首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The impact of incorporated residues of winter oilseed rape, peas and oats on soil N availability and the risk of N leaching during autumn and winter in a northern climate is not clear. Therefore, the aim was to determine the influence of incorporated residues on net N mineralization–immobilization in topsoil during autumn and winter. A field experiment carried out at three sites in South Sweden provided soil samples and crop residues for an interpretive, in situ incubation study. Topsoil corresponding to a 7‐cm soil layer from each site used for the field experiment was incubated with and without aboveground residues under natural temperature conditions at a single field location. On the basis of the incubation study, we concluded that in the field experiment, soil N dynamics during autumn and winter trials were the combined outcome of net N mineralization in the topsoil fraction not affected by aboveground residues and net N immobilization in the fraction in contact with aboveground crop residues. In the absence of aboveground residues, the net rate of N mineralization during early autumn was similar after both oilseed rape and peas, but values were larger than that after oats. After incorporation, aboveground residues of winter oilseed rape and peas made no contribution to soil mineral N in late autumn and thus did not increase the risk of N losses during winter. In fact, the residues of oilseed rape, peas and oats reduced the amount of soil mineral N by 7–14 kg N/ha during the main drainage period (October–March). Therefore, incorporating chopped aboveground residues should be encouraged before sowing winter wheat after peas and winter oilseed rape.  相似文献   

2.
Summary The influence of the water regime on mineralization and immobilization of N and P was investigated in a calcareous sandy loam incubated with cattle, poultry and green manure (Sesbania aculeata), and wheat and rice straw in a pot experiment. At field capacity, N released from poultry and green manure during the first 4 weeks of incubation was 45% and 59%, respectively. During the next 12 weeks, only around 40% more organic N was mineralized from both sources. In contrast, addition of cattle manure resulted in a period of net N immobilization lasting up to 4 weeks. By the end of 16 weeks of incubation only about 19010 of the added N was mineralized. High rates of N immobilization were observed during the first 4 weeks of incubation of rice or wheat straw with C/N ratios of 78 and 85, respectively. The N mineralization kinetics of poultry and green manure and of untreated soil showed an initial fast reaction followed by a slow release of inorganic N and could be described by two simultaneous first-order reactions. Under waterlogged conditions mineralized N was lost simultaneously in significant amounts possibly through nitrification — denitrification reactions. At field capacity, the largest amount of Olsen P was accumulated in the soil amended with poultry manure, followed by cattle manure. Results from other treatments did not differ much from those of the untreated soil. About 15% of P from poultry manure was mineralized during the 1st week of incubation. In contrast to the field-capacity moisture regime, marked increases in Olsen P in the soils amended with green manure and crop residues were observed under water-logged conditions.  相似文献   

3.
Information regarding the interaction between liming agents and crop residues on soil acidity amelioration is limited. A laboratory incubation study was undertaken to investigate the combined application of alkaline slag (AS, the major component is CaO) and crop residues with different C/N ratios and ash alkalinity content. Incorporation of amendments was effective in reducing soil exchangeable acidity and Al saturation and increasing exchangeable base cations (P < 0.05), but the effect of AS on soil pH adjustment was reduced when added with a high amount of residue with a low C/N ratio. Initial increases in soil pH were attributed to the release of alkalinity from the combined amendments and the mineralization of organic nitrogen (N). During subsequent incubation, the soil pH decreased because of nitrification. Crop residues with a high C/N ratio increased N immobilization and reduced net nitrification, resulting in a slight pH decrease. Crop residues with a low C/N ratio resulted in a sharp decrease in soil pH when applied with low levels of AS because of stimulated soil nitrification, whereas high AS had no consistent effect on net nitrification. Hence, compared to the control (pH = 4.21), a large increase in soil pH occurred, especially when peanut straw was applied at 10 g/kg (pH = 5.16). It is suggested that crop residues with high C/N ratio and also combined with a liming agent such as AS are preferred to ameliorate soil acidity. The liming effect of AS is likely to be negated if added in combination with residues with high N contents.  相似文献   

4.
We have studied the possibilities of manipulating N mineralization from high N vegetable crop residues by the addition of organic materials, with the aim of initially immobilizing the mineralized residue N with a view to stimulating remineralization at a later stage. Residues of leek (Allium porrum) were incubated with soil, alone and in combination with straw, two types of green waste compost (with contrasting C:N ratios) and tannic acid. Evolution of mineral N was monitored by destructive sampling. After 15 weeks, molasses was added to part of the samples in each treatment, and incubation continued for another 12 weeks. All materials added during the first incubation stage, except the low C:N compost, resulted in significant immobilization of the residue N. The immobilization with the high C:N compost (41.4 mg N kg−1 soil) was significantly larger than with tannic acid and straw (both immobilized about 26 mg N kg−1 soil). In the straw treatment, remineralization started in the first stage of incubation from day 50 onwards. The addition of molasses caused a strong and significant remineralization in the second stage (equivalent to 73% of the N initially immobilized) in the treatment with the high C:N ratio compost. In the case of tannic acid, there was no consistent effect on mineralization from addition of molasses. This was attributed to the fact that the immobilization observed was due to chemical rather than biological fixation of the residue N. A number of non-toxic organic wastes could be considered for use in mediating release of immobilized N from high N crop residue materials in an attempt to synchronize residue N availability with crop N demand.  相似文献   

5.
Abstract

In the West Central Great Plains of the United States, no‐till management has allowed for increased cropping intensity under dryland conditions. This, in turn, has affected the carbon (C) and nitrogen (N) mineralization dynamics of these systems. In this region, moisture stress increases from north to south due to an increase in evapotranspiration (ET), resulting in a climatic gradient that affects cropping system management. The objectives of this study were to determine the interaction of cropping system intensification and climatic gradient (ET) on C and N mineralization and to determine if the presence or absence of crop residue on the soil surface affects C and net N mineralization. Two cropping systems, winter wheat‐fallow (WF) (Triticum aestivium L.) and winter wheat‐corn (sorghum)‐millet‐fallow (WCMF) [Zea mays (L.), Sorghum bicolor (L.) Moench, Panicum milaceum (L.)] were studied at three locations across this aforementioned ET gradient. The treatments had been in place for 8 yrs prior to sampling in the study. These results showed that the more intense cropping system (WCMF) had a higher laboratory C mineralization rate at two of the three locations, which the study concluded resulted from larger residue biomass additions and larger quantities of surface residue and soil residue at these locations (Soil residue is defined as recognizable crop residue in the soil that is retained on a 0.6 mm screen). However, no differences in N mineralization occurred. This is most likely due to more N immobilization under WCMF as compared to WF. Presence or absence of crop residue on the surface of undisturbed soil cores during incubation affected potential C and net N mineralization more than either cropping system or location. Soil cores with the surface residue intact mineralized as much as 270% more C than the same soils where the surface crop residue had been removed. In laboratory studies evaluating the relative differences in cropping systems effects on C and N mineralization, the retention of crop residue on the soil surface may more accurately access the cropping system effects.  相似文献   

6.
The immobilization and mineralization of N following plant residue incorporation were studied in a sandy loam soil using15N-labelled field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) straw. Both crop residues caused a net immobilization of soil-derived inorganic N during the complete incubation period of 84 days. The maximum rate of N immobilization was found to 12 and 18 mg soil-derived N g–1 added C after incorporation of pea and barley residues, respectively. After 7 days of incubation, 21% of the pea and 17% of the barley residue N were assimilated by the soil microbial biomass. A comparison of the15N enrichments of the soil organic N and the newly formed biomass N pools indicated that either residue N may have been assimilated directly by the microbial biomass without entering the soil inorganic N pool or the biomass had a higher preference for mineralized ammonium than for soil-derived nitrate already present in the soil. In the barley residue treatment, the microbial biomass N was apparently stabilized to a higher degree than the biomass N in the pea residue treatment, which declined during the incubation period. This was probably due to N-deficiency delaying the decomposition of the barley residue. The net mineralization of residue-derived N was 2% in the barley and 22% in the pea residue treatment after 84 days of incubation. The results demonstrated that even if crop residues have a relative low C/N ratio (15), transient immobilization of soil N in the microbial biomass may contribute to improved conservation of soil N sources.  相似文献   

7.
The immobilization and mineralization of N following plant residue incorporation were studied in a sandy loam soil using15N-labelled field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) straw. Both crop residues caused a net immobilization of soil-derived inorganic N during the complete incubation period of 84 days. The maximum rate of N immobilization was found to 12 and 18 mg soil-derived N g?1 added C after incorporation of pea and barley residues, respectively. After 7 days of incubation, 21% of the pea and 17% of the barley residue N were assimilated by the soil microbial biomass. A comparison of the15N enrichments of the soil organic N and the newly formed biomass N pools indicated that either residue N may have been assimilated directly by the microbial biomass without entering the soil inorganic N pool or the biomass had a higher preference for mineralized ammonium than for soil-derived nitrate already present in the soil. In the barley residue treatment, the microbial biomass N was apparently stabilized to a higher degree than the biomass N in the pea residue treatment, which declined during the incubation period. This was probably due to N-deficiency delaying the decomposition of the barley residue. The net mineralization of residue-derived N was 2% in the barley and 22% in the pea residue treatment after 84 days of incubation. The results demonstrated that even if crop residues have a relative low C/N ratio (15), transient immobilization of soil N in the microbial biomass may contribute to improved conservation of soil N sources.  相似文献   

8.
To evaluate the effect of tillage intensity on the N mineralization pattern of winter wheat residues, sugar beet residues, Italian ryegrass and maize residues undisturbed soil samples were taken from six sites under different tillage management. Site NTK had been managed for 10 years under reduced tillage (RT), whereby the last 4 years the crops were sown using direct seeding (NT). Site RTCSE had been managed for 20 years under reduced tillage (RT) and site RTH for 3 years. For each site under RT a nearby site under conventional tillage (CT) was selected (CTK, CTCSE and CTH). On site NTK and site RTCSE a significantly higher amount of SOC in the 0–10 cm was accumulated compared to the respective CT sites. Between site RTH and site CTH no such significant difference was found. However, the content of microbial biomass C (MB-C) and the β-glucosidase and urease activities were higher on all RT sites compared to the respective CT sites. This indicates that these microbiological and biochemical parameters seem to be very sensitive for alterations in management intensity. After 98 days, more N was immobilized under NTK than under CTK by adding winter wheat residues (expressed as kg ha−1 and as % of total added N). This higher immobilization potential can be explained by a higher microbial activity and a change in microbial population. Under RTCSE and RTH net N immobilization of the winter wheat residues was found, but the pattern was less pronounced than for NTK. However, when expressed as % of total N added, N immobilization of winter wheat residues was higher under CT than under RT, which indicates that high C:N residues when incorporated, decompose more slowly under RT than under CT. Similar results were found comparing the N mineralization pattern of maize residues under RTH and CTH. The residues of sugar beet and Italian ryegrass at site CTH released N more rapidly and to a higher extent, 74.1% and 66.2%, respectively (expressed as % of total N added) than under RTH at the end of the incubation. The slower mineralization of N rich crop residues under RT compared to CT means that there is less potential risk for nitrate leaching to occur, which may result in a higher N efficiency in RT compared to CT.  相似文献   

9.
The joint management of animal manures and plant biomass as straw on agricultural soils may be a viable option for reducing the environmental impacts associated with livestock production and recycling nutrients efficiently. To investigate this option, an incubation in controlled conditions examined how the simultaneous addition of 15N-labeled pig slurry and 13C-labeled wheat straw, either on the soil surface or incorporated into the soil, affected the mineralization of C from the organic materials and the soil N dynamics. Samples from a typic hapludalf were incubated for 95 days at 25°C with eight treatments: unamended soil (S), wheat straw left on the soil surface (Ws), wheat straw incorporated in the soil (Wi), pig slurry on the soil surface (Ps), pig slurry incorporated in the soil (Pi) and three combinations of the two amendments: Pi?+?Ws, Pi?+?Wi, and Ws?+?Ps. Carbon dioxide and 13CO2 emissions and soil N content were measured throughout the incubation. Pig slurry stimulated the decomposition of straw C only when wheat straw and pig slurry were left together on the soil surface. Incorporation of both wheat straw and pig slurry did not modify straw C mineralization when compared to straw incorporation alone but this promoted a higher rate of N immobilization. The results suggest that when pig slurry is used in field under no-till conditions, the best strategy to preserve environmental quality with regard to CO2 emissions would be to apply pig slurry underneath the crop residues.  相似文献   

10.
秸秆还田对土壤氮素转化的影响   总被引:65,自引:9,他引:65  
利用原状土柱田间培养法 ,测定了冬小麦、夏玉米农田土壤氮 (N)素的年净矿化量 ;利用氯仿熏蒸浸提茚三酮反应氮法测定了土壤微生物量氮的数量 ;利用连续流动分析仪测定了土壤表层无机氮的含量。结果表明 ,在冬小麦秸秆覆盖、夏玉米秸秆翻埋的土壤中 ,第 1年土壤氮净矿化量为N 210kg/hm2,第 2年为 179kg/hm2,2年的净矿化量均基本与同期施氮量相当。在秸秆不还田的土壤中 ,第 1年土壤氮净矿化量为N 164kg/hm2,第 2年为248kg/hm2,年际变化较大。翻埋玉米秸秆导致小麦季土壤表层无机氮数量增加 ,引发土壤氮矿化的正激发效应 ;表层覆盖小麦秸秆对玉米季土壤表层无机氮的影响不明显。秸秆还田后 ,每个生育期开始时 ,土壤微生物量氮比不还田土壤的增加 72 %~ 2.34% ,每个生育期结束时增加 34%~ 72%。在实施秸秆还田的最初 2年内 ,土壤微生物量但氮处于动态调整阶段 ,尚未达到新的稳定状态  相似文献   

11.
Field observations have shown that a substantial portion of peanut leaves abscise in windrows during pod curing, leading to an uneven distribution of leaves and stems when intact residues are spread during harvest. Possible differences in nitrogen (N) mineralization rates between peanut leaf and stem residues may lead to spatial and temporal variability in available N during subsequent crops. The objective of this study was to quantify N mineralization in soil amended with different peanut residue components under simulated conventional and conservation tillage practices. A 252-day microlysimeter incubation was conducted in which peanut leaves, stems and a 1:1 mixture of leaves:stems from three varieties were incorporated or placed on the soil surface to simulate conventional or conservation tillage, respectively. Soils were periodically leached to assess N mineralization compared with a soil-only control. Nitrogen mineralization was only affected by residue component. Averaged over variety and residue placement, soil amended with leaves mineralized 10% more N relative to the control or soil containing stems. It was estimated that leaves supplied 25 kg N ha−1 over 252 days at 0–15 cm soil depth, which would likely be insufficient to induce a yield response by a subsequent crop. This study suggests that uneven distribution of peanut leaf and stem residues following harvest causes only minor spatial and temporal variability in available N during subsequent crop growth. These results support the growing body of evidence indicating that peanut residue N contributions to subsequent crops are negligible in the peanut basin of the south-eastern USA.  相似文献   

12.
有机物料对强酸性茶园土壤的酸度调控研究   总被引:3,自引:1,他引:2  
王磊  汪玉  杨兴伦  张明  蒋新 《土壤》2013,45(3):430-436
通过室内培养的方式,研究了不同添加剂量下,不同C/N与灰化碱含量的有机物料对酸性茶园土壤的改良能力.试验结果表明:有机物料的添加可以有效地减少土壤交换性酸、铝饱和度,增加土壤交换性碱基,但是在调节土壤pH能力上并非一定有效.初始阶段,“灰化碱”的释放与有机氮的矿化提高了土壤的pH,随后pH由于硝化作用出现不同程度的下降.C/N高的作物秸秆(小麦和水稻秸秆)能够有效地抑制硝化,使pH下降幅度较小;而C/N低的作物秸秆(花生秸秆和菜籽饼)促进硝化,使pH大幅度下降.最终土壤pH与其C/N呈正相关性(y=0.00343x+4.14,r=0.977),而与其灰化碱含量无关.并且随着秸秆添加剂量的加大,C/N高的作物秸秆最终调剂pH的能力是显著提高的(P<0.05),而C/N低的作物秸秆最终调剂pH的能力没有显著提高(P<0.05).因此,C/N高的作物秸秆可能更适合土壤酸度的长期调节,与其相关的田间试验需要进一步进行证实.  相似文献   

13.
Interval leaching long‐term water‐logged incubation and interval leaching long‐term aerobic incubation were carried out to study the changes of different soil organic nitrogen (N) forms and their contributions to mineralized N during N‐mineralization process on 10 kinds of farmland soils with markedly different physical and chemical properties on the Loess Plateau. The results showed that the N‐mineralization capability and capacity using the two incubation methods were evidently different. After 217 days, cumulative mineralized N, the decreased amounts of total acid‐hydrolyzable N, acid‐hydrolyzable ammonia N, and acid‐hydrolyzable amino acid N in the water‐logged incubation were about twice those in the aerobic incubation. Soluble organic N leached in the aerobic incubation was four times that in the water‐logged incubation, which implied that organic N in the aerobic incubation mineralized more thoroughly than that in the water‐logged incubation. The correlation analysis of the changes of soil organic N forms with crop N uptake showed that the reduced amount of total acid‐hydrolyzable N in the water‐logged incubation was closely associated with total N uptake by two successive‐season crops (winter wheat and summer maize), and the decreased amounts of total acid‐hydrolyzable N and amino acid N in the aerobic incubation were highly significantly related to the N uptake of both the first season crop (winter wheat) and successive‐season maize. Multiple regression analysis, path analysis, and partial correlation analysis of the changes of soil organic N forms with mineralized N indicated that ammonia N was a main contribution to mineralized N in the water‐logged incubation, whereas both acid‐hydrolyzable amino acid and ammonia N were main contributions to mineralized N in the aerobic incubation. These results suggested that acid‐hydrolyzable ammonia was the primary contribution to mineralized N during N mineralization process with the two incubation methods.  相似文献   

14.
赵伟  梁斌  周建斌 《土壤学报》2015,52(3):587-596
采用盆栽试验和短期矿化培养相结合的方法,研究了施入15N标记氮肥(+N)及其与秸秆配施(+1/2N+1/2S)在3种长期(19年)不同培肥土壤(即:No-F,长期不施肥土壤;NPK,长期施用NPK化肥土壤;MNPK,长期有机无机肥配施土壤)中的残留及其矿化和作物吸收特性。结果表明,第一季小麦收获后,+1/2N+1/2S处理下三供试土壤和+N处理下的NPK和MNPK土壤残留肥料氮(残留15N)中有82.6%~95.1%以有机态存,而+N处理下No-F土壤残留15N有47.7%以矿质态存在。经过28 d矿化培养后,与NPK土壤相比,MNPK土壤氮素净矿化量显著增加,增幅为39%~49%;NPK和MNPK土壤残留肥料氮(残留15N)矿化量为1.23~1.90 mg kg-1,占总残留15N的2.78%~5.53%,均显著高于No-F土壤。与+N处理相比,+1/2N+1/2S处理显著提高了3供试土壤氮素净矿化量,但两施肥处理对NPK和MNPK土壤残留15N矿化量无显著影响。+N处理下No-F土壤残留15N的利用率为20%,显著高于NPK(9%)和MNPK(12%)土壤。两种施肥处理下,MNPK土壤残留15N的利用率均显著高于NPK土壤。短期培养期间土壤氮素矿化量和第二季小麦生育期作物吸氮量呈显著性正相关,而残留15N矿化量和第二季小麦吸收残留15N量间无显著性相关关系。长期有机无机配施可以提高土壤残留肥料氮的矿化量及有效性。  相似文献   

15.
The substitution of the widely practiced crop‐residue burning by residue incorporation in the subtropical zone requires a better understanding of factors determining nutrient mineralization. We examined the effect of three temperature (15°C, 30°C, and 45°C) and two moisture regimes (60% and 90% water‐filled pore space (WFPS)) on the mineralization‐immobilization of N, P, and S from groundnut (Arachis hypogae) and rapeseed (Brassica napus) residues (4 t ha–1) in two soils with contrasting P fertility. Crop‐residue mineralization was differentially affected by incubation temperature, soil aeration status, and residue quality. Only the application of groundnut residues (low C : nutrient ratios) resulted in a positive net N and P mineralization within 30 days of incubation, while net N and P immobilization was observed with rapeseed residues. Highest N and P mineralization and lowest N and P immobilization occurred at 45°C under nearly saturated soil conditions. Especially net P mineralization was significantly higher in nearly saturated than in aerobic soils. In contrast, S mineralization was more from rapeseed than from groundnut residues and higher in aerobic than in nearly saturated soil. The initial soil P content influenced the mineralization of N and P, which was significantly higher in the soil with a high initial P fertility (18 mg P (kg soil)–1) than in the soil with low P status (8 mg P (kg soil)–1). Residue‐S mineralization was not affected by soil P fertility. The findings suggest that climatic conditions (temperature and rainfall‐induced changes in soil aeration status) and residue quality determine N‐ and S‐mineralization rates, while the initial soil P content affects the mineralization of added residue N and P. While the application of high‐quality groundnut residues is likely to improve the N supply to a subsequent summer crop (high temperature) under aerobic and the P supply under anaerobic soil condition, low‐quality residues (rapeseed) may show short‐term benefits only for the S nutrition of a following crop grown in aerobic soil.  相似文献   

16.
Net mineralization of N from a range of shoot and root materials was determined over a period of 6 months following incorporation into a sandy-loam soil under controlled environment conditions. Biochemical “quality” components of the materials showed better correlation with net N mineralization than did gross measures of the respiration and N content of the soil microbial community during decomposition. The quality components controlling net N mineralization changed during decomposition, with water-soluble phenolic content significantly correlated with net N mineralization at early stages, and water-soluble N, followed by cellulose at later stages. C-to-N and total N were correlated with net N mineralization towards the end of the incubation only. Cumulative microbial respiration during the early stages of decomposition was correlated with net N mineralization measured after 2 months, at which time maximum net N mineralization was recorded for most residues. However, there was no relationship between microbial-N and net N mineralization. Biochemical quality factors controlling the C and N content of the residue remaining at the end of the incubation as light fraction organic matter (LFOM) were also investigated. Both C and N content of LFOM derived from the residues were correlated with residue cellulose content, and the chemical characteristics of LFOM were highly correlated with those of the original plant material. Incorporation of low cellulose, high water-soluble N-containing shoot residues resulted in more N becoming mineralized than had been added in the residues, demonstrating that net mineralization of native soil organic matter had occurred. Large amounts of N were lost from the mineral-N pool during the incubation, which could not be accounted for by microbial immobilization.  相似文献   

17.
采用室内培养的方法研究杨-麦、杨-花生等不同复合经营模式下,杨树叶与农作物秸秆混合后对土壤碳、氮矿化及土壤微生物量的影响。结果表明:(1)单一模式中,花生叶处理的有机碳矿化累积量最大,花生茎秆、杨树叶处理次之,小麦秸秆处理最低。混合处理有机碳矿化累积量依次为杨树叶-花生叶>杨树叶-花生茎秆>杨树叶-小麦秸秆,且培养结束时,混合物表现出明显的促进作用;(2)土壤微生物量碳、氮与各残落物氮含量、C/N比存在显著的相关性;(3)杨树叶、小麦秸秆及其混合物处理的土壤矿质态氮含量均低于对照,而添加花生叶、花生茎秆以及它们与杨树叶的混合物使矿质态氮含量高于对照。试验说明杨-麦、杨-花生复合模式均能有效提高土壤微生物的生物量,调节碳的动态及氮的供应,而选择种植含氮量高的农作物更有利于促进残落物分解和养分归还,这对深入研究林-农复合系统的模式筛选、结构优化及可持续经营具有一定的现实意义。  相似文献   

18.
This study investigated the effects of long‐term annual inputs of animal manure and straw on the rate of gross nitrogen (N) mineralization–immobilization turnover (MIT), net N mineralization and potential nitrification, and examined how these N transformation rates affect plant N availability. The experiment was conducted during May–June 2001 in long‐term field experiments in Askov, Denmark, where organic manure and barley straw had been applied annually for 11 and 20 years prior to the year 2000, respectively. Thus, any differences could be attributed to residual effects from the previous years of application. Inputs of straw and organic manure to soil increased soil organic matter (SOM)‐N content in soil in the order: without straw, without manure < without straw, with manure < with straw, without manure < with straw, with manure. The inputs did not change net N mineralization in the soil. There was a distinct but non‐significant trend towards higher gross N mineralization with increasing SOM‐N. Gross N immobilization was enhanced by straw inputs and to a lesser extent by organic manure inputs, while potential nitrification was enhanced by both amendments. The results show that long‐term annual inputs of straw and organic manure can increase MIT rate and potential nitrification rate without influencing net N mineralization rate. MIT and potential nitrification explained 23–31% of the variation in plant N uptake, while net N mineralization rate only explained 1%. Plant N uptake therefore seems to be more influenced by MIT rate and potential nitrification rate than by net mineralization rate, presumably because mineral N in the transition between gross N mineralization and gross N immobilization is available for assimilation by plants.  相似文献   

19.
 Mineralization of N from organic materials added to soil depends on the quality of the substrate as a carbon, energy and nutrient source for the saprophytic microflora. Quality reflects a combination of biochemical and physical attributes. We investigated how biochemical composition interacts with particle size to affect the soil microflora and N dynamics following incorporation of crop residues into soil. Four fresh shoot and root crop residues were cut into coarse and fine particle sizes, and incorporated into sandy-loam soil which was incubated under controlled environment conditions for 6 months. In the case of the highest biochemical quality material, potato shoot (C/N ratio of 10 : 1), particle size had no effect on microbial respiration or net N mineralization. For lower biochemical quality Brussels sprout shoot (C/N ratio of 15 : 1), reducing particle size caused microbial respiration to peak earlier and increased net mineralization of N during the early stages of decomposition, but reduced net N mineralization at later stages. However, for the lowest biochemical quality residues, rye grass roots (C/N ratio of 38 : 1) and straw (C/N ratio of 91 : 1) reducing particle size caused microbial respiration to peak later and increased net immobilization of N. For Brussels sprout shoot, reducing particle size decreased the C content and the C/N ratio of residue-derived light fraction organic matter (LFOM) 2 months following incorporation. However C and N content of LFOM derived from the other materials was not affected by particle size. For materials of all qualities, particle size had little effect on biomass N. We conclude that the impact of particle size on soil microbial activities, and the protection of senescent microbial tissues from microbial attack, is dependant on the biochemical quality of the substrate. Received: 3 July 1998  相似文献   

20.
An incubation experiment was conducted in the laboratory at 25 and 35°C during 56 d to analyze the mineralization patterns and the changes in microbial biomass in water-saturated soils amended with 6 types of organic materials (O.M.) including residues from 4 tropical plants. C and N mineralization in amended and non-amended soils was influenced by the temperature, A significantly positive correlation was observed between C mineralization and the amount of hexoses of the amended O.M. regardless of the period of incubation. A negative relationship between the N mineralized from amended O.M. and C/N ratios and the amounts of cellulose plus hemicellulose of the added O.M. was observed during the period of maximum mineralization on the 49th day at 25°C. The critical C/N ratio value for N mineralization and immobilization was observed in dhaincha (15.7) and cowpea (22.0).

The pattern of changes in microbial biomass C and N was almost similar at both 25 and 35°C. The amount of biomass C and N gradually increased up to a period of 28 to 42 d and thereafter decreased gradually. A significant increase in the amount of biomass C and N was observed in O.M. amended soils over the control. The contribution of rice straw and cowpea to biomass C formation was significantly larger than that of other O.M. at the end of incubation (56 d). In the case of biomass N, the contribution of rice straw was significantly larger than that of other O.M. except for azolla at 25°C and cowpea at 35°C. The significant contribution of rice straw and cowpea to biomass formation suggests that microbial biomass remaining in soil on the 56th day had been influenced by the combination of a larger amount of cellulose plus hemicellulose and higher C/N ratio in plant residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号