首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
菠菜是我国蔬菜出口的重要品种之一,其毒死蜱残留量直接关系到我国农产品的出口和消费者的安全。采用气相色谱法(GC-NPD)测定毒死蜱残留量,研究了硝酸稀土对菠菜中毒死蜱残留动态的影响。结果表明,不论是喷施农药之前2d还是喷施农药之后2d喷施硝酸稀土,不同的硝酸稀土对菠菜中的毒死蜱残留都有不同程度的降解作用,且随着喷药后时间的延长,毒死蜱在菠菜中的残留量逐渐减少。不同时间喷施硝酸稀土,对菠菜中毒死蜱残留降解的效果存在差异,药后喷施的效果优于药前喷施。在硝酸稀土种类的选择上,首先选择对毒死蜱降解效果好的硝酸铈和硝酸钕,其次选择常乐益植素和硝酸镧。根据稀土农用的安全性分析,参考植物性食品中稀土最大残留限量标准,选择硝酸稀土作为农药残留降解制剂用于蔬菜安全生产,在技术上是可行的,人类食用是安全的。  相似文献   

2.
本研究采用LC-MS检测技术,系统研究了氯虫苯甲酰胺和毒死蜱及其代谢物(3,5,6-TCP)在两种水稻各器官的动态消解规律与分布特征,旨在为两种农药的科学合理使用及后期稻米安全风险评估提供科学依据。在穗期施药后定期分析水稻各器官中农药及代谢物的残留量,结果表明两种农药及代谢物在水稻甬优各器官中的残留量高于中浙优,在水稻中的残留量均呈叶籽粒茎根的分布规律,根中呈先上升后下降的变化趋势,茎、叶和籽粒中的残留量随施药时间的延长逐渐减小;毒死蜱在水稻各器官降解速率较快,在施药后14 d降解率达99%以上;稻壳和糠承载90%左右农药及代谢物残留;高剂量施药使两种农药及代谢物在籽粒各部位的含量增高,但对其分布特征无影响。研究表明选择种植水稻品种中浙优的同时降低施药剂量既可达到防治效果也能降低稻米食用风险。  相似文献   

3.
采用气相色谱法(GC-NPD,ECD)测定毒死蜱和氰戊菊酯残留量,研究了菠菜(Spinacia oleracea L.)和不结球白菜(Brassica campestris L. ssp. Chinensis Makino var. communis Tsen et Lee)中毒死蜱、氰戊菊酯的残留动态。结果表明,菠菜中毒死蜱残留量、不结球白菜中毒死蜱和氰戊菊酯残留量存在着明显的基因型差异。同一不结球白菜基因型,毒死蜱和氰戊菊酯的残留量达到《GB 2763—2005食品中农药最大残留限量》中规定的叶类蔬菜农药最大残留限量所需要的时间存在明显差异,且毒死蜱达到最大残留限量所需要的时间比氰戊菊酯长,因此在选择低农药残留基因型时,应首先考虑农药残留时间长、最大农药残留限量低的农药品种。菠菜品种sp0723、卡尔以及不结球白菜品种矮抗青、无锡605和青选3号属于低农药残留的基因型,在生产上推广应用有利于提高叶类蔬菜的食用安全水平。  相似文献   

4.
在建立液相色谱三重串联四极杆质谱(LC-MS/MS)检测技术的基础上,采用PVC材料的圆柱形盆钵栽培方法,研究了不同土壤环境条件下甲磺隆和氯磺隆的残留特性。结果表明,甲磺隆和氯磺隆在水稻根际和非根际土壤中的残留量均呈不断下降趋势。处理后15d,根际和非根际土壤中两种农药残留量分别下降了44.7%和41.5%(甲磺隆)及38.7%和40.1%(氯磺隆),根际和非根际的残留差异不显著(P〉0.05);处理后31d,残留量分别下降了77.7%和64.8%(甲磺隆)及62.7%和50.1%(氯磺隆),差异达极显著水平(P〈0.01);处理后63d,残留量分别下降了96.4%和85.1%(甲磺隆)及90.0%和79.4%(氯磺隆),残留差异达极显著水平(P〈0.01)。甲磺隆的降解趋势和氯磺隆基本一致,但下降幅度比氯磺隆大。二者在水稻根际和非根际土壤中的残留量均符合一级动力学方程式C=C0e-λ(tC代表浓度;C0代表初始浓度;t时间),决定系数范围在0.9342~0.9957之间。在种植水稻的条件下,下层土的农药残留量呈先上升后下降的趋势,处理后数日内达最高点,之后不断下降,122d后低于检测限。水稻下层土残留的从无到有说明农药在土壤中的淋溶可能是水田环境农药残留降解的原因之一。干旱土壤条件下,土壤的淋溶作用不明显。说明水旱轮作有利于农药残留在土壤环境中的降解。  相似文献   

5.
外源新碳在不同肥力土壤中的分配与固定   总被引:4,自引:1,他引:3  
外源新碳加入土壤后,传统技术尚无法区分其与原土壤有机碳的不同。利用13C稳定同位素方法,通过室内培养实验,探讨玉米秸秆和根茬添加到不同肥力水平土壤后外源新碳在土壤中分配与固定的差异。结果表明:(1)低肥土壤添加叶28 d后土壤有机碳(SOC)含量高于添加根和茎的;高肥土壤添加叶在整个培养期间(1~180 d)SOC含量都高于添加根和茎;两种肥力水平土壤在添加玉米根、茎、叶180 d后SOC含量均接近相等。(2)玉米根、茎、叶的添加对SOC中外源新碳含量以及残体残留率的影响不同,28 d前低肥土壤外源新碳含量高于高肥土壤,28 d后结果与之相反;低肥土壤在培养28 d后添加根的残留率比添加茎和叶的低,高肥土壤在培养7 d后添加叶的残留率比添加根和茎的低。以上结果表明,外源新碳在土壤中的固定受其来源和土壤肥力水平的影响与制约。  相似文献   

6.
采用水培方法,研究了毒死蜱对两种叶菜类蔬菜菠菜和生菜生长的影响、在不同培养液中的降解速度以及在蔬菜中的吸收和转移规律。结果表明,低浓度毒死蜱(1.0和10.0mg·L^-1)对两种供试蔬菜的生长没有明显影响,但高浓度毒死蜱(100.0mg·L^-1)对两种蔬菜的生长均有一定的影响,而且生菜对毒死蜱较菠菜更为敏感。两种蔬菜均能明显促进毒死蜱在溶液中的降解,在不同溶液中的降解速度如下:菠菜-培养液〉生菜-培养液〉塘水〉培养液。两种供试蔬菜对毒死蜱均有很强的吸收能力,而且具有相似的吸收规律。毒死蜱在菠菜根中达到最大吸收值所需的时间比生菜根所需的时间短,但在茎和叶中所需的时间两种蔬菜相同。  相似文献   

7.
两种环境激素类农药及其混合剂在土壤中的降解研究   总被引:1,自引:0,他引:1  
为了深入了解环境激素类农药在与其它多种农药同时存在条件下在土壤中的降解过程、阐释其机理,用室内培养的方法,研究氯氰菊酯、毒死蜱两种农药及其混合剂在灭菌和未灭菌土壤中的降解特征。结果表明,两种农药及其混合剂在土壤中的降解是微生物主导的过程;灭菌土壤中,混合剂中各农药组分与其单独存在降解过程基本一致,均符合单室模型C=C0e-kt,降解半衰期也与其单独存在相近;但在未灭菌土壤中,混合剂中各农药组分降解特点与其单独存在有所不同。两种农药单独存在时,氯氰菊酯、毒死蜱在未灭菌土壤中的降解方程均符合单室模型,降解半衰期分别为31.5 d和57.8 d;混合剂中各组分农药在未灭菌土壤中的降解过程符合双室模型C=C1e-αt+C2e-βt,不同阶段降解半衰期不同,氯氰菊酯前期和后期半衰期分别为33.0 d和53.3;而毒死蜱前期和后期的半衰期则分别为63.0 d和86.6 d。在未灭菌土壤中多种农药存在时各种农药降解均呈现先快后慢的特点。  相似文献   

8.
大棚和露地环境下,分别对番茄植株一次性喷洒推荐剂量的百菌清(CHT)和毒死蜱(CHP),研究喷药后两周内农药在番茄根、茎、叶和果实中分布的持久性及其动态降解规律。实验结果表明,百菌清在大棚番茄中的残留浓度分布呈现为叶片垌果实〉茎〉根;毒死蜱呈现为叶片〉果实垌茎〉根。大棚番茄各部位的最高残留浓度出现时间滞后于喷药时间8~60h;空间浓度分布上表现为大棚中间区域浓度高于两侧,这与棚内的空气对流有关。大棚番茄果实中百菌清和毒死蜱的残留半衰期分别为5.8d和7.2d,明显高于文献报道。  相似文献   

9.
对福州市蔬菜基地土壤中4种有机磷农药(敌百虫、敌敌畏、甲胺磷和毒死蜱)的残留状况进行了调查。结果表明,在43个供试土样中,有机磷农药的总检出率为97.67%,其中,所有土样中都未检出敌百虫;只有1个土样中检出甲胺磷和敌敌畏,残留量分别为0.65mg/kg和0.45 mg/kg;毒死蜱的检出率最高,达97.67%,在土壤中的最高残留量为9.77 mg/kg。  相似文献   

10.
为探讨苹果果实中毒死蜱残留的品种间差异及套袋对其残留的影响作用,采用气相色谱法(GC-FPD),研究了不同品种苹果果实中毒死蜱的残留动态以及套袋对苹果果实不同部位中毒死蜱残留的影响。结果表明,毒死蜱在苹果果实中的残留量存在着明显的品种差异,其中红富士属于高农药残留的品种,而嘎拉、红将军和83-1-70-3则属于低农药残留的品种。毒死蜱在苹果果实不同部位中的残留量表现出明显差异,果皮是毒死蜱残留的主要部位,其次是全果,果肉中的残留最少。套袋明显减少了毒死蜱在苹果果实中的残留量,不论处理浓度和取样时间如何,套袋苹果果实中毒死蜱的残留量比不套袋至少减少1/3。  相似文献   

11.
综述巴基斯坦农田土壤污水灌溉技术   总被引:2,自引:0,他引:2  
Raw sewage is widely used on agricultural soils in urban areas of developing countries to meet water shortages. Although it is a good source of plant nutrients, such sewage also increases the heavy metal load to soils, which may impact the food chain. Management options for sewage contaminated soils includes addition of nontoxic compounds such as lime, calcium sulfate and organic matter, which form insoluble metal complexes, thus reducing metal phytoavailability to plants. In this paper we review the variation in irrigation quality of sewage at different sites and its impact on the quality of soils and vegetables. Although quality of sewage was highly variable at source, yet the effluent from food industries was relatively safe for irrigation. In comparison effluent samples collected from textile, dyeing, calendaring, steel industry, hospitals and clinical laboratories, foundries and tanneries were hazardous with respect to soluble salts, sodium adsorption ratio and heavy metals like zinc, copper, iron, manganese, nickel, cobalt and cadmium. The sewage quality in main drains was better than that at the industry outlet, but was still not safe for irrigation. In general, higher accumulation of metals in fruits and vegetable roots was recorded compared to that in plant leaves. Edible parts of vegetables (fruits and/or leaves) accumulated metals more than the permissible limits despite the soils contained ammonium bicarbonate diethylenetriaminepentaacetic acid extractable metals within a safe range. In either case further scientific investigations are needed to ensure safe management strategies. Cadmium appeared to be the most threatening metal especially in leafy vegetables. It is advisable to avoid leafy vegetables cultivation in sewage irrigated areas everywhere to restrict its entry into food chain.  相似文献   

12.
Previously isolated bacterial strains for chlorpyrifos and fenamiphos degradation were used to examine their potential as bioremedial agents in soils and water containing pesticide residues. Both, chlorpyrifos-degrading Enterobacter sp and fenamiphos-degrading consortium rapidly degraded pesticides when inoculated into natural and sterile water and soils. Degradation rate was slower in lower pH soils in comparison with natural and alkaline soils. Soil organic matter had no impact on pesticide degrading ability of isolates. Soil moisture <40% of maximum water-holding capacity slowed down degradation rate. The bacterial isolates were able to rapidly degrade fenamiphos and chlorpyrifos between 15 and 35 °C but their degradation ability was sharply reduced at 5 and 50 °C. Both groups of bacterial systems were also able to remove a range of pesticide degradation. An inoculum density of 104 cells g−1 of soil was required for initiating rapid growth and degradation. Ageing of pesticide in soils prior to inoculation produced contrasting results. Ageing of fenamiphos had no impact on subsequent degradation by the inoculated consortium. However, degradation of chlorpyrifos by Enterobacter sp after aging resulted in persistence of ∼10% of pesticide in soil matrix. Higher Koc value of chlorpyrifos may have resulted in a lack of bioavailability of a smaller percentage of chlorpyrifos to degrading bacteria. Overall, this paper confirms bioremedial potential of a fenamiphos degrading consortium and a chlorpyrifos degrading bacterium under different soil and water characteristics.  相似文献   

13.
The organophosphorus insecticide, chlorpyrifos, has been widely applied in agriculture; in veterinary, against household pests; and in subterranean termite control. Due to its slow rate of degradation in soil, it can persist for extended periods in soil with a significant threat to environment and public health. The mixed and pure fungi were isolated from three soils by enrichment technique. The enriched mixed fungal cultures were capable of biodegrading chlorpyrifos (300 mg L−1) when cultivated in Czapek Dox medium. The identified pure fungal strain, Acremonium sp., utilized chlorpyrifos as a source of carbon and nitrogen. The highest chlorpyrifos degradation (83.9%) by Acremonium sp. strain GFRC-1 was found when cultivated in the nutrient medium with full nutrients. Desdiethyl chlorpyrifos was detected as a major biodegradation product of chlorpyrifos. The isolated fungal strain will be used for developing bioremediation strategy for chlorpyrifos-polluted soils.  相似文献   

14.
Experiments were conducted to evaluate the arsenic toxicity, its accumulation and phytoremediation potential of bean plants (Phaseolus vulgaris) grown in soils contaminated with different species of arsenic such as arsenite (As(III)), arsenate (As(V)) and dimethylarsinic acid (DMA). Bean plants were grown in soils amended by aqueous solutions of 20 and 50 mg kg?1 of As (III), As(V) or DMA. Arsenic species negatively affected the yield and growth of the plant. The study demonstrated arsenic accumulation in the plant parts. The concentration of arsenic compounds in the shoots decreased in the order arsenate > arsenite > dimethylarsinic acid while in the roots as arsenite > arsenate > dimethylarsinic acid. Most arsenic is accumulated in the roots with limited transfer to shoots. Thus, bean plants can be considered as an arsenic excluder and has the potential for phytostabilization of arsenic contaminated sites. The study also reveals that removal of arsenic by boiling the vegetables with excess of water is not possible.  相似文献   

15.
Effects of seed treatments with chlorpyrifos [5 g of active ingredient (ai) kg(-1) of seed] and quinalphos (6.25 g of ai kg(-1) of seed) and standing crop treatments with chlorpyrifos (800 g of ai ha(-1)) and quinalphos (1000 g of ai ha(-1)) on arginine deamination and mineralizable nitrogen were monitored, in the sandy loam and loamy sand soils of two tropical semiarid fields, for three consecutive crop seasons. The arginine ammonification activity of rhizospheric microbes was inhibited after seed treatment with chlorpyrifos and quinalphos and their principal metabolites, 3,5,6-trichloro-2-pyridinol (TCP) and 3,5,6-trichloro-2-methoxypyridine (TMP) and 2-hydroxyquinoxaline and quinoxaline-2-thiol, respectively. Quinalphos produced transient inhibitions, whereas chlorpyrifos and its metabolites (TCP and TMP) exerted a greater inhibition in both loamy sand and sandy loam soils. Arginine ammonification by nonrhizospheric microbes was stimulated by standing crop treatments with both pesticides. In the loamy sand soil, the parent compounds stimulated rhizospheric N-mineralization, whereas the metabolites were inhibitory. However, nonrhizospheric N-mineralization was inhibited by both chlorpyrifos and quinalphos and stimulated by their metabolites. A higher magnitude of inhibition of arginine deamination in the loamy sand than in the sandy loam soil could be due to greater bioavailability of the pesticides in the former, resulting from lesser sorption of the pesticides due to alkalinity of the soil and its low content of clay and organic carbon. Although both pesticides affected mineralizable nitrogen, seed treatment with quinalphos and standing crop treatment with quinalphos and chlorpyrifos produced the most significant effects. The recommended doses of the pesticides not only efficiently controlled whitegrubs, which increased pod yields, but also left no residues in harvested kernels. They also caused no long-term inhibition of ammonification, which could have been of significant concern during the short crop period in semiarid areas where nitrogen determines plant productivity.  相似文献   

16.
Urban and peri-urban agriculture in dry semi-arid northern Nigeria relies on untreated wastewater for all-year irrigation and the production of vegetables for urban markets. Human and animal exposure to potentially toxic metals is attributed to the consumption of vegetables raised in metal-polluted soils. The objective of this study was to determine the bioavailability and soil–plant transfer of Cd, Pb and Zn to amaranthus (Amaranthus caudatus) and lettuce (Latuca sativa) raised in the garden fields and to assess their safety for human consumption. Ten farmers’ fields were selected per location for analysis of Cd, Pb and Zn in soils and vegetables. Whereas total concentrations of Cd and Zn were greater than the safe or permissible limits for agricultural soils, the Pb concentration was less than its maximum allowable concentration. However, the concentration of Pb and Cd in edible portions of amaranthus exceeded the safe limit for human consumption by 7–13 times, while lettuce exceeded the limit by 11–17 times. Cadmium was more rapidly transferred from soil through root to shoot than Zn > Pb. The plant tissue concentrations of the metals were not significantly correlated with the Diethylene triamine pentaacetic acid (DTPA) and dilute CaCl2-extractable concentrations of the metals in the soils. Furthermore, permissible limit of Pb established as standards for agricultural lands may not be suitable to ensure produce safety in Urban and peri-urban agriculture (UPA) in the city of Kano.  相似文献   

17.
Experiments were conducted to study the effect of temperature and nutrition on seed germination and plant growth of different plant species. The nutrition studies of vegetables showed a normal response to fertilization rates on deficient soils at temperatures above their critical minimum. At soil temperatures below this little or no response was obtained to increased P concentration. Plant growth as affected by soil temperature was studied on beans, corn, cucumber, eggplant, pea, pepper, radish, spinach, and watermelon. Growth of peas, radish and spinach was significantly reduced by soil temperatures 10°C or lower. Corn growth was restricted when soil temperatures were maintained in the range of 12.3–14.5°C or lower, while growth of bean, cucumber, eggplant, pepper and watermelon was limited when soil temperatures were maintained in the 16.7–18.9°C temperature range or lower.  相似文献   

18.

Purpose

Chlorpyrifos can be effectively adsorbed by drinking water treatment residuals (WTR), ubiquitous and non-hazardous by-products of potable water production. The major metabolite 3,5,6-trichloro-2-pyridinol (TCP) was found to be much more mobile and toxic than its parent chlorpyrifos. To assess the feasibility of WTR amendment for attenuation of chlorpyrifos and TCP pollution, the sorption/desorption and degradation behavior of chlorpyrifos and TCP in WTR-amended agricultural soils was examined in the present study.

Materials and methods

Two representative agricultural soils were sampled from southern and northern China, respectively. The soils were amended with WTR at the rates of 0, 2, 5, and 10 % (w/w). Batch sorption/desorption test were applied to investigate the sorption/desorption characteristics of chlorpyrifos and TCP in WTR-amended soils. The influence of WTR amendment on chlorpyrifos degradation and TCP formation was evaluated using the incubation test, and its effect on the soil bacterial abundance was further studied through DNA extraction and PCR amplification.

Results and discussion

Results showed that WTR amendment (0–10 %, w/w) significantly enhanced the retention capacity of chlorpyrifos and TCP in both soils examined (P < 0.05). Fractionation analyses further demonstrated that the bioavailability of chlorpyrifos was considerably reduced by WTR amendment, resulting in a decreased chlorpyrifos degradation rate. The WTR amendment also significantly reduced the mobility of TCP formed in chlorpyrifos-contaminated soils (P < 0.001). The chlorpyrifos toxicity to soil bacteria community was largely mitigated following WTR amendment, resulting in increased total bacterial abundance.

Conclusions

Results obtained in the present study indicate a great deal of potential for the beneficial reuse of WTR as soil amendments for chlorpyrifos and TCP pollution control.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号