首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously isolated bacterial strains for chlorpyrifos and fenamiphos degradation were used to examine their potential as bioremedial agents in soils and water containing pesticide residues. Both, chlorpyrifos-degrading Enterobacter sp and fenamiphos-degrading consortium rapidly degraded pesticides when inoculated into natural and sterile water and soils. Degradation rate was slower in lower pH soils in comparison with natural and alkaline soils. Soil organic matter had no impact on pesticide degrading ability of isolates. Soil moisture <40% of maximum water-holding capacity slowed down degradation rate. The bacterial isolates were able to rapidly degrade fenamiphos and chlorpyrifos between 15 and 35 °C but their degradation ability was sharply reduced at 5 and 50 °C. Both groups of bacterial systems were also able to remove a range of pesticide degradation. An inoculum density of 104 cells g−1 of soil was required for initiating rapid growth and degradation. Ageing of pesticide in soils prior to inoculation produced contrasting results. Ageing of fenamiphos had no impact on subsequent degradation by the inoculated consortium. However, degradation of chlorpyrifos by Enterobacter sp after aging resulted in persistence of ∼10% of pesticide in soil matrix. Higher Koc value of chlorpyrifos may have resulted in a lack of bioavailability of a smaller percentage of chlorpyrifos to degrading bacteria. Overall, this paper confirms bioremedial potential of a fenamiphos degrading consortium and a chlorpyrifos degrading bacterium under different soil and water characteristics.  相似文献   

2.
The degradation of mixed (DDT and chlorpyrifos) insecticides by mixed insecticide enriched cultures was investigated. The mixed fungal population was isolated from mixed insecticide acclimatized sewage sludge over a period of 90 days. Gas chromatography was used to detect the concentration of mixed insecticides and calculate the degradation efficiency. The results showed that the degradation capability of the mixed microbial culture was higher in low concentrations than in high concentrations of the mixed insecticides. After 12 weeks of incubation, mixed pesticide enriched cultures were able to degrade 79.5-94.4% of DDT and 73.6-85.9% of chlorpyrifos in facultative cometabolic conditions. The fungal strains isolated from the mixed microbial consortium were identified as Fusarium sp. isolates GFSM-4 (ITCC 6841) and GFSM-5 (ITCC 6842). The fungal culture GFSM-4 could not utilize mixed insecticides as source of carbon and nitrogen, probably due to high combined toxicity of the mixed insecticides. Liquid media deficient in carbon (1% mannitol) and nitrogen (0.1% sodium nitrate) source increased the degradation efficiency of DDT and chlorpyrifos to 69 and 45%, respectively. The media with normal carbon and deficient nitrogen (0.1% sodium nitrate) sources extensively increased the degradation efficiencies of DDT (94%) and chlorpyrifos (69.2%). Traces of p,p'-dichlorobenzophenone and desdiethylchlorpyrifos were observed in the liquid medium, which did not accumulate probably due to further rapid degradation. This fungal isolate (GFSM-4) was able to degrade simultaneously DDT (26.94%) and chlorpyrifos (24.94%) in sterile contaminated (50 mg of each insecticide kg(-1)) soil in aerobic conditions.  相似文献   

3.
Degradation of metolachlor in soil inoculated with a mixed fungal culture   总被引:2,自引:0,他引:2  
The effect of a mixed fungal culture on the degradation of the herbicide metolachlor in soil was evaluated. Metolachlor was found to degrade up to 92% and 87% after 20 days in sterile and nonsterile soils respectively, when inoculated with a mixed culture of Aspergillus flavus and Aspergillus terricola and treated with 20 g g–1 metolachlor. When the soil was treated at 50 g g–1 level, 84% of the added herbicide degraded in inoculated sterile soil and 80% in nonsterile soil. The half-lives of metolachlor were found to be 5 and 4 times faster at the 20 and 50 g g–1 levels, respectively, in the presence of the mixed fungal culture. In treated soils, four metabolites could be identified by RP-HPLC.  相似文献   

4.
土壤微生物对苯乙烯的降解   总被引:1,自引:0,他引:1       下载免费PDF全文
本文用实验室模拟的方法研究了苯乙烯在江苏常州大通河灌区水田、旱地中的微生物降解。实验表明,30℃条件下苯乙烯在上述两种农田中均能被土壤微生物降解,其降解动力学均符合一级反应方程。在统计学基础上对二者的降解速率常数进行了比较,经检验,确有差异,旱地中微生物降解速率常数约为水田中的6.7倍。与三种氯代苯共存时,苯乙烯在水田中的微生物降解速率常数约为单独存在时的1.5倍。作者用土壤环流的方法从供试土壤中分离、鉴定了4株以苯乙烯为唯一碳源的细菌,经试验,均具降解苯乙烯能力。进一步确证了土壤微生物可以降解苯乙烯。  相似文献   

5.
A novel yeast named HQ-C-01 was isolated from activated sludge and identified as Pichia anomala based on the morphology and 18S rDNA sequence analysis. The HQ-C-01 strain degraded 95.2% of carbofuran when the insecticide was used as the only C source and added at 50 mg/L in a mineral salts medium within 48 h. The optimal concentration, temperature, and pH of medium for degradation of carbofuran were 50 mg/L, 30°C, and pH 7.5, respectively. Strain HQ-C-01 could also effectively degrade other carbamate insecticides including carbaryl, indoxacarb, and fenobucarb, and the degradation rates were 99%, 85%, and 67%, respectively. Gas chromatography–mass spectrometry analysis showed that the strain metabolized carbofuran to produce benzofuranol as the intermediate metabolite, which was further degraded. Degradation of carbofuran added at 50 mg/kg of soil was higher in yeast-inoculated soil than in the control. These results indicated that strain HQ-C-01 may potentially be used in bioremediation of carbofuran-contaminated soil.  相似文献   

6.
海藻酸钠固定化细菌对毒死蜱的降解特性   总被引:2,自引:0,他引:2  
毒死蜱的生产和使用日趋广泛,由其造成的环境污染和危害不容忽视。微生物是影响有机磷农药在环境中降解的最主要因素,也被认为是降解有机磷农药最可靠而高效的途径。固定化技术是提高微生物降解农药效率的有效方法之一。本研究以海藻酸钠为载体,采用注射器滴定法将蜡状芽孢杆菌(Bacillus cer-eus)HY-1用海藻酸钠溶胶包埋,研究了反应时间、固定化菌接入量、pH和毒死蜱初始浓度对毒死蜱降解的影响以及固定化菌的重复使用效果。结果表明:海藻酸钠固定化菌能够高效降解基础培养基中的毒死蜱,制备固定化小球海藻酸钠溶胶的最适浓度为2.5%(w/v),小球的平均粒径为3 mm。在培养时间为60 h时,固定化菌对100 mg·L-1毒死蜱的降解率达到最大。固定化小球接入量为160 g·L-1时,对100 mg·L-1毒死蜱的降解率最高。固定化菌对毒死蜱的降解有着较宽泛的pH适应范围,碱性环境更有利于其对毒死蜱的有效降解。当毒死蜱初始浓度为80 mg·L-1和100 mg·L-1时,固定化菌对毒死蜱的降解率较高,达90%左右。固定化菌可重复利用降解毒死蜱,当利用4次后,固定化小球虽已发生崩解,但对100 mg·L-1毒死蜱的降解率仍高达47%。因此,海藻酸钠固定化蜡状芽孢杆菌对水体中毒死蜱的降解率较高,环境适应性较强,固定化菌可在毒死蜱污染的净化去毒方面发挥重要作用。  相似文献   

7.
利用微生物消除农药污染是一项安全、经济、有效的方法,降解动力学模型的构建有助于理解污染物的生物降解行为和估测系统中特征污染物的浓度变化,菌株对高浓度污染物的降解效果是降解菌在受污染水体中实际应用的关键。本研究采用基础培养基中定量添加毒死蜱和定时取样分析毒死蜱残留浓度的方法,探讨两株蜡状芽孢杆菌(HY-1和HY-2)的接种体培养时间、接种量和降解菌对毒死蜱的降解动力学,同时研究了降解菌对高浓度毒死蜱的降解率。结果表明:HY-1和HY-2最适接种体培养时间分别为10 h和19 h,接种体培养时间对菌株降解毒死蜱的影响较大。两菌株最适接菌量为8%(v/v),接种量从4%增至8%时,接种量对HY-1降解毒死蜱的影响大于HY-2。当毒死蜱的初始浓度为40 mg.L 1、80 mg.L 1、100 mg.L 1和120 mg.L 1时,一级动力学方程ln(C0/Ct)=kt可以用来拟合两菌株对毒死蜱的降解动力学及确定降解动力学参数,当毒死蜱初始浓度再次增加时,仅HY-2对毒死蜱的降解符合一级动力学方程。当毒死蜱初始浓度为40~120 mg.L 1时,菌株HY-1对毒死蜱的降解速率常数分布在0.013 5~0.015 7;当毒死蜱初始浓度为40~200 mg.L 1时,菌株HY-2的降解速率常数分布在0.008 0~0.015 3。菌株HY-2比HY-1可以在较高的毒死蜱浓度下发挥降解作用,且降解率较高。因此,两菌株在毒死蜱污染水体的净化去毒方面具有重要意义。  相似文献   

8.
通过室内盆栽试验模拟自然环境条件,采用高效液相色谱(HPLC)和末端限制性片段长度多态性(T-RFLP)技术,研究了土壤使用推荐剂量(5 mg·kg~(-1))及推荐剂量的2倍、3倍和4倍(10 mg·kg~(-1)、15 mg·kg~(-1)、20 mg·kg~(-1))毒死蜱对棉花根际土壤细菌群落多样性和结构的影响,以不施用毒死蜱的土壤为对照。结果表明,5 mg·kg~(-1)、10 mg·kg~(-1)、15 mg·kg~(-1)和20 mg·kg~(-1)毒死蜱在土壤中的半衰期分别为10.04 d、11.36 d、11.55 d和12.16 d,60 d时基本完全降解。毒死蜱处理60 d后,棉花生物量显著降低;毒死蜱浓度越高,棉花生物量越低。无毒死蜱条件下不同取样时间根际细菌多样性无显著差异,毒死蜱处理组前30 d细菌多样性均显著降低,60 d时毒死蜱处理组细菌多样性恢复到正常水平。研究发现毒死蜱浓度越高对细菌多样性抑制作用越显著,恢复越缓慢。主成分分析结果发现,第10 d、30 d和60 d毒死蜱处理组与对照组细菌群落结构差异显著,其中60 d时20 mg·kg~(-1)毒死蜱处理组差异最显著,即使土壤中毒死蜱完全降解,根际细菌群落结构仍不会恢复到正常水平。60 d时,被毒死蜱抑制的细菌有硝化刺菌属(Nitrospina sp.)和Cellulophaga sp.等,被激活的有芽孢杆菌属(Bacillus sp.)和链霉菌属(Streptomyces sp.)等。可见,毒死蜱的引入,重新构建了土壤细菌群落结构,显著影响棉花生长,对棉花根际土壤微生态环境冲击较大,应对其生态安全性予以重视。  相似文献   

9.
A key issue when researching land degradation is the pollution of soils. For bioremediation of contaminated soil, Burkholderia sp. XTB‐5 cells were obtained from soil and grown on mineral salt medium with initial phenol concentrations of 650 mg L−1 and 850 mg L−1, which were found to degrade more than 98% of phenol content in less than 4 days. About 90% of phenol content (with initial concentration of 250 mg kg−1 soil) was removed from soil inoculated with XTB‐5 cells in 6 days. More than 90% of phenol content was removed within 20 days after co‐introduction of XTB‐5 cells and plants to sterilized soil in a greenhouse or to natural soil in field trials. But under the same conditions, individual introduction of plants to sterilized soil in the greenhouse reduced phenol content by about 50% and introduction to natural soil in field trials reduced phenol content by about 38%, suggesting that phytoremediation of phenol is often inefficient and microorganisms can efficiently degrade this pollutant. In addition, strain XTB‐5 was found to solubilize phosphate and produce 1‐Aminocyclopropane‐1‐Carboxylate (ACC) deaminase and siderophore. Strain XTB‐5 promoted plant growth in both phenol‐absent and phenol‐spiked soil under greenhouse and field conditions. Considering that ACC deaminase is beneficial to plant growth under adverse environmental conditions, plant growth promotion by XTB‐5 in phenol‐contaminated soil is not only due to XTB‐5 cell‐degradation of phenol and reduced phytotoxicity but also to production of ACC deaminase. Hence, Burkholderia sp. XTB‐5 presents an attractive microorganism for phytoremediation of contaminated soil and agronomic application. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Recently, two strains related to Burkholderia terrae, denoted BS001 and BS110, were shown to be strongly interactive with the soil fungus Lyophyllum sp. strain Karsten, forming a biofilm around the L. sp. strain Karsten hyphae and migrating along growing hyphae in soil. Here, we extend the findings obtained with strains BS001 and BS110 and show that the migratory ability with extending fungal hyphae is actually distributed among four Burkholderia phylotypes obtained from a range of soils with different characteristics. The majority of the migrating strains fell into a rather narrow group related to the original strain B. terrae BS001, but others fell in groups related to B. terricola, B. xenovorans and B. phytofirmans. To obtain these novel strains, bacterial inocula were obtained as cell extracts from eight soils and subsequently introduced into four (sandy acidic) pre-sterilized soils in microcosms which were then colonized by L. sp. strain Karsten or kept without this fungus. After 2 weeks of incubation, the soil microcosms were sampled at the migration front and samples were plated on semi-selective PCAT agar medium next to R2A medium. A total of 19 strains that had revealed the capability to comigrate with the fungus were obtained from this set-up, whereas four other strains were found in previous field work. Strains were analysed by BOX-PCR, pulsed-field gel electrophoresis, partial 16S rRNA gene similarity, metabolic profiling using BIOLOG and for the presence of a type three secretion system (TTSS). All strains belonged to the genus Burkholderia. Following this, selected strains were shown to be capable of single-strain comigration with the L. sp. strain Karsten hyphae through different soils. However, their avidity to do so differed across soils. For their ecological competence, the four different comigrating phylotypes may rely on their capacities to migrate as well as consume fungal-released compounds.  相似文献   

11.
Arbuscular mycorrhizal spores and glomalin-related soil protein (GRSP) isolated from acid soils were analyzed using confocal laser scanning microscopy (CLSM) for Al detection. Mycorrhizal structures of Glomus intraradices produced under in vitro conditions as well as spores and GRSP from neutral and Cu-polluted soils were used as contrasting criteria. Spores and GRSP from soils with 7 and 70% Al saturation showed autofluorescence which increased especially at the highest soil Al level and when Al3+ solution was added. G.intraradices spores showed fluorescence only when exogenous Al3+ was added. On the contrary, spores and GRSP from neutral and Cu-polluted soils showed little or no significant fluorescence. This fluorescence shown by fungal structures and GRSP when subjected to high Al (of endogenous or exogenous origin) suggest a high capacity for Al immobilization, which could be an effective way to reduce Al activity and phytotoxicity in acid soils.  相似文献   

12.
Summary Experiments were conducted to determine the extent to which populations of Bradyrhizobium sp. strain Tal 209SR were suppressed by the antagonistic activity of a Streptomyces sp. isolated from a highly weathered tropical soil. The activity of the actinomycete was evaluated in culture medium in the presence or absence of clay minerals and in the soil from which the actinomycete was isolated after sterilization by gamma-irradiation. The presence of the actinomycete in culture medium was associated with a significant reduction in the density of Bradyrhizobium sp. (Tal 209SR). Nevertheless, the density of the Bradyrhizobium sp. surviving in the medium in the presence of the actinomycete was much higher than that normally observed when comparable densities of rhizobia are introduced into non-sterile soils. The presence of the antagonistic actinomycete in culture medium was associated with a drastic decrease in the optical density of the medium. This decrease was accompanied by a significant decrease in the insoluble exopolysaccharide content of the medium in addition to the significant decrease in bradyrhizobial cells. The actinomycete did not appear to significantly influence the growth and survival of the test Bradyrhizobium sp. in sterile soil. The inability of the actinomycete to significantly antagonize the test bacterium in sterile soil was not adequately explained by the presence of clay minerals.Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No. 3129  相似文献   

13.
Soil texture can be an important control on soil organic carbon (SOC) retention and dynamics. The (clay + silt)-sized SOC pool (SOC < 20 μm) in non-cultivated or grassland soils has been proposed to reach an equilibrium or maximum level named protective capacity. Proper knowledge of SOC in this size fraction in non-cultivated and cultivated Black soils is important to evaluate management-induced changes in SOC in NE China. Twenty-seven paired soil samples (non-cultivated vs. cultivated) were collected in the Black soil zone in Heilongjiang and Jilin provinces. Bulk soil was dispersed in water with an ultrasonic probe and then soil size fractions were collected using the pipette technique for SOC analyses. Soil organic carbon in bulk soil and size fractions was measured by dry combustion. Average content of SOC < 20 μm was 23.2 g C kg−1 at the 0–30 cm depth for the non-cultivated soils, accounting for 75.1% of the total SOC at the same depth. There was significant positive relationship between soil clay plus silt content and SOC < 20 μm in non-cultivated soils. Accordingly, a model of the maximum SOC < 20 μm in 0–30 cm depth of non-cultivated Black soils was developed: y = 0.36x where y is the maximum SOC < 20 μm pool (g C kg−1) and x is the percentage of clay + silt (<20 μm) content. The average content of SOC < 20 μm was 18.7 g C kg−1 at 0–30 cm depth for cultivated soils, accounting for 81.5% of total SOC. This average value of SOC was 4.4 g C kg−1 less than the maximum value (23.1 g C kg−1) and accounted for 55.0% of the difference of SOC between non-cultivated and cultivated Black soils. Cultivation resulted in 45.0% loss of sand-sized (>20 μm) SOC concentration relative to SOC < 20 μm. This result indicates that SOC < 20 μm and sand-sized SOC both play important roles in SOC dynamics resulting from management practices. This model can be applied to calculate the actual potential to restore SOC for cultivated Black soils under conservation tillage in NE China.  相似文献   

14.
Salt-tolerant isolates Bacillus pumilus, Pseudomonas mendocina, Arthrobacter sp., Halomonas sp., and Nitrinicola lacisaponensis isolated from high saline habitats exhibited plant growth-promoting traits like P solubilization and indole acetic acid (IAA), siderophore, and ammonia production. These isolates were inoculated in wheat to assess microbe-mediated responses and plant growth promotion in salt affected soil. Maximum shoot and root length (33.8 and 13.6 cm) and shoot and root biomass (2.73 and 4.48 g dry weight) was recorded in plants inoculated with B. pumilus after 30 days. Total chlorophyll content was maximum in the leaves of the plants treated with Halomonas sp. (24.22 mg g−1 dry weight) followed by B. pumilus (23.41 mg g−1 dry weight) as compared to control (18.21 mg g−1 dry weight) after 30 days. Total protein content was maximum in Arthrobacter sp. inoculated plant leaves (3.19 mg g−1 dry weight) followed by B. pumilus (2.47 mg g−1 dry weight) as compared to control (2.15 mg g−1 dry weight) after 30 days. Total carotenoid content was maximum in plants inoculated with Halomonas sp. (1,075.45 and 1,113.29 μg g−1 dry weight) in comparison to control (837.32 and 885.85 μg g−1 dry weight) after 15 and 30 days. Inoculation of bacterial isolates increased presence of individual phenolics (gallic, caffeic, syringic, vanillic, ferulic, and cinnamic acids) and flavonoid quercetin in the rhizosphere soil. The concentration of IAA in rhizosphere soil and root exudates was also higher in all treatments than in control. Accumulation of phenolics and quercetin in the plants played a cumulative synergistic role that supported enhanced plant growth promotion of wheat in the stressed soil.  相似文献   

15.
A newly isolated white-rot fungus, Armillaria sp. strain F022, was isolated from the decayed wood in a tropical rain forest. Strain F022 was capable of decolorizing a variety of synthetic dyes, including azo, triphenylmethane, and anthraquinone dyes, with an optimal efficiency of decolorization obtained when dyes added after 96 h of culture, with the exception of Brilliant Green. All of the tested dyes were decolorized by the purified laccase in the absence of any redox mediators, but only a few were completely removed, while others were not completely removed even when decolorization time was increased. The laccase, with possible contributions from unknown enzymes, played a role in the decolorization process carried out by Armillaria sp. F022 cultures, and this biosorption contributed a negligible part to the decolorization by cultures. The effect of dye to fungal growth was also investigated. When dyes were added at 0 h of culture, the maximum dry mycelium weight (DMW) values in the medium containing Brilliant Green were 1/6 of that achieved by the control group. For other dyes, the DMW was similar with control. The toxic tolerance of dye for the cell beads was excellent at least up to a concentration of 500 mg/l. The optimum conditions for decolorization of three synthetic dyes are at pH 4 and 40°C.  相似文献   

16.
This study evaluated carbon and nutrient distributions within water-stable aggregates (WSA) of soils of two contrasting ecosystems under different land uses. Surface soil samples were collected from uncultivated and cultivated land in rainforest and savannah agro-ecological areas and separated by wet-sieving technique into 4.76–2.0, 2.0–1.0, 1.0–0.50, 0.50–0.25 and <0.25 mm aggregate fractions. The results show that irrespective of the agro-ecological area, cultivation significantly (p < 0.05) reduced the macroaggregate fractions (>0.25 mm) to smaller diameters. Distribution of organic carbon (C), total nitrogen (N) and available phosphorus (P) within the WSA showed preferential enrichment of these elements in the large macroaggregate fraction (4.76–2.0 mm) for the uncultivated soils and microaggregate fraction (<0.25 mm) for the cultivated soils. The overall pattern indicates higher accumulation of C, N and P in the WSA of the uncultivated soils over the cultivated soils. Average distribution of total exchangeable bases (TEB), i.e., sum of Ca2+, Mg2+, K+ and Na+, within WSA of the uncultivated soils of the rainforest region were 7.35 and 7.39 cmol/kg for 4.76–2.0 and <0.25 mm fractions, respectively. The distributions of TEB for cultivated soils of the rainforest region were 2.76 cmol/kg (4.76–2.0 mm fraction) and 7.73 cmol/kg for <0.25 mm fraction. This showed that cultivation significantly (p < 0.05) led to 62% reduction in these nutrients in the 4.76–2.0 mm fraction and 5% increase in concentrations of these cations in <0.25 mm fraction. For savannah soils, distributions of TEB were 7.44 and 6.77 cmol/kg for 4.76–2.0 and <0.25 mm fractions, respectively, in uncultivated sites, whereas TEB were 2.19 cmol/kg (4.76–2.0 mm) and 6.35 cmol/kg (<0.25 mm) for cultivated savannah. This indicated that cultivation significantly (p < 0.05) led to 71% and 6% reductions in Ca2+, Mg2+, K+ and Na+ concentrations within the 4.76–2.0 and <0.25 mm aggregate fractions, respectively. However, there were 18% and 50% increase in these elements in the 2.0–1.0 and 1.0–0.50 mm fractions of the cultivated soils of the savannah region, respectively. The general trend showed that in uncultivated soils, the 4.76–2.0 and <0.25 mm fractions were preferentially enriched with Ca2+, Mg2+, K+ and Na +; whereas, cultivation led to redistribution of these elements into the smaller aggregates. Since smaller aggregates are preferentially removed by erosion, this study underscores the need for sustainable soil management practices that would minimize nutrient loss when forest or fallow lands are converted to cropland.  相似文献   

17.
Using a soilless culture system mimicking tropical acidic peat soils, which contained 3 mg of gellan gum and 0.5 mg NO3?-N per gram of medium, a greenhouse gas, N2O emitting capability of microorganisms in acidic peat soil in the area of Palangkaraya, Central Kalimantan, Indonesia, was investigated. The soil sampling sites included a native swamp forest (NF), a burnt forest covered by ferns and shrubs (BF), three arable lands (A-1, A-2 and A-3) and a reclaimed grassland (GL) next to the arable lands. An acid-tolerant Janthinobacterium sp. strain A1-13 (Oxalobacteriaceae, β-proteobacteria) isolated from A-1 soil was characterized as one of the most prominent N2O-emitting bacteria in this region. Physiological characteristics of the N2O emitter in the soilless culture system, including responses to soil environments, substrate concentration, C-source concentration, pH, and temperature, suggest that the N2O emitting Janthinobacterium sp. strain A1-13 is highly adapted to reclaimed open peatland and primarily responsible for massive N2O emissions from the acidic peat soils. Regulation of N2O emitters in the reclaimed peatland for agricultural use is therefore one of the most important issues in preventing the greenhouse gas emission from acidic peat soil farmlands.  相似文献   

18.
Purpose

Bioremediation using microorganisms is a promising strategy to remediate soil with petroleum hydrocarbons. Streptomyces sp. Hlh1, an endophytic strain, has previously demonstrated the ability to degrade crude petroleum in liquid culture. To apply this strain at field scale, it is necessary to test its ability to colonize the soil, compete with native microbiota, and remove the petroleum hydrocarbons under unfavorable conditions. Herein, a study was conducted to evaluate the performance of Streptomyces sp. Hlh1 to remove crude petroleum from contaminated sterilized and non-sterilized soils.

Materials and methods

Soils samples, contaminated with 2%, 5%, and 10% of petroleum, were inoculated with Streptomyces sp. Hlh1, and incubated at 30 °C for 4 weeks. At the end of bioremediation assays, the pollutant concentrations were determined by Gas chromatography flame ionization detector and the degradation rates were also calculated. The survival of the strain in the soil was estimated and the toxicity of metabolites was evaluated on Lactuca sativa.

Results and discussion

Streptomyces sp. Hlh1 was able to grow and remove total petroleum hydrocarbons (TPH), n-alkanes, and aromatic hydrocarbons found in soil samples. In sterilized soil samples, Streptomyces sp. Hlh1 removed up to 40% of TPH at an initial concentration of 10%. Whereas, the maximum TPH removal reached was 55% in non-sterilized soil at an initial concentration of 2%. In addition, it was observed that the degradation of aromatic hydrocarbons was more active than n-alkanes. The strain grew well and produced high biomass in contaminated soil. Lettuce seedling was found to be the adequate bioindicator to assess the toxicity of petroleum end products. Streptomyces sp. Hlh1 performed a successful bioremediation, which was confirmed through the phytotoxicity test.

Conclusions

The study shows the first insight of the contribution of free endophytic actinobacterial strain in the bioremediation of petroleum-contaminated soil; therefore, it suggests that Streptomyces sp. Hl1 can be usefully exploited at field scale.

  相似文献   

19.
Summary Selective grazing of fungi by soil microarthropods may affect decomposition rates of litter materials and the structure of microarthropod and fungal communities. We developed laboratory methods to assay feeding selectivity and investigated the preferences of the collembolan Folsomia candida on three fungi: Acremonium sp., Paecilomyces varioti, and Penicillium citrinum. F. candida showed stronger preference for Acremonium sp. than for P. varioti and P. citrinum. Oviposition site selection followed the same pattern. Actively metabolizing hyphae of Acremonium sp. and P. varioti were preferred over senescent hyphae, while spores of P. citrinum were preferred over active hyphae. If microarthropod preference for active hyphae is extensive, microarthropod regulation of decomposition could be more important than their biomass indicates. Furthermore, as the P. citrinum results indicate, mechanisms of microbial dissemination may include selective grazing.Contribution in part to International Symposium on Faunal Influences on Soil Structure, Edmonton, Alberta, Canada (11–13 June 1984), organized by W. B. McGill; and the annual meeting of the Ecological Society of America, Minneapolis, Minnesota (17–21 June 1985)  相似文献   

20.
Summary We studied the effects of limining on growth and nutrient concentrations of Brachiaria decumbens inoculated with five vesicular-arbuscular mycorrhizal (VAM) fungal assemblages which orginated from soils with different acidity. Liming increased plant growth when applied at rates up to 3 g kg-1 soil and depressed growth at higher rates. Mycorrhizal plants grew better than non-mycorrhizal ones in unlimed soil and also liming rates of 4.5 and 6.0 g kg-1 soil. The growth amelioration effects of VAM in highly acid or over-limed soils were related to nutrient uptake. VAM fungi isolated from an acidic soil exhibited a high symbiotic effectiveness and were better adapted to unlimed soil than those that originated from non-acidic soils. VAM root colonization, 90 days after planting, was little affected by liming. Fungal spore production and species compositions were highly affected by liming. A mixture of Glomus diaphanum and Glomus occultum predominated in unlimed soils inoculated with VAM assemblages isolated from non-acidic soils. In these fungal assemblages, an increased liming rate favored Glomus etunicatum over the other VAM fungi. Gigaspora margarita sporulated abundantly when introduced into unlimed soils, but rarely in limed soils. VAM appear to be crucial for the establishment of brachiaria pastures in the nutrient-deficient acidic soils of Central Brazil. It is suggested that liming may cause striking shifts in VAM populations which may, in turn, have a long-term impact on agricultural productivity in the tropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号