首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
该系统利用航姿参考系统IG-500N采集无人机实时飞行状态信息,通过无线数传模块传输至地面PC机。飞行状态信息包括:三轴姿态角、三轴加速度、三轴角速度、三轴速度、GPS经纬度、GPS海拔高度、温度和气压等信息。之后利用Labview设计的程序分割提取各个测试项目所对应的数据信息,并计算对应测试项目的用时、位置偏差和姿态稳定行,进而得到遥控无人机操控水平指标,导入生成测试报告。用于评估操控手在操控无人机起飞、航线飞行、定点悬停和降落过程中的操控水平。试验结果表明测试系统可靠。该研究可用于为无人机操控手的水平评估和自主飞行无人机的飞行性能优化提供参考。  相似文献   

2.
基于Labview的无人机飞行状态实时监测评估系统设计   总被引:1,自引:1,他引:0  
为了实现无人机飞行状态信息的自动化采集和性能评估,该文设计了基于 Labview 的无人机飞行状态实时监测评估系统,该系统利用传感器采集无人机的飞行状态信息:包括三轴姿态角、三轴角速度、三轴速度、三轴加速度、GPS经纬度及海拔高度、环境温度和气压等。无线传输模块将经过简单处理之后的信息传输至PC机,基于Labview建立的监测评估软件对这些数据进一步处理之后,实时图形化显示三轴姿态、飞行高度、二维轨迹、三维轨迹和航迹偏差;根据三轴姿态信息实时模拟无人机姿态,自动计算飞行里程,并自动保存所有数据。飞控手目视操控无人机的试验结果表明:平均航迹偏差高达5.2 m,定高飞行的平均高度偏差为0.9 m,横滚角和俯仰角波动幅度均在8°以内,整个测试过程中传感器温度下降了2℃。数据分析结果与系统输出结果一致,该系统运行稳定,输出结果可靠,能够用于实时监测、图形化显示、评估和记录无人机飞行状态信息,为无人机飞行性能的评估及飞控手的训练提供参考。  相似文献   

3.
基于无人机与激光测距技术的农田地形测绘   总被引:3,自引:1,他引:2  
平整地技术是提高作物单产的重要措施,而获取高精度的农田地形测绘数据与农田数字地形模型,是进行精准平整地作业的必要条件。为了解决传统接触式地形测绘效率低、基于航拍摄影技术的遥感地形测绘精度差及作业成本高等问题,该研究提出了一种基于多旋翼无人机与激光测距技术的农田地形测绘方法。在多旋翼无人机测绘平台上搭载激光测距模块与后处理动态差分全球定位系统设备(Post-Processing Kinematic Global Positioning System,PPK-GPS),获取激光测距序列、PPK-GPS三维定位数据以及无人机的飞行姿态数据。首先使用均值滤波器处理原始激光测距序列,并将得到的激光测距序列与PPK-GPS定位数据进行同步处理,使二者建立空间对应关系。根据无人机倾斜状态时的测距激光方向与理论竖直方向的空间几何关系,使用从无人机的飞行控制器中提取的姿态信息校正激光测距序列,消除无人机平台在飞行过程中俯仰与横滚姿态变化对激光测距精度的影响。最后,根据PPK-GPS定位数据的海拔高度分量与激光测距序列计算试验地块内地面测量点的海拔高度,共获取1 417组地面测量点的有效测绘数据。利用手持PPK-GPS设备对地面测量点的海拔高度进行测绘精度检验。验证试验结果表明,本文提出的无人机农田地形测绘系统获取的海拔高度与手持PPK-GPS设备采集的海拔高度的均方根误差为5.2 cm,表明该无人机农田地形测绘系统具有较高的测绘精度。与利用手持GPS设备进行地形测绘作业的方法相比较,本文提出的无人机农田地形测绘系统具有自动化程度高、作业效率高等优点。该研究可为促进精准平整地技术的大规模应用提供数据支持。  相似文献   

4.
圆形多轴多旋翼电动无人机辅助授粉作业参数优选   总被引:11,自引:8,他引:3  
圆形多轴多旋翼无人直升机与单轴单旋翼无人直升机相比,结构上有很大差异,因而其旋翼所产生气流到达作物冠层后形成的风场参数亦有所不同。该文采用3种圆形多轴多旋翼无人直升机,根据正交试验设计法设计了3因素(飞行高度、飞行速度以及飞机与负载质量)3水平的正交试验,通过考察平行于飞行方向(X)、垂直于飞行方向(Y)、垂直地面(Z)3个方向上的峰值风速、Y向风场宽度(越宽越好)、动力电池的压降(放电越慢越好)3个指标,对该机型用于水稻制种辅助授粉的田间作业参数进行优选,试验结果分析表明:圆形多轴多旋翼无人直升机在水稻冠层形成的X向风场宽度明显大于Y向的风场宽度;有别于单旋翼无人直升机,圆形多轴多旋翼无人直升机X向风场只有1个峰值风速中心,Y向风场存在2个峰值风速中心,这一现象主要由飞行器多个旋翼的侧向气流叠加形成,相互之间存在干扰,而且也影响了Y向风场的有效宽度。在实际应用中,对于能实现GPS自主导航飞行的机型,应根据作业的便利程度尽量利用X向的风力,更有益于辅助授粉作业;而对于未采用GPS自主导航飞行的机型,为便于飞控手对飞机位置的判断与姿态操控而必须沿父本行方向进行飞行作业时(即利用Y向风力),应充分考虑垂直于飞行方向风场宽度较窄的实际情况,通过降低作业效率来弥补。圆形多轴多旋翼无人直升机在水稻冠层所形成风场的峰值风速主要受飞机的飞行速度、飞机与负载质量、飞行高度影响。结合有效风场宽度及电池电量消耗程度来考量,3种主要因素的主次排序及其较优水平依次为飞行速度1.30 m/s、飞机与负载质量18.85 kg和飞行高度2.40 m。该结果可为其他圆形多轴多旋翼无人直升机用于水稻制种辅助授粉的田间作业参数设置提供参考,而且也可为制定基于农用无人直升机的水稻制种辅助授粉作业技术规范提供依据。  相似文献   

5.
针对当前植保四轴飞行器在作业过程中自身载荷发生改变后的飞行控制性能下降、抵抗环境扰动能力差的问题,该文改进了传统比例积分微分(proportion,integration,differentiation,PID)控制算法,提出了一种模糊PID控制算法。该文通过研究四轴飞行器的姿态解算和飞行原理,设计了以STM32系列的单片机为核心处理器的四轴飞行控制系统。采用AHRS模块实时解算飞行器姿态参数,结合模糊控制和PID控制算法调节电机的输出量来控制飞行姿态。试验结果表明:与传统PID相比,模糊自整定PID控制算法适应性强,参数整定简单,系统的动态响应能力和稳定性获得了提高,实现了四轴飞行器的稳定飞行。该文为植保无人机控制算法研究提供了一定的参考。  相似文献   

6.
农田信息快速采集是精准农业的基础。为快速、高效、准确、节能获取农田信息,该文搭建了多旋翼无人机平台,设计了以STM32F407为主控制器的多旋翼飞行控制系统。采用了比例积分微分(proportion,integration,differentiation,PID)双闭环控制策略,外环为角度反馈,内环为角速度反馈。通过工程凑试法得到合适的PID控制参数。运用专家控制策略改进上述控制方法,使控制参数适应无人机姿态变化。对所设计的无人机控制系统进行抗干扰和阶跃响应试验。系统在受到30?横滚与俯仰角干扰后,其对应恢复平衡时间均在3.4 s内,航向角30?干扰后恢复时间在4 s内。系统横滚与俯仰角阶跃响应调节时间在1~2 s内,航向角在3.4 s内。试验结果表明:双闭环PID控制策略实现多旋翼无人机姿态稳定控制,专家控制策略增强无人机的抗干扰能力。在室外农田环境中,无人机能根据指令在1~2 s内快速调整姿态。当姿态受风影响发生倾斜时,陀螺仪测量角速度大于3(?)/s,采用的控制策略能迅速调整电机转速,保持无人机姿态稳定平衡。试验证明该控制系统稳定可控且具有较强抗干扰性,满足多旋翼无人机低空采集农田信息的要求。  相似文献   

7.
基于DSP的小型农用无人机导航控制系统设计   总被引:3,自引:2,他引:1  
为适应农业信息化要求,针对农业用小型无人机要求体积小、质量轻、稳定、可靠、低空低速飞行的特点,该文提出了一种小型无人机导航控制系统,其导航控制与数据采集采用单独DSP芯片进行处理,以降低导航控制系统的复杂度。系统以TMS320F2812芯片为核心,集成了GPS、红外传感器和电子罗盘,并扩展了DSP芯片异步串行通信接口,保证了数据通信的实时性、完整性和可靠性,实现了无人机的自主导航控制。飞行试验表明,该设计方案具有较高的可靠性。该研究可为农业用小型无人机的设计与应用提供参考。  相似文献   

8.
以多旋翼飞行器为平台,结合遥感技术可实现对近地面农田信息进行遥感监测。飞行控制是多旋翼飞行器的核心,它主要负责实时收集传感器测量数据,解算飞行姿态,通过控制算法控制电机运转。因此,准确实时获取姿态信息是实现多旋翼飞行器的飞行控制基础,该文提出了基于模糊-比例积分(fuzzy-proportion integration,Fuzzy-PI)偏差修正的多旋翼飞行姿态测算系统。该系统由加速度传感器、陀螺仪、电子罗盘和STM32F103微处理器组成。采用四元数坐标转换,将测算系统中各传感器测量的姿态偏差代入模糊-比例积分偏差修正解算方法得到多旋翼飞行器的姿态,通过串口显示测算结果,并在SGT320E型3轴多功能转台上对测算的姿态进行验证。试验结果表明该文提出姿态测算系统解算时间达450次/s,静态测量时横滚角和俯仰角平均误差为1.213°和1.072°,长时间静态测量并未产生漂移,为多旋翼飞行器准确控制姿态奠定基础。当转台以频率为0.1 Hz,幅度为30°的正弦波方式运动时,测算系统测量精度能达到1°。试验结果表明在该文提出的多传感器姿态测算硬件系统中,模糊-比例积分偏差修正的多传感器信息融合方法能动态修正传感器间的偏差,满足快速准确跟踪运动姿态的要求。该成果为多旋翼飞行器的姿态控制提供参考。  相似文献   

9.
在精准农业生产过程中,传感器实时采集作物信息或环境状态,传感器与作物的相对位置,直接影响到采集数据的准确性,及后期处理的效率,甚至影响到作业的效果。而田间道路、垄间颠簸,会影响传感器与作物相对位置,造成信息失真和不准确,为了减少地面不平整干扰对传感器位置的影响,该文提出了基于MEMS传感器步进电机驱动的两轴姿态调整系统。该研究分析了系统的工作原理和控制方法,以陀螺仪、重力加速度计为姿态测量元件,步进电机为驱动部件,设计基于单片机控制的两轴姿态调整系统平台软硬件结构。系统采用单片机对陀螺仪和加速度计信息的实时采样,建立了多传感信息的融合算法和姿态判定模型,可以实时分析检测对象姿态,并输出控制步进电机,对平台姿态进行补偿调整,保持控制对象的相对惯性空间方位不变,实现了平台姿态平衡的快速控制。同时系统加入了绝对位置传感器,实现初始工作状态的自动复位。测试试验结果表明,系统运行稳定,单轴姿态调整精度在平整坡路状态下最大误差在0.5°以内,在田间颠簸路况运行下最大误差在3.0°以内,能够满足信息采集和检测过程中姿态自动调整、保持相对位置的控制要求。利用该控制系统,能够提高信息采集的准确性,在精准农业生产中具有应用作用。  相似文献   

10.
基于MEMS传感器的两轴姿态调整系统设计与试验   总被引:1,自引:3,他引:1  
在精准农业生产过程中,传感器实时采集作物信息或环境状态,传感器与作物的相对位置,直接影响到采集数据的准确性,及后期处理的效率,甚至影响到作业的效果。而田间道路、垄间颠簸,会影响传感器与作物相对位置,造成信息失真和不准确,为了减少地面不平整干扰对传感器位置的影响,该文提出了基于MEMS传感器步进电机驱动的两轴姿态调整系统。本研究分析了系统的工作原理和控制方法,以陀螺仪、重力加速度计为姿态测量元件,步进电机为驱动部件,设计基于单片机控制的两轴姿态调整系统平台软硬件结构。系统采用单片机对陀螺仪和加速度计信息的实时采样,建立了多传感信息的融合算法和姿态判定模型,可以实时分析检测对象姿态,并输出控制步进电机,对平台姿态进行补偿调整,保持控制对象的相对惯性空间方位不变,实现了平台姿态平衡的快速控制。同时系统加入了绝对位置传感器,实现初始工作状态的自动复位。测试试验结果表明,系统运行稳定,单轴姿态调整精度在平整坡路状态下最大误差在0.5°以内,在田间颠簸路况运行下最大误差在3.0°以内,能够满足信息采集和检测过程中姿态自动调整、保持相对位置的控制要求。利用该控制系统,能够提高信息采集的准确性,在精准农业生产中具有应用作用。  相似文献   

11.
无人植保机施药雾滴空间质量平衡测试方法   总被引:13,自引:10,他引:3  
为了研究精准作业参数(速度、高度)下的无人植保机施药雾滴空间分布和下旋气流场特性,该文提出了一种无人机施药雾滴空间质量平衡测试试验方法,并且使用该方法对3种无人机进行了田间实际试验研究,结果表明:该方法可以有效获得准确飞行速度和高度下无人机施药雾滴空间分布情况和下旋气流场分布情况,在平均风速1.7 m/s、平均气温31.5℃、平均相对湿度34.1%的条件下,飞行高度2.5 m、速度5.0 m/s时,3WQF80-10型无人机喷雾作业雾滴在上风向部、顶部、下风向部和底部的平均分布比例为4.4%,2.3%,50.4%和43.7%;CG-Q60S型无人机雾滴在4个方向上平均分布比例为2.5%,1.5%,43.2%和52.8%;LXD8-3WD10型无人机雾滴在4个方向上平均分布比例为1.9%,2.0%,21.9%和74.7%。雾滴空间质量平衡分布规律符合下旋气流场分布规律,无人机下旋气流风场的测量是分析雾滴在空间不同部位分布的重要手段。研究结果可为低空低量无人植保机施药技术研究和建立无人植保机低空低量施药田间雾滴沉积与飘失测试标准提供参考。  相似文献   

12.
针对植保无人机施药准确性和作业效率需求的提高,验证网络实时动态(Real-Time Kinematic,RTK)载波差分技术在无人机施药上的可行性,设计了一种基于网络RTK的离心式变量施药系统。采用STM32F103为控制核心,通过串口获取GPS定位信息,并连接DTU模块实现网络RTK技术,通过脉冲宽度调制(Pulse Width Modulation,PWM)技术调节占空比的大小,从而调节离心喷头的转速以及蠕动泵的流量。系统在工作时,通过农情信息完成处方图构建,通过高精度GPS模块获取经纬度信息,在施药过程中系统实时检索无人机所在位置,调出处方决策信息,按照处方信息调节离心喷头和蠕动泵的输出比例,从而控制无人机的施药粒径大小和施药量大小,并将作业数据上传至监控平台。通过试验表明系统能正确执行变量施药任务;在使用离心喷头进行变量施药任务时,受到系统稳定性和离心喷头特性的影响,在处方交界区域会存在一个不稳定区域;离心喷头在较高转速下进行变化时,在处方交界区域粒径大小的变化越平滑。该结果满足预期试验设计,可为植保无人机变量施药技术改良提供基础与参考。  相似文献   

13.
旋翼式无人机授粉作业冠层风场分布规律   总被引:2,自引:13,他引:2  
为提高杂交水稻机械化种植效率,扩大父母本种植行宽比,采用旋翼式无人机进行辅助授粉作业。旋翼风场是由无人机旋翼旋转推动空气进行流动作用在作物冠层而形成。风场的覆盖宽度、风场内各方向风速的大小以及风场的分布规律将会直接影响到农用无人机田间作业的效果。该文结合无人机的飞行参数使用风速参数采集系统获取18旋翼无人机的授粉作业风速,其中对于矩阵数据(100×60)的行数据和列数据的意义进行了充分的讨论,总结了行、列数据的特点并结合试验实际情况对数据进行处理。发现3向风速数据的时序变化规律保持有一致性,X向风速在最大值时刻之前其平均值要大于Y向与Z向风速;X向、Y向风速值时序曲线之间的形状特征差异小于X向与Z向或者Y向与Z向之间的形状特征差异。而从3向风速值的空间变化分布情况也可看出无人机飞行轨迹与传感器行阵列交汇点处(9#~11#)所采集风速平均值最大,考虑到测量误差值,随着采样点距离飞行轨迹越远,采样点对应风速值衰减越多。综合二维风场数据可知3向风场宽度对比结果为Y向X向Z向。在此基础上,采用高斯法拟合等方式对行数据及列数据进行计算,通过对比各统计项的参数,拟合列数据建立风速数据与时间关系的5阶指数函数模型;拟合行数据作为风速数据与采样点分布距离关系的6阶指数函数模型。利用矩阵变换基于行、列数据模型最终建立水稻冠层处无人机旋翼X向二维风场理想模型,且由模型图中可发现无人机沿冠层飞行时旋翼X向风场的分布形状存在"陡壁"效应,即无人机旋翼下风速达到最大值,前向风速增大率要明显高于后向减小率,整个风场"陡壁"沿无人机飞行方向左右对称。研究将为无人机辅助授粉通过改变风场实现新的作业方法提供参考。  相似文献   

14.
油动单旋翼植保无人机雾滴飘移分布特性   总被引:14,自引:9,他引:5  
为了研究油动单旋翼植保无人机在精准作业参数(速度、高度)条件下的雾滴飘移分布特性,该文建立了雾滴飘移收集测试平台,分别用雾滴飘移测试框架、等动量雾滴收集装置和培养皿收集3WQF80-10型油动单旋翼植保无人机在作业时空中及地面飘移的雾滴。将测试结果分别与侧风风速、飞行高度、飞行速度进行相关分析和回归分析,结果表明:在平均温度31.5℃、平均相对湿度34.1%的条件下,侧风风速为雾滴飘移的主要影响因素;侧风风速与等动量雾滴收集器和培养皿测得的雾滴飘移率呈正相关(相关系数r分别为0.97、0.93);而与雾滴飘移测试框架测得的雾滴飘移率无相关性;侧风风速为0.76~5.5 m/s时,90%飘移雾滴沉降在喷雾区域下风向水平距离9.3~14.5 m的范围内,因此在作业时要预留至少15 m以上缓冲区(安全区)以避免药液飘移产生的危害。研究结果可为低空低量植保无人机施药技术研究和建立植保无人机低空低量施药田间雾滴沉积与飘移测试标准提供参考。  相似文献   

15.
基于无人机采集的视觉与光谱图像预测棉花产量   总被引:3,自引:1,他引:2  
为了高效管理农田,该文提出了一种应用低空遥感视觉与光谱图像预测棉花产量的方法。盛花期前的棉花图像由无人机遥感平台在距地面50m的飞行高度下采集,采集的局部图像通过拼接处理得到棉花地的全景RGB图像与CIR(color-infrared,彩色红外)图像。基于全景图像提取并计算了色度、植株覆盖率与归一化植被指数(normalized difference vegetationindex,NDVI)3个特征参数,用于构建棉花产量的预测模型。包括产量与特征参数的原始数据集随机分为训练集(90%)与测试集(10%)。训练集数据首先基于产量概率分布特征去除了10%的离群值,然后通过均值滤波器滤波,处理后的数据用于构建预测模型。通过SAS软件对比分析了单变量、双变量以及三变量构建的线性回归模型,预测模型由P值、决定系数R2、每0.4 hm2面积下估计值与真实值之间的平均绝对误差百分比(mean absolute percentage error,MAPE)这3个参数进行评估。试验结果表明,单变量、双变量以及三变量构建的共7个线性回归模型,其P值均小于0.05,则7个线性回归模型均具有统计学意义(5%显著性水平)。其中,由三变量构建的多元线性回归模型具有最大的决定系数R2=0.9 773,因此适应性最优。基于测试集验证模型精度,试验结果表明,采用多元线性回归模型进行产量估计,估计值与实际值之间的平均绝对误差百分比为4.0%。因此,无人机搭载图像传感器采集提取视觉与光谱特征能够有效用于作物产量的预测。  相似文献   

16.
无人机遥感为水土保持监测提供了新的技术支撑手段,但这一技术在水土保持监测工作中的应用尚处于起步阶段,还未形成统一、有效的方法与标准.研究将无人机遥感技术与水土保持监测现行的规范规程相结合,从基础数据获取、监测信息提取及信息在水土保持监测中的应用等3方面,构建基于无人机遥感的生产建设项目水土保持监测方法,并将其应用于工程实例.基础数据获取包括飞行规划设计、原始数据获取及原始数据处理3个步骤,最终生成DEM和DOM成果;监测信息提取可在DEM或DOM成果的基础上进行,通常包括土地利用类型、监测对象位置、长度、面积及体积等;信息应用主要是结合相关规程规范,将提取出的有效信息,逐一应用到生产建设项目水土保持监测工作中.应用结果表明,研究构建的方法简单实用,可提高无人机遥感在水土保持监测中应用的技术水平,为生产建设项目水土流失防治提供技术支撑.  相似文献   

17.
油菜无人机飞播装置设计与试验   总被引:5,自引:5,他引:0  
针对丘陵山区油菜种植面积逐步扩大和平原地区稻油茬口矛盾突出的生产现状,结合无人机飞播作业不受地形限制、作业速度快、工作效率高和适用范围广等优点,该研究开发了与极飞P20四旋翼无人机平台配套的油菜无人机飞播装置和控制系统。分析确定了飞播装置种箱、充种漏斗、槽轮等的结构参数,并研制了相应的控制系统。在分析无人机飞播质量影响要素基础上,建立了无人机旋翼气流场仿真模型,并以充种漏斗长度和槽轮转速为试验因素开展台架试验。仿真分析和台架试验结果表明,旋翼气流场对油菜种子的空中漂移运动轨迹有较大影响,根据获得的无人机飞行速度与槽轮转速关系模型,确定了旋翼气流场对种子影响较小的参数组合:导种管出种口与无人机旋翼距离300 mm,充种漏斗长度53 mm,槽轮转速10~50 r/min、无人机飞行速度2~4 m/s。场地试验表明:导种管出种口横向距离为1.1m,无人机飞行高度为2~2.5 m时,无人机有效作业幅宽2.15~2.45 m,种子分布均匀性变异系数为32.05%~34.78%,装置作业性能较好,满足油菜农艺种植要求。研究结果可为油菜无人机飞播配套装置设计提供参考。  相似文献   

18.
农用无人机多传感器遥感辅助小麦育种信息获取   总被引:8,自引:10,他引:8  
为实现小麦育种过程中大规模育种材料表型信息快速高通量获取,该文分别从无人机平台优选、农情信息采集传感器集成及数据处理与解析等方面开展研究,研发了一套农业多载荷无人机遥感辅助小麦育种信息获取系统。该系统基于多旋翼无人机平台,并集成高清数码相机、多光谱仪、热像仪等多载荷传感器,提出了无地面控制点条件下的无人机遥感数据几何精校正模型,实现多载荷遥感数据几何校正。该系统操控简便,适合农田复杂环境条件作业,能够高通量获取作物倒伏面积、叶面积指数、产量及冠层温度等育种关键表型参量,为研究小麦育种基因型与表型关联规律提供辅助支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号