首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Phosphorus (P) in soil particulate fraction (PF; >53 μm) is suggested to have a significant importance in soil P cycling. However, the effects of continuous fertilization on P-PF and its association with soil organic carbon (SOC) in paddy soils have not been well studied.

Materials and methods

We sampled paddy soils at 0–20 cm from a long-term field experiment (initiated in 1981) conducted under humid subtropical conditions in China, which has five fertilization treatments with equivalent P input (135 kg P2O5?ha?1 year?1) except the control treatment (CK). Changes in total P (Pt), inorganic P (Pi), organic P (Po), and SOC under different fertilization managements were evaluated in the whole soil, in the PF, and in the mineral-associated fraction (MAF; <53 μm).

Results and discussion

Continuous fertilization increased the contents of SOC and P in all soil fractions. Both Po and organic carbon in PF were the most sensitive variables to fertilization, indicating that they constitute a useful tool to detect the effects of management practices. Among the fertilization treatments, organic amendments significantly increased Po-PF contents more than chemical fertilizer applied only (p?<?0.05), although they had equivalent P input. The paddy soil without fertilization showed a more significant decrease in Pi compared with Po. The SOC/Po ratios were significantly lower in fertilization treatments (especially those with manure or straw incorporation) than in CK and decreased from PF to MAF. A significant relationship was found between Po-PF contents and rice P uptake during the growing season.

Conclusions

These results demonstrate that Po-PF may also play a significant role in P cycling of paddy soil, and thus, it would be better to consider Po-PF in soil diagnosis to promote P management of paddy soil, especially for that under long-term organic amendments.
  相似文献   

2.
不同磷供应水平下小麦根系形态及根际过程的变化特征   总被引:16,自引:3,他引:13  
以石麦15和衡观35两个品种小麦为试验材料,应用根袋栽培方式,研究了不同施磷量对小麦根系形态和根际特征的影响。结果表明,与施磷量P2O5 0.1 g/kg相比,高量供磷(P2O5 0.3 g/kg)条件下石麦15地上部生物量和磷累积量增加幅度大于衡观35;但不施磷处理衡观35地上部生物量降低幅度小于石麦15,磷含量和累积量高于石麦15,衡观35耐低磷能力较强。土壤供磷不足时,衡观35总根长中直径0.16 mm细根所占比例高于石麦15,根系平均直径较小;而高磷供应下,石麦15根系中直径0.16 mm细根长度较长,在总根长中所占比例较高。总根长和直径0.16 mm的细根长度与植株地上部磷累积量之间呈显著正相关关系。总根长越长尤其是细根越多,有利于促进植株对磷的吸收。与非根际土壤相比,高磷供应下根际土壤有机磷含量增加,微生物量磷含量降低;而供磷不足时根际土壤碱性磷酸酶活性较高,有机磷含量较低。与施磷量P2O5 0.1 g/kg相比,高量供磷下根际土壤pH值升高、碱性磷酸酶活性下降,不施磷处理根际土壤pH值降低。本研究表明,供磷不足时,小麦根系形态和根际过程均发生适应性变化,而高量供磷条件下,小麦植株根系形态的改变因品种而异。  相似文献   

3.
Abstract

The effect of fractioning organic (Po) and inorganic (Pi) phosphorus components on phosphorus form and availability in long‐term cultivation (1) was studied. The study analyzed a Typic Argiudoll soil under three cropping systems: permanent pasture, long‐term cultivation, and mixed pasture and cultivation use. One soil had been cultivated for at least 50 years and one was cultivated for at least 30 years.

The effects of several modifications of these soils were analyzed. Short‐term modifications were determined in a greenhouse experiment in which two successive crops were grown after an initial fertilizer treatment. Long‐term cultivation induced a loss of P, which was considerably greater than the losses of total C or N. Similarly, decreases in pH, extractable P (2), resin‐extractable P, Na‐bicarbonate and Na‐hydroxide Pi, and Na‐bicarbonate Po indicated a long‐term loss of plant‐available Pi with management practices over time.

Increases in some forms of P were observed. Sodium‐hydroxide Po, an organic P form, did not show a significant trend but appeared to increase with years of cultivation. Resin‐extractable Pi was the only fraction that increased significantly as a result of P fertilization.

The relationship observed between dry weight and P concentration of greenhouse plants with the different organic and inorganic P fractions suggests that both types of determinations may be used to predict crop response to P fertilization.  相似文献   

4.
The phosphorus (P) forms in long-term fertilization determine the fate and transport of P in soil. However, the fate of various pools of organic P of added P in the long-term measured with sequential chemical fractionation is not well-understood. Four soil physical aggregates (>250, 125–250, 63–125 and <63 μm) from 0- to 20-cm depth after 35 years of long-term fertilization treatments including control (CK), nitrogen and phosphorus fertilizer (NP) and NP combined with farmyard manure (NPM) under continuous winter wheat were separated using settling tube apparatus. Results showed that the application of long-term P fertilization had no apparent effects on promoting the mass proportion of soil aggregates except for >250 μm, where the NP and NPM treatments significantly increased the mass proportion by 60% and 70% over CK, respectively. Compared with CK, P fertilizer (NP and NPM) treatments significantly increased organic P (Po) contents in each size aggregate. In particular, mean labile Po increased by 35% and 246%, moderately labile Po by 125% and 161%, nonlabile Po by 105% and 170% and total Po (TPo) by 101% and 178%, respectively, under NP and NPM treatments, respectively. There was a significant correlation between soil organic carbon (SOC) and Po fractions. SOC was exponentially positively correlated with labile Po but linearly positively correlated with moderately labile Po, nonlabile Po and TPo fractions among soil aggregates. A reduced C:Po ratio (<100) in soil aggregates among treatment indicates a large amount of available P accumulated in soils, and soil P loss risk in the study site is still high. Our results show that the Po pool measured by sequential chemical fractionation may represent an important, yet often overlooked, source of P in agriculture ecosystems. According to the result, long-term mineral P fertilizer combined with organic amendments better sustains soil structural stability in large aggregates, contributing more Po availability in the moderately labile P followed by labile P in soil aggregates.  相似文献   

5.
A field rhizosphere study was carried out over a period of 12 months on a 6-year-old silvopastoral trial in New Zealand. The trial comprised radiata pine (Pinus radiata) with lucerne (Medicago sativa) and perennial ryegrass (Lolium perenne) understoreys. The study was initiated because of the unique interrelationships between roots in silvopastoral systems and a paucity of understanding about the processes involved in phosphorus (P) dynamics in temperate silvopastoral systems. Improving our understanding in this area has important implications for nutrient management in silvopastoral systems. Rhizosphere soils were analysed to determine inorganic (Pi) and organic (Po) P fractions, macroporous resin Pi and Po, phosphatase enzyme activity, microbial biomass carbon and pH. Concentrations of labile Pi were consistently greater and Po lower in tree rhizosphere soil compared to the companion understorey, indicating that radiata pine when grown with a productive understorey mineralised Po to a greater extent than either understorey species. Tree rhizosphere soil from under lucerne and lucerne rhizosphere soil contained the lowest concentrations of total Pi and Po compared with tree under ryegrass and ryegrass rhizosphere soils. This was partly attributed to higher levels of phosphatase enzyme activity in the lucerne rhizosphere soils. The results suggest the combination of lucerne with radiata pine may enhance greater utilisation of soil P, although this requires further investigation. Lower levels of labile Po, and higher levels of labile Pi and phosphatase enzyme activity, were determined in tree and understorey lucerne and ryegrass rhizosphere soils in spring compared with autumn. This data confirmed that overall rates of soil organic P mineralisation are greatest in spring.  相似文献   

6.

Background

The excessive use of inorganic P (Pi) in soils is alarming as it is causing numerous environmental problems and may lead to the depletion of rock phosphate reserves earlier than expected. Hence, to limit the over-dependence on Pi, there is the need to investigate organic phosphorus (Po), which is the dominant P form of soil P pool, as an alternate P source for plant growth.

Aim

The present study seeks to investigate organic P use efficiency of eight varieties of faba bean grown symbiotically.

Methods

The plants were grown in pots (6 kg soil) under greenhouse condition with three P source, namely, phytic acid (organic P, Po), KH2PO4 (inorganic P, Pi), and no-P. The P was applied at the rate of 1.79 g kg−1 soil.

Results

The plants grown with Po and Pi produced similar amounts of root, shoot, and total dry matters. Despite producing statistically similar dry matters, P uptake by Pi-fertilized plants was twofold higher than by Po-fertilized plants. Meanwhile, Pi differed significantly from Po in terms of nodulation characteristics such as nodule dry biomass and individual nodule dry biomass. However, Po varied significantly from Pi in P utilization and acquisition efficiencies. Principal component analysis of Pi and Po revealed no significant variation and close association, confirming the nonsignificant differences between the two P treatments. Among the varieties tested, Tiffany tended to accumulate more dry matter, coupled with highest organic P utilization efficiency (0.48 g mg−1) as well as the highest organic P beneficiary factor (80%).

Conclusion

These results provide a solid basis for further comparisons at physiological, biochemical, and molecular levels between Tiffany (Po-efficient) and Fuego (Po-inefficient) varieties, offering deep insights into and making it easier to understand the mechanisms that allow soil Po to be utilized under symbiotic conditions.  相似文献   

7.
【目的】豆科与禾本科间作体系中对磷有效性的影响主要集中在根系分泌物的活化作用,由根际沉淀引起的土壤碳含量与磷酸酶活性变化及其对红壤磷有效性的影响机制尚不清楚。【方法】本研究以间作玉米大豆为研究对象,设置根系完全分隔、尼龙网分隔、不分隔3种方式,在0、21.83、43.67、65.50和87.34 P mg kg-1(分别记为P0、P1、P2、P3和P4)磷肥施用水平下进行盆栽试验,研究根系分隔方式对间作玉米大豆根际土壤微生物量碳(MBC)、溶解性有机碳(DOC)、根际土壤有机碳(ROC)、酸性磷酸酶活性(ACP)、碱性磷酸酶活性(ALP)、速效磷和Hedley磷组分的影响。【结果】相比完全分隔,根系不分隔可提高玉米和大豆根际土壤MBC含量,显著降低玉米根际土壤DOC含量,低磷水平(P0、P1)时显著提高大豆DOC含量,显著提高玉米(仅在低磷时)和大豆根际土壤ACP活性,低磷时显著提高大豆根际土壤ALP活性。除玉米活性磷组分外,根系分隔方式对间作玉米大豆根际土壤速效磷、磷组分有显著或极显著影响。根系不分隔较完全分隔可通过降低大豆根际活性无机磷(Pi)(P0除外)和中活性Pi从而提高玉米根...  相似文献   

8.
长期平衡施肥对潮土微生物活性和玉米养分吸收的影响   总被引:2,自引:0,他引:2  
利用中国科学院封丘农业生态实验站农田生态系统养分平衡长期定位试验地,研究氮磷钾平衡施肥(NPK)与缺素施肥(NK、PK、NP)对土壤微生物生物量、酶活性、呼吸强度以及玉米养分吸收的影响。结果发现,与不施肥对照(CK)相比,NPK处理玉米根系与茎叶生物量、籽粒产量以及植株氮磷钾吸收量均大幅提高,NP处理次之,PK与NK处理则无显著影响;同一处理玉米茎叶与根系养分含量接近,而籽粒的全氮和全磷含量较高、全钾含量偏低;与NPK处理相比,缺施氮、磷或钾肥均直接导致玉米植株相应养分的明显亏缺或其他养分的过量富集,但在根系、茎叶和籽粒部位的累积情况存在一定差异。与CK相比,所有施加磷肥的处理(NPK、NP、PK)土壤微生物生物量(碳、氮、磷)、脱氢酶、转化酶、脲酶与碱性磷酸酶活性以及土壤微生物代谢活性和土壤基础呼吸强度均显著升高(p<0.05),土壤微生物代谢熵则显著下降(p<0.05),而缺施磷肥的NK处理除显著提高脲酶活性外(p<0.05),对其他指标均无显著影响。结果表明,氮磷钾平衡施肥在促进土壤微生物繁育和保育微生物代谢活性以及促进作物生长和保证养分吸收等方面显得非常重要,而缺素施肥中以缺施磷肥的不利影响最为突出。  相似文献   

9.
Phosphorus uptake is often enhanced by ammonium compared to nitrate nitrogen nutrition of plants. A decrease of pH at the soil-root interface is generally assumed as the cause. However, an alteration of root growth and the mobilization of P by processes other than net release of protons induced by the source of nitrogen may also be considered. To study these alternatives a pot experiment was conducted with maize using a fossil Oxisol high in Fe/Al-P with low soil solution P concentration. Three levels of phosphate (0, 50, 200 mg P kg?1) in combination with either ammonium or nitrate nitrogen (100 mg N kg?1) were applied. Plants were harvested 7 and 21 d after sowing, P uptake measured and root and shoot growth determined. To assess the importance of factors involved in the P transfer from soil into plants, calculations were made using a model of Barber and Claassen. In the treatments with no and low P supply NH4-N compared to NO3-N nutrition increased the growth of the plants by 25 % and their shoot P content by 38 % while their root growth increased by 6 % only. The rhizosphere pH decreased in the NH4-N treatments by 0.1 to 0.6 units as compared to the bulk soil while in the NO3-N treatments it increased by 0.1 to 0.5 units. These pH changes had a minor influence on P uptake only, as was demonstrated by artificially altering the soil pH to 4.7 and 6.3 respectively. At the same rhizosphere pH, however, P influx was doubled by the application of NH4-compared to NO3-N. It is concluded that in this soil the enhancement of P uptake of maize plants after ammonium application cannot be attributed to the acidification of the rhizosphere but to effects mobilizing soil phosphate or increasing P uptake efficiency of roots. Model calculation showed that these effects accounted for 53 % of the P influx per unit root length in the NO3-N and 72 % in the NH4-N supplied plants if no P was applied. With high P application the respective figures were only 18 and 19%.  相似文献   

10.
长期施肥对红壤旱地土壤活性有机碳和酶活性的影响   总被引:18,自引:3,他引:15  
张继光  秦江涛  要文倩  周睿  张斌 《土壤》2010,42(3):364-371
以江西进贤长期肥料定位试验为平台,研究了红壤旱地不同施肥措施对土壤微生物生物量、活性有机C、C库管理指数以及土壤酶活性的影响。研究结果表明:与不施肥和单施化肥土壤相比,施有机肥处理土壤的pH、CEC、有机C、全N、全P、无机N、速效P、速效K及土壤微生物生物量均显著增加,土壤活性有机C和C库管理指数也较试前土壤和其他处理土壤明显提高,此外,土壤的转化酶、脱氢酶、脲酶和酸性磷酸酶活性也较其他处理显著增加。土壤微生物生物量、活性有机C以及4种土壤酶活性之间的相关关系显著,且它们均与土壤有机C、全N、全P、无机N、速效P等土壤养分呈显著正相关。因此,红壤旱地通过长期施用有机肥或与无机肥配施,不仅能显著提高土壤有机质的数量和质量,而且能增加土壤微生物生物量和酶活性,从而显著提高土壤肥力和土壤持续生产力。  相似文献   

11.
Abstract

Foliar fertilization with micronutrients and amino acids (AAs) has been used to increase the grain yield and quality of different crops. The aim of the present study was to evaluate the effects of Zn and AAs foliar application on physiological parameters, nutritional status, yield components and grain yield of wheat-soybean intercropping under a no-till management. We used a randomized block experimental design consisting of eight treatments and four replicates. The treatments were five Zn rates (0, 1, 2, 4 and 8?kg ha?1) and 2?L ha?1 of AAs and three additional treatments: a control (without the Zn or AA application), 2?kg ha?1 Zn and 2?kg ha?1 Zn + 1?L AA. The treatments were applied by spraying during the final elongation stage and at the beginning of pre-earing for the wheat and in growth stage V6 for the soybean for two crop years in a Typic Oxisol (860?g kg?1 clay). Zinc foliar fertilization increased the wheat grain Zn concentrations. The Zn rates and AA foliar fertilization in soil with did not affect the physiological parameters, nutrient status or yield components. The AA application at the different concentrations tested changed the soybean grain yield and the leaf N concentration. The results suggest that Zn and amino acids application increases the grains Zn concentration in the wheat, being an important strategy to agronomic biofortification.  相似文献   

12.
This study investigated phosphorus (P) accumulation and rhizosphere characteristics of Polygonum hydropiper under high levels (400, 800, and 1600 mg P kg?1) of inorganic P (Pi) and organic P (Po), supplied as KH2PO4 and myo-inositol hexaphosphoric acid dodecasodium salt, respectively. Mining (ME) and non-mining (NME) ecotypes were used since they differed in the capacity of nutrient acquisition. Biomass and P accumulation in shoots and roots of the ME increased by increasing Pi levels, whereas they decreased by increasing Po concentrations. Rhizosphere pH declined by 0.15–0.45 U for the ME and 0.04–0.14 U for the NME. Orthophosphate was the most abundant form, and it depleted greatly in the rhizosphere, with higher effect by the ME than by the NME. Glycerophosphate and inositol hexakisphosphate concentrations increased in the rhizosphere under high Po treatments with higher effect by the ME than by the NME. Rhizosphere acid phosphomonoesterase, alkaline phosphomonoesterase, and phytase activities of both ecotypes were higher in high P treatments than the treatment without P, whereas phosphodiesterase activity decreased. Significantly higher enzyme activities were observed in the rhizosphere soil of the ME than the NME. Probably, the ME might obtain higher shoot P than the NME from P-enriched soils through changes in rhizosphere properties.  相似文献   

13.
复垦土壤贫瘠,磷素含量极低,严重影响作物的生长发育。研究化肥、有机肥配施荧光假单胞菌对玉米产量和复垦土壤磷素形态以及酶活性的影响,为加速培肥矿区复垦土壤提供技术支持和理论依据。该研究在山西省晋中市采煤塌陷区进行了2a的定位培肥试验,共设置7个处理:不施肥(CK)、单施化肥(CF)、化肥配施荧光假单胞菌(CFB)、单施有机肥(M)、有机肥配施荧光假单胞菌(MB)、化肥配施有机肥(MCF)、化肥有机肥配施荧光假单胞菌(MCFB)。采集各处理土壤样品测定相关指标,并通过相关性分析和结构方程模型来探究各形态磷与有效磷以及土壤磷酸酶之间的关系。结果表明:1)在整个试验周期(2021—2022年),与CK相比,不同施肥处理均能显著提高玉米产量以及各形态磷素。其中,以MB处理下的玉米产量、有效磷、磷活化系数、不稳定态磷以及部分不稳定态磷含量最高,与CK处理相比,玉米产量显著提高2.4倍,有效磷含量、磷活化系数值、不稳定态磷含量、部分不稳定态磷含量分别显著提高4.5倍、4.67倍、0.98倍、1.16倍。2)与CK处理相比,化肥、有机肥配施荧光假单胞菌能够显著提高土壤微生物量磷以及酸性和碱性磷酸酶活性,配施荧光假单胞菌后,微生物量磷水平和碱性磷酸酶活性均以MB较M处理提升效果最佳,分别显著提高27.08%和9.56%。3)结合相关性分析以及结构方程模型,随着荧光假单胞菌和化肥有机肥的施入,在提高不稳定态磷素含量的同时也提高有效磷的供应能力,促进磷素在农田生态系统中的循环转化,产生积极的正向影响。化肥、有机肥配施荧光假单胞菌能够一定程度上影响复垦土壤玉米产量及产量性状、各形态磷素及有效性和微生物活性,对复垦土壤脆弱的农田生态系统产生积极影响。  相似文献   

14.
腐殖酸生物活性肥料对冬小麦生长及土壤微生物活性的影响   总被引:18,自引:2,他引:18  
施用腐殖酸生物活性肥料对冬小麦生长和土壤微生物活性的试验结果表明,于等量无机养分水平下,施用腐殖酸生物活性肥料冬小麦群体发育平稳,改善植株性状明显,增强抗逆性能。与施用无机复混肥和习惯施肥处理相比,施用腐殖酸生物活性肥料,冬小麦穗长分别增加0.4和0.5cm,旗叶面积分别增加0.7和1.1cm2,次生根条数分别增加1.3和2.2条。产量构成因素中有效穗数,穗粒数和千粒重施用生物活性肥处理也明显高于无机复混肥和习惯施肥,其产量分别增加9.0%和15.2%,差异达显著水平。同时腐殖酸生物活性肥料能够促进土壤有益微生物繁衍,使土壤微生物数量明显增加,提高土壤脲酶、蔗糖酶、磷酸酶和过氧化氢酶活性,对提高肥效,增强土壤肥力,改善作物营养环境有一定作用。  相似文献   

15.

Purpose

The effect on P uptake by plants after inoculation with P-mobilizing microorganisms may be modulated by soil properties, including natural microbiota. However, to put this theory into practical use, research is needed to shed new light on the soil factors which affect the capability of improving P nutrition in plants. The aim of this study was to assess how two P-mobilizing microorganisms, Trichoderma asperellum T34 and Bacillus subtilis QST713, influence P uptake by wheat plants in different soils; this will allow us to identify the soil properties which affect the efficiency of P nutrition in plants.

Materials and methods

In a completely randomized experiment, wheat was grown in pots in a growing chamber in soils with Olsen P values ranging from 4.8 to 8.7 mg kg?1. The plants were inoculated with three treatments: T34, B. subtilis, and a non-inoculated control.

Results and discussion

Overall, B. subtilis was more effective in increasing plant P uptake and in mobilizing soil P (measured as Olsen P values) than T34. In some soils, B. subtilis was the only treatment which increased Olsen P in the rhizosphere after cultivation. However, the effect of both microorganisms differed depending on the soil. For B. subtilis, phytase hydrolysable P, Olsen P, carbonates, the Feca/Fecbd ratio, and citrate-soluble P accounted for 92% of the variation in P uptake in inoculated plants (compared with the non-inoculated control). Most of these soil properties also accounted for 87% of the variation in the levels of shoot dry matter (DM) in B. subtilis-inoculated plants compared with shoot DM in the control plants. In addition, Olsen P, the Feca/Fecbd ratio, and phytase hydrolysable P in the NaOH extracts accounted for 82 and 74% of the variation in the effect of T34 on P uptake and shoot DM, respectively. Overall, the lower the initial Olsen P in the soil, the higher the P uptake caused by microorganisms.

Conclusions

The initial availability of P and organic P in soil, in addition to other properties affecting P dynamics in the soil, may explain the triggering and efficiency of the P-mobilizing mechanisms in microorganisms. These are crucial in explaining the potential benefits to crops and, as a result, their practical use as a bio-fertilizer.
  相似文献   

16.
Abstract

Phosphorus (Pi) is one of the most limiting factors in plant nutrition as it is the least mobile and available nutrient to plants in most soil conditions. The management of Pi fertilization in agriculture raises ecological, economic, and social issues, since phosphate rock minerals are the only significant global resources of Pi and they will be rapidly depleted. Eggshell waste is a big problem for food companies producing different types of egg products, since the eggshell waste is very often simply discarded and disposed at landfills, with high costs related to their disposal. The aim of this work was the characterization of eggshells as a Pi source for plants, using tomato (Solanum lycopersicum L cv Marmande) as a model species. Plants were grown hydroponically being exposed to adequate and limited Pi availability, with or without eggshell powder. Plant growth performance was characterized by analyzing changes in fresh weight, protein, chlorophyll concentration, carotenoid content, and measuring the plant’s capability to accumulate phosphate. The addition of eggshell powder to the nutrient solution significantly improved plant growth and increased protein and chlorophyll concentration, not only with respect to P-deficient control, but also with P-sufficient ones. Furthermore, eggshell powder significantly increased Pi accumulation in P-deficient plants, suggesting that eggshell waste could be a suitable material as Pi source for tomato plants, thus contributing to the environmentally friendly disposal of this waste.  相似文献   

17.
Influence of Organic Manure on Organic Phosphorus Fraction in Soils   总被引:5,自引:0,他引:5  
The transformation of organic P(Po) from organic manures in two types of soils (ultisol and entisol) and the influences of external addition of organic substance or inorganic P(Pi) on Po under the condition of the 60% maximum water capacity were investigated.The results obtained from Po fractionation experiments indicated that all the Po fractions except for the highly resistant Po fraction decreased during incubation.Application of pig feces and cow feces could largely increase each fraction of Po in the soils.Immediately after application of organic manure into the soils a large part of labile and moderately labile Po from organic manure was transferred into moderately resistant Po,which might be due to the fact that Ca-or Mg-inositol P was precipitated into Fe-inositol P.However,the availability of Po from organic manure in the soils would increase again after incubation because of the transformation of moderately labile and resistant Po fractions into labile Po fractions.Addition of cellulose or Pi into the soils showed a good effect on increasing all the Po fractions except for the highly resistant Po,and this effect was much more pronounced when cellulose was applied in combination with Pi.Therefore,in view of the effect of organic manure on improving P nutrition to plant,attention should be paid to both the Po and the organic substances from organic manure,It is suggested that application of Pi fertilizer combined with organic manure may be referred to as an effective means of protecting Pi from chemical fixation in soil.  相似文献   

18.

Purpose

With its high economic benefits, navel orange (Citrus sinensis) has been widely planted and fertilizer has been increasingly applied in the subtropical China in the last 30 years. Comprehensive assessments are needed to explore the long-term fertilization impacts on soil chemical and biological properties in the navel orange orchards.

Materials and methods

Through a large number of soil and leaf samples from the young, middle-aged, and mature navel orange orchards, this study examined the impacts of stand age (corresponding to the fertilization year using compound chemical fertilizer) on seasonal variations in major soil properties and leaf nutrients in the subtropical China.

Results and discussion

Soil total nitrogen (N) and mineral N were significantly higher in the middle-aged and mature orchards than in the young orchard. Total phosphorus (P), available P, labile P, slow P, occluded P, weathered mineral P, total exactable P, and residual P generally increased with fertilization years (P?<?0.05), and the increasing percentages for soil P fractions were much higher than those for N variables. The total N and P use efficiencies (plant uptake/soil input) were 20–34 and 10–15 %, respectively. Soil microbial biomass, invertase, urease, and acid phosphatase activities showed significant seasonal variations and decreased with fertilization years. Leaf N concentration significantly decreased with fertilization years, but no difference was found for P.

Conclusions

Soil self-fertilization was impeded, and less fertilizer amount should be applied especially in the older navel orange orchards since N and P accumulations do not increase leaf nutrients but worsen soil biological quality.
  相似文献   

19.
A rhizobox experiment with two phosphorus (P) treatments, zero-P (0 mg P kg^-1) and plus-P (100 mg P kg^-1) as Ca(H2PO4)2.H2O, was conducted to study the chemical and biochemical properties in the rhizosphere of two rice genotypes (cv. Zhongbu 51 and Pembe) different in P uptake ability and their relationship with the depletion of soil P fractions. Plant P uptake, pH, phosphatase activity, and soil P fractions in the rhizosphere were measured. Both total dry weight and total P uptake of Pembe were significantly (P 〈 0.05) higher than those of Zhongbu 51 in the zero-P and plus-P treatments. Significant depletions of resin-Pi, NaHCO3-Pi, NaHCO3-Po, and NaOH-Pi, where Pi stands for inorganic P and Po for organic P, were observed in the rhizosphere of both Zhongbu 51 and Pembe under both P treatments. Pembe showed a greater ability than Zhongbu 51 in depleting resin-Pi, NaHCO3-Pi, NaHCO3-Po, NaOH-Pi, and NaOH- Po in the rhizosphere. HCl-Pi and residual-P were not depleted in the rhizosphere of both genotypes, regardless of P treatments despite significant acidification in the rhizosphere of Pembe under zero-P treatment. Higher acid phosphatase (AcPME) activity and alkaline phosphatase (AlPME) activity were observed in the rhizosphere of both Zhongbu 51 and Pembe compared to the corresponding controls without plant. AcPME activity was negatively (P 〈 0.01) correlated to NaHCO3-Po concentration in the rhizosphere of both Zhongbu 51 and Pembe, suggesting that AcPME was associated with the mineralization of soil organic P.  相似文献   

20.
  【目的】   在“化肥零增长”背景下,探究磷肥减施对小麦产量及土壤质量的影响,为长江流域中下游地区磷肥减施提供科学依据。   【方法】   在湖北和浙江麦区,采用种肥同播技术进行田间试验,设置5个处理:1) 不施磷肥 (CK);2) 习惯施磷量 (FP);3) 习惯施磷量80% (P80);4) 习惯施磷量60% (P60);5) 习惯施磷量60%+解磷菌剂 (PB60)。分别在2019、2020年测定小麦产量,于2020年小麦收获时测定0—20 cm耕层土壤理化性质,微生物量磷、酶活性及磷脂脂肪酸含量。   【结果】   种肥同播情况下,与FP处理相比,第一年湖北麦区磷肥减施处理 (P80、P60) 小麦产量无显著性差异,而第二年产量分别显著下降31.53%和21.51%;浙江麦区P80处理较FP处理连续两年均未显著减产,且施用解磷菌剂可避免小麦产量下降。与FP处理相比,湖北麦区CK、P80和P60处理土壤有效磷含量显著降低,P80和P60处理土壤微生物量磷 (MBP) 含量分别增加37.46%和17.21%。在浙江麦区,与FP处理相比,P80处理土壤有效磷含量无明显变化,P60和CK处理土壤有效磷含量显著降低;P80和P60处理较FP处理的土壤MBP含量无显著性差异。两个麦区的试验结果还显示,与FP处理相比,P80和P60处理土壤磷活化系数和细菌与真菌的比值显著降低,土壤铵态氮和硝态氮含量、参与氮循环的土壤酶活性及真菌相对丰度增加,而土壤pH、有机碳含量、总氮含量、速效钾含量、土壤磷酸酶活性、细菌相对丰度及丛枝菌根相对丰度均无显著变化;与P60处理相比,PB60处理增加了土壤有效磷含量、土壤磷活化系数及丛枝菌根的相对丰度。通过冗余分析发现,MBP是影响湖北麦区土壤微生物群落结构变化的主控因子;土壤铵态氮是影响浙江麦区土壤微生物群落结构变化的主控因子。   【结论】   在种肥同播情况下,不同麦区土壤有效磷、微生物量磷和小麦产量对磷肥减施的响应各异。在土壤有效磷含量较低的湖北麦区,连续减施磷肥易减产,不推荐种肥同播下减量施磷的方法;而在土壤有效磷含量较高的浙江麦区,在保证小麦产量和土壤质量不降低的情况下,较为理想的施肥策略是种肥同播 + 80%习惯施磷量。此外,磷肥减施没有显著影响土壤磷酸酶活性,但显著影响了土壤微生物群落结构,增加了土壤真菌相对丰度以及降低了细菌/真菌比。解磷菌剂在浙江麦区的应用效果优于湖北麦区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号