率、茎秆切碎合格率为评价指标,进行了二次旋转正交组合试验。通过Design-expert 8.0.6数据分析软件,建立各影响因素与指标的数学回归模型,分析了显著因素与评价指标之间的关系,优化试验参数,确定最优参数组合:在机具前进速度3.8m/s、主动链轮转速1150r/min、摘穗辊直径82mm、切碎刀轴转速1650r/min时,果穗损失率为2.61%、茎秆切碎合格率为92.81%。优化模型与田间验证性试验得到的果穗损失率均值2.8%、茎秆切碎合格率均值93.1%相接近,满足旱区全膜双垄沟播玉米收获要求。  相似文献   

10.
单垄单行甘薯联合收获机薯秧分离机构设计与参数优化   总被引:4,自引:3,他引:1  
针对中国甘薯联合收获机作业薯秧分离机构分离不彻底、甘薯损伤数量多、茎秆缠绕机具部件等亟待解决的问题,该文基于自走式甘薯联合收获机设计了一种结构简单、摘净率高、伤薯率低以及防茎秆缠绕的薯秧分离机构。根据设计计算确定了分离机构结构参数,其中挖掘输送装置总长度为2050mm,水平倾角为24°;主动轴和摘辊半径分别为18、36 mm;输送装置下层杆条与摘辊间距为27 mm,最上端与摘辊之间距离为251 mm。经过理论分析明确了甘薯的运动特性及其影响作业质量的主要工作参数机具前进速度、主动轴转速、输送装置水平倾角。通过薯秧分离试验发现在甘薯收获期薯秧分离力与其含水率变化规律符合二次函数关系,进一步开展田间试验借助Box-BenhnKen的中心组合设计方法选取主要工作参数对摘净率和损伤率的影响并作试验设计,以此为基础开展三因素三水平一次回归正交试验。在DESIGNEXPERT中使用响应曲面法分析各因素对摘净率和损伤率影响效应并对回归模型的参数进行优化。当田间试验取最优参数组合机具前进速度1.2 m/s、主动轴转速895 r/min、输送装置水平倾角24°时,摘净率和损伤率分别为98.14%、2.76%,分离效果满足甘薯收获要求。该研究也为其他土下果实联合收获作业果秧分离机构提供思路。  相似文献   

11.
针对目前油葵机械化收获存在缺少专用机械设备、籽粒损失率和破损率均较高、收获设备工作性能不可靠等问题,该研究设计了油葵联合收获机拨禾板式割台装置并介绍其结构与工作原理,建立拨禾齿的运动模型,分析拨禾机构运动特性并获取拨禾齿端点的运动轨迹。通过对拨禾齿端点运动轨迹仿真,分析拨禾板转速、机具前进速度与拨禾板圆周数量之间的变化关系;利用MATLAB软件编写程序,仿真获取相邻两拨禾齿端点的运动轨迹曲线,解决拨禾齿运动参数不合理、籽粒碰撞损失较高的难题。割台性能试验结果表明,当割台倾斜角度25°、绞龙转速150r/min、拨禾板与导板距离170 mm时,油葵花盘损失率为2.04%。进一步通过田间油葵收获正交试验和参数优化,分析油葵收获机前进速度、拨禾板转速、茎秆留茬高度的不同组合对油葵籽粒损失率及破损率的影响,利用Design-Expert获取最优参数组合。结果表明,当油葵收获机前进速度1.2 m/s、拨禾板转速240 r/min、茎秆留茬高度570 mm时,油葵籽粒损失率与破损率分别为1.90%和0.65%。研究结果可为提高油葵联合收获机的作业性能、油葵收获机的结构设计和参数优化提供参考。  相似文献   

12.
大蒜果秧分离机构参数优化及试验   总被引:3,自引:14,他引:3       下载免费PDF全文
为了提高大蒜果秧分离机构的作业质量,降低蒜头的平均留茎长度、伤损率、提高切痕合格率,该文运用Box-Benhnken的中心组合试验设计理论,在构建的大蒜果秧分离试验台上,对主夹持链输送速度、蒜株夹持角度、蒜株夹持高度、夹持株数等影响其作业质量的4个因素进行四因素三水平的响应面试验。建立了响应面数学模型,分析了各影响因素对作业质量的影响,同时,对各影响因素进行了综合优化。结果表明试验因素对果秧分离质量有较大影响,综合优化结果为主夹持链输送速度1.05 m/s,蒜株夹持角度77°,蒜株夹持高度220 mm,夹持株数2株,此时平均留茎长度为36.9 mm、伤损率为2.23%、切痕合格率为98.29%。研究结果可为大蒜果秧分离机构的结构完善设计和作业参数优化提供依据。  相似文献   

13.
中国马铃薯种植面积、总产量均居世界首位,机械化收获是马铃薯机械化生产中关键环节。目前,国内马铃薯机械化收获率较低,马铃薯收获装备是农机领域的短板弱项。该文分析了当前我国马铃薯机械化收获的发展现状、特点及制约因素,重点阐述了国内外马铃薯杀秧、减阻降耗挖掘、防堵限深控制、自动对垄作业、高效分离、低损收获、多功能行走底盘、人机交互等关键技术研究进展,分析对比中国和欧美、日韩等国家在马铃薯机械化收获装备上的差异,指出国内马铃薯机械化收获技术上的不足。针对国内马铃薯种植范围广、种植模式多样、丘陵山区小块地种植面积占比大的特点,提出分段收获和联合收获是国内马铃薯机械化收获的趋势,并对低损高效分离装置、卡脖子技术突破、农机农艺深度融合及政策导向进行展望,以期为中国马铃薯机械化收获技术进一步发展与研究提供借鉴。  相似文献   

14.
仿生手掰穗玉米收获装置结构及运行参数优化   总被引:4,自引:4,他引:0  
针对板式摘穗含杂率高,辊式摘穗果穗啃伤、籽粒损失严重等问题,该文提出了一种仿生掰穗手式玉米收获机构。通过对该机构及关键部件的理论分析,确定整机结构参数,掰穗手数目1~3个、掰穗手速度0.95~2.85 m/s、夹持导轨行进速度0.83~1.67 m/s;利用搭建的仿生掰穗手式玉米收获台架试验装置,以掰穗手数目、掰穗手速度、夹持导轨行进速度作为试验因素对籽粒损失进行三因素三水平二次回归正交试验;通过Design-Expert 8.0.6数据分析软件,建立各因素与指标的响应面数学模型,分析了各因素与评价指标之间的关系,同时,对影响因素进行了综合优化。试验结果表明:各因素对籽粒损失率均有显著影响(P0.05),影响主次顺序为掰穗手速度掰穗手数目夹持导轨行进速度;得到各试验因素最优参数组合为掰穗手数目2个,掰穗手速度2.15 m/s,夹持导轨行进速度1.14 m/s,对应的籽粒损失率为0.031%。根据该试验参数组合,进行台架试验验证,可以得到籽粒损失率为0.04%,评价指标与理论优化值的相对误差仅为0.009%,远低于国家标准(2%),优化预测模型可靠。该研究实现了玉米果穗的低损收获,验证了模仿人工掰穗的可能性,为低损伤玉米收获的研发提供了参考。  相似文献   

15.
4U1Z型振动式马铃薯挖掘机的设计与试验   总被引:2,自引:7,他引:2  
为解决南方、西南一二季混作区马铃薯机械化收获问题,针对该地区复杂耕地条件和农艺要求,研究设计了4U1Z型振动式马铃薯挖掘机。阐述了该机器主要结构、工作原理和关键部件的结构设计,对挖掘铲和振动分离筛机构进行运动学分析,理论与仿真相结合,分析整机的稳定性。以作业速度、振动分离筛倾角和振动频率为影响因素,以明薯率、可靠性、伤薯率为评价指标进行田间试验,对影响收获性能的参数进行分析,获得相关最佳参数组合,并与国家行业标准相比较进行验证。结果表明:挖掘铲、振动分离筛相反方向的振动抵消了部分惯性力,提高了机器的稳定性;作业速度为0.8 m/s,振动分离筛倾角为5°,振动频率为10Hz时,试验指标明薯率、可靠性、伤薯率分别为94.89%、93.41%、1.22%,此时挖掘作业效果及机器运行状态较好,收获性能指标满足标准要求。该研究为丘陵山区等小地块马铃薯收获问题提供了解决方案,同时为南方、西南山区间套作及丘陵山地等复杂耕地条件的小型马铃薯挖掘机的研究提供参考。  相似文献   

16.
4CL-1型自走式大葱联合收获机的研制   总被引:2,自引:2,他引:0  
针对大葱收获劳动力短缺和有效收获机具匮乏的问题,该文结合国内大葱种植的农艺要求和种植模式,设计了一种自走式大葱联合收获机。该机由行走系统、传动系统、组合挖掘装置、链杆清送装置、除土装置、夹送装置、扭铺装置等组成,可一次性完成大葱的挖掘、清土、升运、铺放等作业。整机传动系统分为机械传动部分和液压传动部分。机械传动部分实现收获机行走系统及挖掘收获系统的动力协调,液压传动实现挖掘收获系统的位置调整、夹送装置的转速控制、扭铺装置的转速控制;旋松刀组与V型挖掘铲组成的挖掘装置,实现对土壤的分层松碎及挖掘;杆式输送链完成大葱输送及其黏附土壤的初次清理及抬升,清土辊完成大葱根部残余土壤的二次清除;柔性夹持输送带与清土装置配合,完成大葱的有效喂入及柔性夹持;扭送机构及铺放机构实现大葱由竖直向水平方向的改变,并完成大葱的有序铺放。田间试验结果表明,试验条件下的收净率为99.50%,损伤率为1.40%,损失率为0.70%,生产效率为0.049 hm2/h,约为人工收获的12倍。该机工作性能稳定可靠、作业效果好,可为大葱收获技术及装备的研发提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号