首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Abstract

Fixation of the ammonium ion (NH4 +) by clay minerals is an alternate way of building the nitrogen (N) pool in soil to optimize N crop recovery and minimize losses. Clay minerals (illite, montmorillonite, and vermiculite) and an illitic Portnoeuf soil were used to compare NH4 + fixation abilities. Total N determination and X‐ray diffraction analysis were performed on each of the minerals and the Portnoeuf soil controls, and NH4 + saturated batches were subsequently desorbed by potassium chloride (KCl) after 4096 hours. Total N was determined for each employing either Kjeldahl digestion only, or pretreating with hydrofluoric‐hydrochloric acid (HF‐HCl) before the Kjeldahl digestion. The total N for the soil was 38% more after pretreatment with HF‐HCl. The total N determined after pretreatment with HF‐HCl for the NH4 + saturated and subsequently KCl desorbed minerals was found to be highest in vermiculite. The cation exchange acapacity (CEC) of each of the minerals was determined, and highest CEC was found in montmorillonite [83.07 cmol(+)/kg]. X‐ray diffraction analysis revealed collapse of the vermiculitic clay lattice from an initial d‐spacing of 13.1 angstrom to 10.4 angstrom after desorprion by KCl. This suggested the existence of sequestered NH4 + between the 2: 1 vermiculitic clay interlayer lattice.  相似文献   

2.
许冀泉  杨德涌 《土壤学报》1964,12(3):275-285
西藏高原突起于我国西南,绝大部分地面的海拔高度在4000米以上,为世界上最高的大高原。它大致在第三纪开始形成,后来曾受第四纪冰川的深刻作用,高山顶部至今仍是冰川的活动场所[1,2]。高原为昆仑山、唐古拉山、喜马拉雅山和横断山等大山脉所盘踞。  相似文献   

3.
Abstract

In view of the agronomic and economic significance of NH4 fixation in soils, an attempt has been made to relate this to the most reactive mineral constituents of soils ‐ the clay minerals, under the temperature‐moisture regimes normal to tropical upland rice soils. Laboratory fixation study was done with NH4, concentrations similar to those common in soils upon N fertilization, and under alternate wetting and drying at ambient temperatures rather than at 100°C as in many published studies.

Results of the investigation show that soil clays with dominant vermiculite and montmorillonite fix the greatest proportion of applied NH4 (94 and 91%), followed by beidellite (72%) and x‐ray amorphous (45–64%) clays. Fixation is negligible (10%) in the clay with mineral suite consisting of hydrous mica, halloysite, and chlorite. Crystallinity of minerals seems to influence NH4 fixation appreciably.  相似文献   

4.
The presence of so-valled chlorite-like minerals has been reported in many soils of not only acid but also of alkaline reaction (1). The minerals have been designated by, many terms, for example, dioctahedral vermiculite (2), dioctahedral analogue of vermiculite (3), 14A mineral (4), chlorite-like mineral (5), interstratified chlorite-vermiculite (6), intergradient chlorite-expansible 2:1 layer silicate, intergradient chlorite-vermiculite, intergradient chlorite-vermiculite-montmorillonite, intergrade, or interlayered vermiculite (7), and 2: 1-2: 2 intergrade (1). The minerals designated by these terms are evidently of the same category, and some of them are synonymous. Although they are of intermediate properties, between true chlorite and true vermiculite or montomorillonite, they could be regarded as an independent group of minerals in the course of pedochemical weathering. Jackson (1), for instance, has given the minerals the position of “weathering index 9”, placing them between vermiculite and kaolin as equivalent to montmorillonite, or secondary chlorite and kaolin in his weathering sequence. An explanation of the diagenesis of the minerals has been recently attempted by synthesis of the chlorite-like structures from montmorillonite (8), (9) and vermiculite (10) and mineralogical analyses of soil clay fractions (7).  相似文献   

5.
Chemical and mineralogical properties of a soil chronosequence in the high mountain zone between 3857 m and 4120 m a.s.l. in Central Nepal (Langtang valley) are presented. The soils have been developed in moraine deposits which consist of acid gneisses. They were classified as Entisols, and Spodosols. XRD analyses of the clay and fine silt fraction show increasing changes with distance from the recent Lirung glacier, depending on the time of deposition, resp. soil age. Alteration of illite to interstratified minerals and to hydroxy-Al interlayered minerals or pedogenic chlorite with increasing soil development could be observed. The interstratified minerals could be identified as random and regular illite-interlayered vermiculite mixed-layer minerals. Intensification of the X-ray signals of the fine silt fraction is given compared to the clay. With increasing soil development differences between the clay and fine silt fraction seem to increase. Indications are given of interstratification of the mica-pedogenic chlorite and chloriteinterlayered vermiculite type in the more intensively weathered soils.  相似文献   

6.
For the past ten years much work has been carried out on clay minerals of volcanic ash soils. Most investigators have reported that allophane is dominant among clay minerals of volcanic ash soils and crystallizes to halloysite or meta-halloysite with the advance of weathering (1–8). On the other hand, UCHIYAMA, MASUI and ONIKURA (1960) found that montmorillonite predominates in the clay fraction of volcanic ash soil in Kawatabi (9). Furthermore, MASUI, SHOJI and UCHIYAMA (1966) showed that the major crystalline clay minerals of volcanic ash soils in the Tohoku district are montmorillonite, vermiculite, intergradient montmorillonite-vermiculite and chlorite (10). They also showed that these minerals increase with the advance of weathering and that kaolin minerals are minor constituents.  相似文献   

7.
Potassium (K) deficiency is widespread in crops on highly weathered upland soils under a tropical monsoonal climate. Critical assessment of the forms of K in soils and of the ability of soils to release K for plant uptake is important for the proper management of K in crop production. The relationships between different pools of K were investigated as a function of silt and clay mineralogy for 14 upland Oxisols and 26 upland Ultisols soils from Thailand. Most soils contained no K-minerals in the silt fraction. XRD showed that kaolinite is the dominant clay mineral with variously minor or moderate amounts of illite, hydroxy-Al interlayered vermiculite and smectite present in some soils. For some soils, both conventional and synchrotron XRD were unable to detect illite. Analytical TEM including EFTEM of individual clay crystals showed that clay in the apparently illite-free samples contained very small amounts of illite. Many kaolinite particles appear to contain K which may be present in illite interleaved with kaolinite crystals. A glasshouse K-depletion experiment was conducted to assess the K supply capacity and changes in chemical forms of K and K-minerals using exhaustive K depletion by Guinea grass (Panicum maximum). Potassium deficiency symptoms and mortality of plants occurred on light textured soils, whereas plants survived for six harvests for Oxisols with clay texture, relatively high CEC and higher NH4OAc-K (exchangeable K plus water-soluble K). There is a strong linear relationship of unit slope between NH4OAc-K and cumulative K uptake by plants indicating that NH4OAc-K is a major form of K available to plants. Thus K-bearing minerals contributed little K to plants over the time scale of the experiment and XRD patterns of whole soil samples, silt and clay from soils after cropping mostly showed no change from those for the initial soil. An exception was for a single surface soil clay where a minor amount of smectite was formed from illite by K release to plants.  相似文献   

8.
Since Gruner's pioneer work in 19341), vermiculite has been attracting the attention of mineralogists and soil scientists with much interest, probably because of its unique behaviour on cation exchange and of a component common in most soils derived from various parent rocks. A number of papers thereafter dealt with the mineral, revealing its properties, diagenesis, and distribution in soils. However, as information has been accumulated on vermiculite, especially on clay vermiculite, it became evident that the difference between vermiculite and montmorillonite is due simply to the difference in layer charge and that the division is essentially an arbitrary one2). Walker suggested that the Mg plus glycerol test would be the only one which appeared to be universaIlY valid in the identification of vermiculite, and that although the K test was still of value as an aid in the differentiation, it could no longer be reo commended as of universal validity. In recent years, several workers4-12) indicated that interlayer materials, especially Al-hydroxyls, prevented vermiculite from contracting to 10 Å in the K test and prevented montmorillonite from expanding to 18 Å in the Mg-glycerol test. This suggests that in the light of new evidences the 14 Å mineral hitherto believed as vermiculite, chlorite, or montmorillonite by the classical test should be reexamined after removal of interlayer materials.  相似文献   

9.
欧锦琼  黄伟濠  卢瑛  李博  阳洋  唐贤  贾重建  秦海龙 《土壤》2020,52(6):1290-1297
黏粒矿物影响着土壤理化性质,可指示成土因素特征和土壤发生发育过程/强度,也是中国土壤系统分类的基层单元土族矿物学类型划分的重要依据。本研究选择了广西不同纬度和成土母质的18个代表性水耕人为土的剖面,应用X射线衍射(XRD)方法分析了其典型水耕氧化还原层(Br层)的黏粒矿物组成及其空间分布特征,并确定了其中“黏质”剖面的土族控制层段矿物学类型。结果表明:(1)供试土壤的黏粒矿物主要包括高岭石、伊利石、三水铝石、1.42 nm过渡矿物、蒙脱石和蛭石等,依次分别出现在100%、88.9%、72.2%、61.1%、44.4%和38.9%的剖面中。(2)黏粒矿物组成在纬度空间分布上具有明显规律性特征。随着纬度降低,土壤黏粒中的高岭石增加,伊利石、蒙脱石、1.42nm过渡矿物逐渐减少;纬度>23°N区域内,成土母质对黏粒矿物组成影响明显。(3)纬度23°N是黏粒矿物组成和土族矿物学类型分界线,<23°N区域,黏粒矿物均以高岭石为主,是“黏质”剖面的土族控制层段的主要矿物学类型;>23°N区域,黏粒矿物组成以高岭石、蒙脱石、伊利石或1.42 nm过渡矿物为主,因成土母质不同而异,“黏质”剖面的土族控制层段矿物学类型包括高岭石混合型、混合型和伊利石型。  相似文献   

10.
The formation of partially interlayered vermiculite (PIV) was studied in six Dystrochrepts derived from Tertiary sediments. Mineralogy of silt and clay fractions of gravel and fine earth separated from surface and subsurface samples were determined by X-ray diffraction. PIV, mica, vermiculite and regularly interstratified 1:1 PIV/chlorite (PIV/Ch(l:l)) were the dominant clay minerals. The contents of these minerals were compared between the specific particle-size fractions of gravel and fine earth for each sample and the difference was interpreted in terms of mineral transformation associated with soil formation. PIV was formed from mica and PIV/Ch(l:l) in soils with a pH(KCl) of 3.5 to 4.0 and little organic matter. Vermiculite was formed from mica in surface soils with a low pH (pH(KCl) 3.5) and abundant organic matter. PIV would form directly from mica without an intermediary phase of vermiculite and form from PIV/Ch(l:l) by partial dissolution of interlayers in chlorite layers.  相似文献   

11.
The transformation of hydroxy-interlayered vermiculite (HIV) to vermiculite in humid temperate soils may involve the gradual alteration of illitic minerals. However, it is difficult to detect such minor and progressive changes using conventional methods. We measured the amount of the frayed edge site (i.e. the weathering front of illitic minerals) in soil clays using Radiocaesium Interception Potential (RIP) methodology, and elucidated the effect of hydroxy-Al polymers on the frayed edge site that may be occluded within HIV structures in the acidic soils of southwestern Japan. X-ray diffraction patterns showed the progressive transformation of HIV to vermiculite, or further, to smectite in soil clays located in upper horizons and therefore subjected to more intensive podzolization. In this process, the amount of hydroxy-Al polymers (represented by hot-citrate Al) gradually decreased, while the vermiculitic charges increased (represented by Cs-fixing capacity). However, the amount of the frayed edge site (represented by the RIP) firstly increased but then reversed and decreased in the upper layers of podzolic soils. After hot-citrate extraction to remove the hydroxy-Al polymers from HIV, the amount of the frayed edge site increased in HIV-dominated clays, whereas there was a negligible increase in vermiculitic- or smectitic-clays, thus indicating the blockage effect of hydroxy-Al polymers on the frayed edge site. The sequential increase followed by the decrease that we documented in the amount of the frayed edge site along with the HIV-vermiculite-smectite transformation, suggested that the weathering front of illitic minerals was exposed as the HIV layers lose hydroxy-Al polymers. Thereafter, the charges in the exposed frayed edge site might decline under the very acidic conditions of the upper layers of podzolic soils.  相似文献   

12.
The mineralogies of ‘Tirs’ (Typic Pelloxererts), and ‘Debs’ (Typic Haploxerolls and Typic Xerochrepts) soils of the Gharb plain in north-western Morocco are investigated, with special attention given to the determination of the nature of the smectitic phase using the lithium test (Li test) and the alkylammonium method. The sand and silt mineralogy of Tirs soils is dominated by quartz with small amounts of feldspars and kaolinite. The sand and silt fractions of Dehs soils also contain significant amounts of mica, chlorite, and interstratified phyllosilicates. The clay minerals of Tirs soils are predominantly a high-charge smectite. The estimated interlayer charge for this phase is 0.61 mol(c)/O10(OH)2 and the fraction of tetrahedral charge varies from 38 to 44%. Although the percentage tetrahedral charge is less than 50%, the smectitic phase behaves as beidellite with the Li test. Dehs clays are more heterogeneous, consisting of smectite, vermiculite, illite, kaolinite, chlorite, and interstratified illite/smectite and illite/vermiculite. The Li test and the alkylammonium method demonstrate that a high-charge smectite or vermiculite is interstratified with illite. A low-charge montmorillonite is also present both in Tirs and in Dehs soils. The high-charge beidellitic phase is believed to be a transformation product of mica, whilst the low charge montmorillonite is thought to be inherited from the parent material.  相似文献   

13.
对太湖平原地区高产的黄泥土型水稻土的全土(<1毫米)及7个粒级(1—0.25,0.25—0.05,0.05—0.01,0.01—0.005,0.005—0.002,0.002—0.001和<0.001毫米)共8个土样,进行测定。结果表明:黄泥土粘粒部分(<0.002毫米)的粘土矿物,主要由水云母、高岭和蒙脱组成。粗粘粒级(0.002—0.001毫米)和细粘粒级(<0.001毫米)中粘土矿物的分配有明显差异;砂粒级(1—0.05毫米)中除了主要的石英外,还含有少量“铁锰砂”,所以该粒级中的SiO2含量较粉粒级(0.05—0.002毫米)的低,而Fe2O3的含量则相反,容积磁化率也较高;可塑性和膨胀性都是在<0.002毫米时才始现。上述特点与作者过去所研究的白土型水稻土类似。但是,与国内外报道的几种旱地土壤的资料有所不同。  相似文献   

14.
Background, Aims, and Scope  Hydroxy interlayered vermiculite (HIV) and vermiculite are commonly referred to as 1.4 nm minerals. In the subtropical soils of central China, the concentration of vermiculites decreased while that of HIVs increased gradually from north to south as the intensity of soil formation or eluviation increases in the same direction. The cutans in these soils closely interact with air, roots, microbes, water and dissolved ions in soils. Cutans may therefore be expected to exert an important influence on the formation of 1.4 nm minerals relative to the matrix soils. However, little is known about the transformation of 1.4 nm minerals in Alfisols in central China. Here, we investigate the compositional differences of 1.4 nm minerals in cutans and matrix soils, and the probable transformation of vermiculite to HIV or vice versa when sodium citrate and sodium acetate are added to matrix Alfisols. Methods  Cutans and matrix soils were separated from three soils in the northern subtropical zone in China. The samples were analyzed for Fe, Mn, exchangeable cations, organic matter(O.M.), pH, and clay minerals. To 10 mL of matrix soil, suspensions containing about 250 mg (oven-dry weight) of clay was added with 5 mL of 0.4 mol/dm3 or 2 mol/dm3 of sodium citrate or sodium acetate solution and 5 mL of 0.2 mol/dm3 mixed solutions of CaCl2, Mg(NO3)2 and KCl. After its pH was adjusted to 6.0, the mixture was ‘incubated’ for 120 or 210 days (more than one season or half a year) during which period it was shaken for 1 hour every day. The clay mineral composition of the samples was determined after incubation. Results  Both vermiculites and HIVs were present in matrix soils, but only vermiculties were detected in cutans. The addition of organic ligands (citrate and acetate) promoted the transformation of HIV to vermiculite. This transformation was obvious for the matrix soils that had been incubated with 0.5 mol/dm3 sodium citrate for 210 days while sodium acetate was less effective in this regard. The promoting effect of organic ligands is dependent on type and concentration as well as incubation time. This would suggest the reverse transformation occurred in the formation of cutans compared with a vermiculite-to-HIV transformation in the subtropical soils of central China from north to south. Discussion  The position and environment of cutans in the B horizon together with the pH, organic matter and exchangeable base status in cutans seem conducive to the co-existence of vermiculite and HIV in the soils, but only vermiculite is found in cutans. The transformation of HIV to vermiculite in incubation experiments could be divided into two steps: 1) Cheluviation of organic matter to the interlayer hydroxy-aluminums from HIVs. 2) Rebasification of hydrated cations into the interlayers of vermiculites. Conclusions  The clay minerals in cutans can interact with organic ligands and nutrient elements excreted by roots. Under conditions of frequent wetting and drying and high pH, and when the concentrations of exchangeable bases, iron-manganese oxides, clays, and organic matter are high, the exchangeable cations can be incorporated into the interlayers of HIV, thereby promoting the partial transformation of HIV to vermiculite in rhizosphere soils. Recommendations and Perspectives  Cutan is at the interface of material and energy exchange involved in physical, chemical and biochemical reactions in the rhizosphere. These factors strongly affect the compositions of cutans. HIVs in (upper or adjacent) matrix soils may transform to vermiculites during cutan formation in these special soil environments. ESS-Submission Editor: Jizheng (Jim) He (jzhe@rcees.ac.cn)  相似文献   

15.
胡敏酸对铵钾在粘土矿物上交互作用的影响   总被引:1,自引:0,他引:1  
Interaction of ammonium (NH+4) and potassium (K+) is typical in field soils. However, the effects of organic matter on interaction of NH+4 and K+have not been thoroughly investigated. In this study, we examined the changes in major physicochemical properties of three clay minerals (kaolinite, illite, and montmorillonite) after humic acid (HA) coating and evaluated the influences of these changes on the interaction of NH+4 and K+on clay minerals using batch experiments. After HA coating, the cation exchange capacity (CEC) and specific surface area (SSA) of montmorillonite decreased significantly, while little decrease in CEC and SSA occurred in illite and only a slight increase in CEC was found in kaolinite. Humic acid coating significantly increased cation adsorption and preference for NH+4, and this effect was more obvious on clay minerals with a lower CEC. Results of Fourier transform infrared spectrometry analysis showed that HA coating promoted the formation of H-bonds between the adsorbed NH+4 and the organo-mineral complexes. HA coating increased cation fixation capacity on montmorillonite and kaolinite, but the opposite occurred on illite. In addition, HA coating increased the competitiveness of NH+4 on fixation sites. These results showed that HA coating affected both the nature of clay mineral surfaces and the reactions of NH+4 and K+with clay minerals, which might influence the availability of nutrient cations to plants in field soils amended with organic matter.  相似文献   

16.
The mineralogical composition of agrogray, dark gray, and agro-dark gray soils (Luvic Greyzemic Retic Phaeozems); agro-dark gray residual-calcareous soils (Calcaric Cambic Phaeozems); clay-illuvial agrochernozems (Luvic Chernic Phaeozems); and agrochernozems with migrational–mycelial carbonates (Haplic Chernozems) developed in the forest-steppe of Central Siberia within the Irkutsk Depression has been studied. The clay (<1 μm) fraction separated from these soils consists of mixed-layer minerals with alternating layers of hydromica, smectite, vermiculite, and chlorite; the proportions between them change within the soil profiles. The clay fraction also contains hydromicas, kaolinite, chlorite, and some admixture of the fine-dispersed quartz. Each type of the soils is characterized by its own distribution pattern of clay material with specific alternation of layers in the mixed-layer formations. Mixed-layer minerals of the chlorite–vermiculite type predominate in the upper horizons of texture-differentiated soils. Down the soil profile, the content of mixed-layer mica–smectitic minerals increases. In the clay fraction of arable dark gray-humus soils with residual carbonates, the distribution of the clay fraction and major mineral phases in the soil profile is relatively even. An increased content of well-crystallized kaolinite is typical of these soils. The parent material of agrochernozems has a layered character: the upper horizons are generally depleted of clay, and the middle-profile and lower horizons are characterized by the considerable kaolinite content. In general, the clay material of soils of the Tulun–Irkutsk forest-steppe differs considerably from the clay material of foreststeppe soils developed from loesslike and mantle loams in the European part of Russia. In particular, this difference is seen in the proportions between major mineral phases and between biotitic and muscovitic components, as well as in the degree of crystallinity and behavior of kaolinite and chlorite.  相似文献   

17.
红壤中铝的形态   总被引:43,自引:2,他引:41       下载免费PDF全文
以改进的连续分级提取方法,用1mol/L,KCl,0.2mol/L,HCl,0.1mol/L Na4P2O7(pH8.5),DCB溶液,0.33mol/L,柠檬酸钠和0.5mol/L NaOH为提取剂,把红壤中可提取的非晶态铝区分为交换态铝,肿附态无机羟基铝,有机配合态铝,氧化铁结合态铝,层间铝和非晶态铝硅酸盐。  相似文献   

18.
Purpose

Clay minerals significantly affect the physical, chemical, and biological processes of soils. They undergo spontaneous modification and transformation depending to the climatic conditions. Information concerning the compositions and transformation of clay minerals in nanoparticle colloids (NPs) (25–100 nm) is severely lacking. Studying clay mineral transformation is important approach to understand soil formation. This study was conducted to determine the transformation sequence of clay minerals in several zonal soil NPs.

Materials and methods

Four soils (Haplustalf, Alf-1; Hapludalf, Alf-2; Hapludults, Ult-1 and Ult-2) were collected from B horizons developed under three different climatic zones of China. Alf-1 (36° 05′ N and 117° 24′ E) was located under a warm temperate zone and Alf-2 (30° 38′ N and 115° 26′ E), Ult-1 (29° 13′ N and 113° 46′ E), and Ult-2 (19° 27′ N and 109° 17′ E) under a subtropical zone. The clay particles (<?2000 nm) (CPs) and nanoparticles (25–100 nm) (NPs) of tested soils were separated. The element composition of CPs and NPs was identified by microwave digestion method. The mineralogy and chemical bonding of clay minerals were studied by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR).

Results and discussion

With decreasing latitude, NPs and CPs showed that the molar ratio of SiO2 to Al2O3 trends to diminish, indicating the phenomenon of desilication and allitization in the tested soils. XRD analysis revealed that the main clay mineral of Alf-1 NPs was illite, followed by vermiculite, kaolinite, and kaolinite interstratified minerals (KIMs). The clay minerals of Alf-2, Ult-1, and Ult-2 NPs were dominated by kaolinite (and KIMs), followed by illite, with a little content of hydroxyl-interlayered vermiculite (HIV) in Ult-1 NPs and trace content of gibbsite in Ult-2 NPs. With decreasing latitude, vermiculite and HIV decreased in NPs. When compared to CPs, smectite as well as illite-vermiculite mix-layer mineral (I-V) and illite-HIV mix-layer mineral (I-HIV) were not detected in NPs. The analysis of d060 region by XRD showed that with decreasing latitude, the main clay minerals in NPs were dioctahedral minerals (e.g., illite or kaolinite). These clay minerals resulted from the transformation of trioctahedral minerals in CPs. The disappearance of 2:1 swelling minerals and trioctahedral minerals showed that the NPs were more susceptible to weathering than CPs.

Conclusions

With decreasing latitude, the transformation of clay minerals followed the sequence of illite?→?HIV?→?kaolinite?→?gibbsite in tested NPs.

  相似文献   

19.
F. L. WANG  P. M. HUANG 《土壤圈》1997,7(4):289-296
Limited information is available concerning the mineralogy of paddy soils in the southeastern China. Using chemical methods in conjunction with X-ray diffractometry, we studied the mineral composition of three paddy soils: Jinghua (paddy soil on Quaternary red clay), Fuyang (Hapl-percogenic loamy paddy soil), and Shaoxing (gleyic clayey paddy soil). All the soils contained quartz, mica, vermiculite, chlorite and kaolinite, and the distribution of these minerals varied with soil particle size fractions. The clay fraction of the Fuyang and Shaoxing soils also contained smectite. Although X-ray data did not show the presence of smectite in the Jinghua soil, this mineral was identified by the chemical method, suggesting a transitional property of the mineral in the soil. Hydroxy-Al interlayered minerals were also present in the clay fraction. The amount of smectite in the soils was 31.6 (Shaoxing), 16.5 (Fuyang), and 21.4 (Jinghua) g kg-1; for vermiculite it was 33.3 (Shaoxing), 16.5 (Fuyang), and 8.5 (Jinghua) g kg-1. Smectite was only found in the clay fraction. In contrast, amounts of vermiculite in soil particle size fractions were 3.0~11.4 (sand), 2.1~6.0 (coarse silt), 4.6~18.9 (medium silt), 0.9~40.0 (fine silt), and 17.0~108 (clay) g kg-1. The amount of noncrystalline aluminosilicates in the soils in g kg-1 decreased in the order: Shaoxing (2.4) > Jinghua (1.9) > Fuyang (1.7). This study has provided useful mineralogical information that is fundamental in future development of management strategies of the soils.  相似文献   

20.
The correlation between the content of the clay minerals, mica, montmorillonite or vermiculite, and the logarithmic form pK-12p (Ca + Mg) of the activity ratio (K)/√(Ca + Mg) was highly significant for 23 soils from northern Greece. The correlation was negative with mica and positive with montmorillonite and vermiculite. A free-energy term, ΔF1, necessary to bring the activity ratio of each soil equal to the lowest value encountered, using the concentrations of soluble and exchangeable K and Ca + Mg in the equilibrium systems, was also calculated. The relationship between the content of the three clay minerals and ΔF1 was the same as when pK-12p (Ca + Mg) was used except that the correlation coefficient was greater in all cases, being significant at P0.001 with each of the clay minerals. The regression of ΔF1 on each of the clay mineral contents was also much greater than the corresponding ones with pK-12p (Ca + Mg).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号