首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   8篇
  国内免费   3篇
林业   4篇
农学   2篇
  59篇
综合类   18篇
畜牧兽医   1篇
园艺   4篇
  2024年   1篇
  2023年   3篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   4篇
  2011年   1篇
  2010年   3篇
  2009年   11篇
  2008年   4篇
  2007年   4篇
  2006年   7篇
  2005年   4篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
1.
蚯蚓对污染物的生物富集与环境指示作用   总被引:3,自引:0,他引:3  
蚯蚓在陆地生态系统中具有十分重要的功能,是污染物从土壤到生物,进而向食物链更高营养级转移的重要环节。总结了蚯蚓对土壤污染物进行生物富集的途径:扩散作用和摄食作用;分析了土壤重金属和有机污染物在蚯蚓体内的生物富集规律和蚯蚓对污染胁迫的生理响应,提出利用蚯蚓体内的敏感生理生化指标作为生物标记物对污染土壤进行生态毒理诊断的新思路。  相似文献   
2.
DDTs在土壤中的老化规律及生物有效性   总被引:5,自引:0,他引:5  
用室内模拟培养的方法研究了DDTs在土壤中的老化行为及其在蚯蚓体内的生物富集规律。结果表明。DDTs在土壤中存在老化现象。此类物质在土壤中的可提取态含量随着老化时间延长逐渐降低,并呈现初始老化速率较快,而后老化速率减慢的趋势。在开始的0—30d,其老化的速率较快,o,p’-DDT、p,p’-DDT、o.p’-DDE、p,p’-DDE和p,p’-DDD在土壤中的老化减少量分别是其添加量的53.5%、52.1%、31.4%、36.0%和38.3%。DDTs在蚯蚓体内的生物富集量和生物富集系数也表现出随时间而逐渐降低的趋势,并呈如下规律:p,p'-DDE〉p,p’-DDD〉o,p’-DDE〉o,p'-DDT〉p,p'-DDT。老化虽然可使DDTs的可提取态含量降低。但仍可以在蚯蚓体内有一定的生物富集,潜在的生态风险依然存在。  相似文献   
3.
宋洋  王芳  蒋新 《土壤》2011,43(3):343-349
1,2,4-三氯苯(1,2,4-TCB)的微生物降解机制包括好氧降解、还原脱氯和共代谢。本文简要综述了国内外对1,2,4-TCB微生物降解方面的研究进展,分析了其微生物降解的可行性,讨论了其好氧降解的微生物种类以及降解途径,阐述了厌氧条件下,混合菌群以及纯菌株对1,2,4-TCB还原脱氯的过程,目的是为1,2,4-TCB污染土壤的微生物修复提供依据。  相似文献   
4.
酸沉降下加速土壤酸化的影响因素   总被引:9,自引:0,他引:9  
酸沉降对土壤和水域的酸化影响是土壤环境化学研究前沿的热点问题之一。酸沉降的化学组成对酸性土壤的进一步酸化起着催化剂的作用。在酸雨影响下,SO4^2-,NO3^-,有机阴离子是加速土壤酸化和盐基淋溶损失的主要阴离子,外源H^ 的进入会加速铝离子水解。自然因素与人为因素导致土壤酸化的实际酸化速率差异表明:HCO3^-,RCOO^-在土壤剖面中的淋失状况可反映自然土壤的酸化速率,而SO4^2-和N3^- 溶产生的质子负荷揭示土壤受人为因素影响的酸化速率。通过计算酸沉降的主要化学成分进入土壤前后的质子负荷平衡,与酸中和容量(ANC)相结合,反映酸沉降加速土壤酸化的进程。  相似文献   
5.
抗生素在土壤环境中的迁移转化过程及生态毒理效应已成为各国土壤学、植物学、环境科学和食品科学等领域学者及政府关注的热点。阐明抗生素及其复合抗性污染物在土壤-植物系统中的环境行为及生态毒理学机理,对管控生态环境风险及保障食品安全具有重要的意义。本文综述了近年来国内外关于土壤-植物系统中抗生素的迁移转化规律,抗生素/抗性细菌/抗性基因的生态风险以及复合抗性污染物阻控消减技术的研究进展。本综述可以为土壤-植物系统中抗生素抗性污染风险的管控和消减提供科学支撑。  相似文献   
6.
王涛  余贵芬  王芳  卞永荣  王聪颖  蒋新 《土壤》2010,42(2):280-287
采用批实验研究了菲在单宁酸干扰下形成的不同晶形铝氧化物上的吸附现象,并用不同的吸附等温线方程对吸附平衡数据进行了拟合,重点比较了线性和非线性回归方法估计吸附等温线参数的差异。结果表明:菲在各种晶形的铝氧化物上都有明显的吸附,但并不是完全随着单宁酸含量和结晶度的变化而规律性变化。吸附平衡数据以Langmuir、Redlich-Peterson和Dubinin-Radushkevich吸附等温方程,用不同的回归方法估计的等温线参数值均有显著性差异。线性回归得到的参数有不确定性,表明用线性回归来判断吸附等温线能否对吸附平衡数据进行最优拟合是不可靠的。相反,非线性回归能较好地确定菲在不同晶形铝氧化物上的最佳吸附等温线及相应参数。采用R2和χ2共同检验发现,菲在4种不同结晶度(单宁酸与铝的摩尔比(MR)=0,10-3,10-2,10-1)铝氧化物上的最佳吸附等温线方程并不尽相同,分别为Freundlich,Freundlich,Dubinin-Radushkevich和Freundlich,反映了各种晶形的铝氧化物的表面异质性。修正的Freundlich方程比较不同晶形铝氧化物对菲的相对吸附容量顺序为:MR=10-3MR=10-2MR=0MR=10-1。由此,认为菲在无定形铝氧化物上的吸附是熵驱动的结果。  相似文献   
7.
余贵芬  吴泓涛  蒋新  青长乐 《土壤》2006,38(4):435-440
野外采集广柑树及供其生长的土壤,研究多年生植物对土壤Hg的吸收及与土壤理化性质、腐殖酸结合汞(HS—Hg)的关系。结果表明,在酸性土壤环境中,酸性过强,果树吸收Hg量会更低;果实部分Hg含量与土壤的有机质或腐殖酸含量呈现负相关关系;HS—Hg特别是FA—Hg(富啡酸结合汞)组分是果树吸收、积累Hg的重要来源,其与根Hg的相关系数达到0.700^*-0.759^**,且以表层土壤更能提供有效的HS—Hg。  相似文献   
8.
建立并优化了利用气相色谱-质谱(Gas chromatography-mass spectrometry,GC-MS)检测酰基高丝氨酸内酯(Acyl-homoserine lactones,AHLs)的分析方法。通过优化升温程序,采用选择离子检测(m/z 143),可同时检测7种AHLs(C4、C6、C7、C8、C10、C12和C14),检出限分别为1.50、2.00、1.50、2.00、2.00、2.50和2.50μg l-1,在2.0 mg l-1浓度范围内均呈线性关系(R20.997)。加标回收率实验表明,采用乙酸乙酯萃取,水中7种AHLs的回收率均在54%~97%之间;不同比例的土水体系中,砖红壤和黄棕壤提取液中AHLs的回收率均在56%~108%之间。不同介质中AHLs回收率与其Log P值(P:AHLs在正丁醇和水溶液中的分配比)及水溶解度对数均显著相关,表明采用乙酸乙酯萃取水和土壤提取液中的AHLs时,回收率主要与AHLs的Log P值和水溶解度有关。采用该方法对土壤提取液中AHLs进行测定发现砖红壤和黄棕壤提取液中7种AHLs的浓度分别为3.8~8.7μg l-1和4.2~9.8μg l-1。因此,不仅对于水溶液,土壤提取液等复杂介质中的AHLs也可以采用乙酸乙酯萃取后GC-MS进行分析测定。  相似文献   
9.
梁晶  徐仁扣  蒋新  卞永荣  谭文峰 《土壤》2007,39(6):992-995
对两种可变电荷土壤的研宄表明,土壤对Cu(Ⅱ)、Pb(Ⅱ)和Cd(Ⅱ)的吸附量均随pH的增加而增加,但Cu(Ⅱ)与Pb(Ⅱ)吸附量之间的差值随pH增加而减小,Cu(Ⅱ)和Pb(Ⅱ)与Cd(Ⅱ)吸附量之间的差值随pH增大呈增大趋势.土壤吸附的Cd(Ⅱ)的解吸量随吸附平衡液pH的增加而增加;但Cu(Ⅱ)和Pb(Ⅱ)的解吸量先随pH增加而增加,在某一pH时达最大,随后再逐渐减小.3种重金属离子在可变电荷土壤中吸附和解吸行为的不同特征是pH导致的土壤表面电荷的变化和离子水解程度的变化共同作用的结果.本文的研究结果对可变电荷土壤中重金属的控制和污染土壤的修复具有一定的指导意义.  相似文献   
10.
土壤结合态农药残留生物有效性研究进展   总被引:5,自引:0,他引:5  
对国内外关于结合态农药残留的概念、与土壤的相互作用机理、在土壤中的残留量以及对土壤动物、微生物、植物的有效性研究作了较为全面的综述。综述指出,土壤中农药残留与有机质存在以下几种作用机理:共价键结合、离子键结合、电荷转移复合体、配位体交换、疏水性结合、整合作用以及氢键和范德华力;农药残留与粘土矿物也存在相互作用。与可萃取态残留相比,结合态农药残留对土壤动物、微生物、植物的有效性明显降低;土壤结合态农药残留对植物生长有抑制作用并在植物体内积累,积累量与农药品种、作物类型、利用方式等有关。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号