首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
抽穗期(headingdata,HD)和株高(plantheight,PH)是水稻(Oryza sativaL.)非常重要的农艺性状。本研究利用金23B(Jin23B)和青谷矮1号(QGA-1)构建的BC3F1群体及其衍生的BC3F2群体通过分子标记定位水稻抽穗期和株高的QTL(quantitativetraitlocus)。构建的遗传连锁图包含105对SSR标记和8对InDel标记,图谱较好地覆盖了水稻12条染色体。两年来共定位到了9个抽穗期相关QTLs,6个株高相关的QTLs,其中抽穗期和株高最大效应都来源于第7染色体。抽穗期QTLqHD7-3在2011年LOD为37.07,可以解释的表型贡献率为41.05%,加性效应为11.68;株高QTLqPH7-2在2011年LOD为43.73,可以解释的表型贡献率为54.17%,加性效应为21.60;2012年LOD为42.66,可以解释的表型贡献率为54.39%,加性效应为19.95。qHD7-3和qPH7-2位于同一区域RM214-RM5543之间,Ghd7也位于这一区间,该QTL可能是Ghd7的等位基因。抽穗期QTLqHD2定位于第2染色体上标记ZH282和RM71之间,在两年内都能检测到,其LOD值分别为4.56和4.99,可解释的表型贡献率分别为4.31%和7.99%。株高QTLqPH4定位于第4染色体上标记RM241和RM317之间,其两年内的LOD分别为2.89和2.67,解释的表型贡献率为9.42%和8.78%。抽穗期QTL qHD2和株高QTL qPH4所定位的区间没有相关的基因或QTL报道,这两个QTL可能含有控制抽穗期和株高的新基因。本研究通过遗传定位证明了株高和抽穗期是由主效QTL和微效QTL共同控制的,并发掘了新的抽穗期和株高的QTL,为育种家利用分子标记辅助选择培育新品种提供更多的选择。  相似文献   

2.
水稻是世界上重要的粮食作物之一,低温胁迫影响水稻芽期生长,导致减产。为挖掘影响水稻芽期耐冷的基因,本研究以9311(受体)/日本晴(供体)染色体片段置换系群体为材料,将萌发的种子分别在7℃和15℃低温条件下处理7 d,再在28℃恢复生长3 d,测定种子存活率并定位其中影响芽期耐低温数量性状位点(QTL)。7℃低温胁迫下,共检测到2个芽期耐低温主效QTL:qCS7T10和qCS7T11;两者分别位于水稻第10和第11号染色体上,LOD值分别为7.26和5.87,贡献率分别为18.85%和14.92%。15℃低温胁迫下,共检测到1个芽期耐低温主效QTL:qCS15T5,其位于水稻第5号染色体上,LOD值为7.61,贡献率为25.69%。结果表明不同低温处理下,控制水稻芽期耐低温QTL不同。本研究为今后育种聚合更多的耐低温QTL来提高水稻对不同低温的适应能力,降低低温胁迫对水稻芽期的影响奠定了一定的基础。  相似文献   

3.
利用"Lemont"和"Dular"水稻杂交后代单粒传衍生的123个F12家系所组成的重组自交系(Recombinant inbred 1ines.RILs)群体及其含97个SSR标记的连锁图谱,以耐性指数(T)和敏感性指数(S)为测定指标,应用WinQTLcart 2.5定位软件,采用复合区间作图法对2个性状进行定位分析.结果表明,在RIL群体中,2个性状呈连续分布,受微效多基因控制,并且各性状均存在一定数量的超亲遗传类型.2个性状共检测到11个QTL,各QTL的LOD值为2.02~5.07,贡献率为6%~23%.其中在第1、2、3、6、8染色体上检测到控制耐性指标的7个QTLs,贡献率为6%~19%;在第1、3、5、8染色体上检测到控制敏感性指标的4个QTLs,贡献率分别为19%、23%、6%和7%;分别在第3、8染色体的相同区间内(RM85~RM468和RM408~RM250)检测到2个性状的QTLs,这很好地解释了2性状之间存在着极显著负相关性即存在一因多效现象(Pleiotrophic effect).  相似文献   

4.
为探究玉米苗期耐盐性状的遗传调控机理,以耐盐的热带自交系CML298与盐敏感的温带自交系Zong31构建得到200份F2:3家系的初定位群体为试验材料,结合Illumina Maize 6K芯片获取相应的基因型数据,通过调查苗期盐胁迫处理前后的株高比率(SHR)、株高差值(SHD)、鲜重比率(SFWR)、鲜重差值(SFWD)4个耐盐指标,对玉米苗期的耐盐性进行评价。结果表明,共检测到2个与SHR相关的QTL位点q SHR4、q SHR8,分别解释7.08%和9.40%的表型变异;2个与SHD相关的QTL位点q SHD4、q SHD8,分别解释7.87%、9.21%的表型变异;3个与SFWR相关的QTL位点q SFWR3-1、q SFWR3-2和q SFWR9,分别解释6.15%、11.14%和6.27%的表型变异;2个与SFWD相关的QTL位点q SFWD4与q SFWD7,分别解释6.89%和6.04%的表型变异。其中,在第4号染色体129 c M位置与第8号染色体8c M位置都定位到了与SHR、SHD相关的QTL位点。本研究结果为玉米苗期耐盐相关基因的挖掘奠定了理论基础。  相似文献   

5.
本研究以98个Nipponbare/Kasalath//Nipponbare回交重组自交家系(backcross-inbred lines,BILs)组成的群体为材料,进行水稻芽期耐冷性数量性状基因座的检测和遗传效应分析。25℃正常条件下水稻发芽7d,芽长5~10cm,5℃低温处理10d,之后升温至25℃,缓苗10d,调查活苗率,并以活苗率作为芽期耐冷性的表型值,分析亲本和98个BILs的芽期耐冷性表现。采用Windows QTL Cartographer 1.13a软件的复合区间作图法,共检测到4个苗期耐冷性数量性状基因座(quantative trait locus,QTL),分别位于第3、第7和第12染色体上,命名为qSCT-3-1、qSCT-3~2、qSCT-7和qSCT-12。4个QTL的加性效应分别为11.16、11.14、-8.8和-14.59,可解释表型变异的12.11%,12.66%,6.82%和15.86%。  相似文献   

6.
水稻加工品质直接影响水稻的商品价值。为解析水稻加工品质的遗传基础,以粳稻秀水09和籼稻IR2061构建的2套双向导入系和1套重组自交系为材料,在温州和三亚环境下考察了稻米加工品质,并进行了加工品质性状的数量性状位点(QTL)定位。本研究构建了一张包含145个简单重复序列(SSR)分子标记的遗传连锁图,该连锁图总长1 567.8 cM,秀水09和IR2061背景导入系的平均背景回复率分别为90.15%和85.82%。双亲的糙米率和精米率无显著差异,秀水09整精米率显著高于IR2061。3套群体的加工品质均表现为连续分布,且糙米率、精米率和整精米率3个性状间彼此均呈显著正相关。在两个环境下共定位到影响糙米率、精米率和整精米率的29个主效QTL和20对上位性QTL,其中6个QTL在其中的两套群体中被重复定位到,2个QTL在两个环境下稳定表达,10个QTL与环境互作,说明遗传背景和环境显著影响加工品质QTL的表达。此外,在第7号染色体RM432~RM11区间、第8号染色体RM80~RM458区间和第9号染色体RM257~RM278区间均同时定位到影响糙米率、精米率和整精米率的QTL,秀水09等位基因在这些QTL处均提高加工品质。研究结果可为分子改良水稻加工品质提供重要基因资源的参考依据。  相似文献   

7.
小麦穗部性状是与籽粒产量关系密切的重要农艺性状。本研究以一个由99个株系组成的来源于波兰小麦(Triticum polonicum L.)和普通小麦(Triticum aestivum L.)品系中13杂交后代的F8重组自交系(recombinant inbred lines,RIL)群体为实验材料,利用微卫星(simple sequence repeat,SSR)标记对穗长、穗粒数和有效小穗数进行数量性状基因座(quantitative trait locus,QTL)定位分析。所构建的A染色体组和B染色体组共14个连锁群的遗传连锁图谱由115个SSR标记位点组成,图谱全长822.9cM,标记间的平均遗传距离为7.16cM。采用复合区间作图法在两年的环境中检测到分布在2A、3A、3B、5B和7B染色体上的6个穗长QTL,5个穗粒数QTL和2个有效小穗数QTL,表型变异贡献率分别为9.21%~22.94%,9.18%~19.71%和11.48%~13.01%。两年中都在3A染色体上的Xbarc12~Xbarc310区间内检测到控制穗粒数的主效QTL,说明该QTL较少受环境条件的影响,是一个稳定可靠的穗粒数QTL。该QTL与最近标记的遗传距离为0.01cM,可用于小麦产量性状的分子标记辅助育种。  相似文献   

8.
为挖掘多环境下稳定存在的水稻赖氨酸和总黄酮含量相关QTL,以粳稻东农425和长白10号及其衍生的180个株系的F_(6:7)重组自交系(RIL)作为供试群体,采用完备区间作图法(ICIM)和基于混合线性模型的复合区间作图法(MCIM),对2014年和2015年水稻的赖氨酸含量和总黄酮含量进行加性QTL定位及环境互作分析。结果检测到10个影响赖氨酸含量的加性效应QTL和12个影响黄酮含量的加性效应QTL,分布在除第9、第10和第12染色体以外的9条染色体上,其中在第5染色体的RM538~RM1271标记区间内连续2年检测到总黄酮含量QTL。检测到6个存在环境互作效应的赖氨酸含量QTL、4个存在环境互作效应的总黄酮含量QTL,互作贡献率为0.15%~6.73%;一对影响总黄酮含量的上位互作效应的QTL,贡献率为0.99%。本研究结果为水稻赖氨酸和总黄酮含量QTL分子标记辅助育种提供了一定的理论依据。  相似文献   

9.
盐胁迫下水稻部分生化性状的QTL定位   总被引:2,自引:1,他引:1  
应用247个株系组成的珍汕97B/密阳46重组自交系群体及其相应的含250个分子标记的高密度分子遗传图谱,对0.7%NaCl盐处理后的水稻苗期相关生化性状进行QTL定位。在第1染色体的RM237-RM246区间检测到1个控制蛋白质含量的QTL,贡献率为13.14%;在第12染色体的RG81-S13126和RM309-RG543区间分别检测到1个控制脯氨酸含量和抗坏血酸含量的QTL,贡献率为9.09%和7.97%。并将所定位区间与已报道的水稻盐胁迫反应基因/QTL的位置进行了比较。  相似文献   

10.
本研究旨在排除主效QTL效应的基础上检测控制水稻产量性状的微效QTL。前期应用中156/谷梅2号重组自交系(RIL)群体在第7染色体RM2-RM214区间上检测到控制抽穗期和产量性状的主效QTL,本研究挑选在此区间呈谷梅2号基因型的两个株系,配组衍生新的RIL群体,检测控制水稻产量性状的QTL。共检测到25个产量性状Q...  相似文献   

11.
高歌  杨媛  郑军  张红伟 《核农学报》2022,36(8):1530-1536
为了探索玉米株高的遗传机制,定位玉米株高的数量性状位点(QTL),本研究以玉米自交系PH4CV为轮回亲本,以郑58为供体亲本,构建BC1F3:4分离群体,在4个环境下对该群体进行玉米株高表型鉴定。表型分析结果表明,基因型之间差异极显著,且不同环境之间的株高相关性极显著,说明不同环境之间的株高变异具有共同的遗传基础。利用包含5.5万个单核苷酸多态性标记(SNPs)的基因芯片进行基因型鉴定,并结合基因型和表型数据进行全基因组关联分析。在错误发现率(FDR)为0.05时,检测到10个显著性SNPs,这些显著性SNPs主要位于第2号染色体上,-log10(P)值最大的标记为Chr2_194690794。利用线性回归模型对显著SNPs进行表型贡献率及效应分析,发现位于第2号染色体的标记Chr2_194690794效应值最大,贡献率最高,来源于PH4CV的基因型的正效应。利用BC1F5:6群体进行基因型和表型鉴定,进一步确认了标记Chr2_194690794与株高QTL的连锁关系,表明在第2号染色体上存在1个控制株高的QTL。本研究为玉米株高QTL的精细定位奠定了基础。  相似文献   

12.
以超级杂交稻协优9308(协青早B/中恢9308)衍生的234个重组自交系(RIL)为材料,在正常水分和20%聚乙二醇(PEG-6000)模拟水分胁迫处理下对水稻苗期最长根长、总根长、根表面积、根体积、根平均直径、根尖数、根鲜重和根冠比进行QTL定位分析。采用复合区间作图法,共检测到影响8个根部性状的21个QTL,单个QTL可解释的表型变异介于4.80%~11.35%。其中,正常水分条件下检测到7个QTL,分布在第2、3、9、10、11染色体上;水分胁迫条件下检测到14个QTL,分布在第2、3、5、6、9染色体上。不同水分条件下检测到的QTL位点差异很大,表明不同水分条件下的遗传机制不同。在第3和第6染色体上各检测到1个根部性状的QTL簇,尤其在第3染色体RM6283-RM7370区间发现苗期根系性状与抗旱性及产量相关性状之间存在连锁关系,利用这些QTL紧密连锁的分子标记进行辅助选择,可望同时对多个相关性状进行遗传改良。  相似文献   

13.
插入/缺失(InDel)标记在植物基因组中广泛分布,然而谷子中InDel标记的数量十分有限。为挖掘InDel位点和开发分子标记,本研究基于衡谷12号和长农35号的深度重测序结果,分析其单核苷酸多态性(SNP)、InDel和结构变异(SV)。利用JoinMap 4软件构建连锁遗传图谱,利用WinQTLCart 2.5软件定位株高数量性状位点(QTL),利用生物信息学、测序和实时荧光定量PCR(qRT-PCR)进行候选基因分析。研究表明,3种变异类型数量由多到少排序为SNP>InDel>SV;获得1 392个在衡谷12号和长农35号中具有多态性的InDel标记,多态性率为35.14%,这些标记在谷子9条染色体上分布不均;获得一张包含467个InDel标记的谷子遗传连锁图谱,该图谱总图距448.45 cM,平均图距0.96 cM;利用F2群体定位了4个株高QTL(qPH5-1、qPH5-2、qPH9-1和qPH9-2),进一步利用重组自交系(RIL)群体对其中2个效应值较大的QTL(qPH5-1和qPH9-2)进行验证,结果重新检测到qPH9-2,似然比的自然对数(LOD)值为9...  相似文献   

14.
小麦苗期耐盐相关性状的QTL分析   总被引:2,自引:2,他引:2  
以小麦敏盐品种太空6号和耐盐品种德抗961杂交形成的F2和F2:3家系为试验材料,选取小麦8条染色体上的321对SSR引物进行亲本间多态性的筛选,在太空6号和德抗961之间表现多态性的SSR引物为52个,位点为54个,其中barc172和cfa2121两个引物分别有两个多态性位点。对这54个位点进行连锁分析,构建了包含42个SSR标记、覆盖小麦基因组8条染色体的遗传连锁图,共704.5cM,标记间平均间距为16.8 cM。采用复合区间法进行耐盐QTL分析。对于4个性状共定位到6个QTL,分别位于5A,5B,5D染色体。对于发芽率,检测到1个QTL,位于染色体5D上,在标记cfd40~gwm182之间,贡献率为7.68%,表现加性效应;对于苗高,检测到2个QTL,分别位于染色体5D和5A上,在标记gwm182~wmc215及barc141~wmc415之间,贡献率分别为9.3%和8.14%,分别表现为显性和部分显性;对于根长,检测到2个QTL,均位于染色体5B上,在标记gwm234与wmc326及barc140与barc142之间,贡献率分别为8.74%和8.40%,分别表现为部分显性和超显性;对于鲜重,检测到1个QTL,位于染色体5D上,在标记wmc215~cfd29之间,贡献率为12.60%,表现超显性。与所得的QTL位点距离较近的SSR标记,如barc141等,可望为耐盐小麦品种的分子标记辅助选择提供参考信息。  相似文献   

15.
为给分子标记辅助选择和小麦品质育种提供依据,以小麦杂交组合99G44×京771重组自交系群体(RIL)为材料,利用SSR分子标记技术,采用复合区间作图法对小麦籽粒淀粉主要特性进行了QTL分析。结果表明,检测出1个与总淀粉含量有关的显著加性效应QTSA.-6B,位于6B染色体,位点总贡献率为10.91%;检测出1个与支链淀粉含量有关的显著加性效应QAmp.-1B,位于1B染色体,位点的总贡献率为9.54%;检测出1个与直链淀粉含量有关的显著加性效应QAms.-6B,位于6B染色体,位点总贡献率为7.29%;检测出1个与支/直比有关的显著加性效应QAmp./Ams.-6B,位于6B染色体,位点的总贡献率为12.69%;检测出1个与高峰粘度有关的显著加性效应QPV-1B,位于1B染色体,位点的总贡献率为5.91%;检测出2个与崩解值有关的显著加性效应QBD-1B和QBD-2D,位于1B、2D染色体,位点总贡献率为12.95%;检测出1个与回生值有关的显著加性效应QSB-1B,位于1B染色体,位点总贡献率为6.99%;检测出1个与低谷粘度有关的显著加性效应QTV-3B,位于3B染色体,位点的总贡献率为5.16%;检测出1个与膨胀势有关的显著加性效应QSP-1B,位于1B染色体,位点总贡献率为7.02%。本研究定位的淀粉品质性状的标记可作为小麦品质分子育种的工具。  相似文献   

16.
《土壤与作物》2015,(2):71-76
大豆花荚脱落率和单株荚数是影响大豆单株产量的两个主要性状。研究以花荚脱落率高的大豆品种吉育73为母本及花荚脱落率低的铁荚四粒黄为父本,构建了样本容量为100的F2遗传群体。所构筑的遗传图谱总长为1 351.5 c M,具34个连锁群。利用多QTL模型(MQM)对该群体花荚脱落率和单株荚数进行QTL定位,共鉴定出2个花荚脱落率QTL,同位于GM16染色体上,遗传贡献率分别为10.9%和9.7%;同时鉴定出5个控制单株荚数的QTL,分别位于GM02、GM07、GM10、GM04和GM05染色体上,遗传贡献率介于8.8%~15.9%之间。研究结果为大豆花荚脱落性状QTL的精细定位、候选基因克隆和分子标记辅助育种提供了理论基础和育种材料。图1,表3,参34。  相似文献   

17.
水稻耐辐射损伤的QTL分析   总被引:1,自引:0,他引:1  
利用水稻品种珍汕97B/密阳46所构建的RIL群体及其遗传图谱, 以350和550Gy γ射线辐照成熟种子,以相对发芽率和相对成苗率作为考察其耐辐射损伤指标,进行QTL加性效应和上位性效应分析。结果表明,RIL群体受不同剂量辐照后,株系间表现出耐辐射损伤的差异。350Gy剂量处理共检测到2个耐辐射的加性效应QTL,其中qRR(g)8-1(相对发芽率为指标)有效基因来自于父本,其遗传贡献率为653%;qRR(s)2-2(相对成苗率为指标)有效基因来自于母本,其遗传贡献率为1281%。550Gy剂量处理共检测到4个耐辐射的加性效应QTL,其中以相对发芽率为指标,检测到的qRR(g)1-2和 qRR(g)8-2,其有效基因分别来自于母本和父本,共可解释1438%变异;以相对成苗率为指标,则检测到qRR(s)5-2和qRR(s)10,共解释1965%变异。在不同剂量处理下,还检测到9对双基因相互作用。比较表明,水稻耐辐射损伤的QTL表达可能与辐照剂量有关。  相似文献   

18.
叶片面积影响光合作用效率,是农作物产量的重要构成性状之一。野生黄瓜(Cucumis sativus var.hardwickii)的叶片较小,经过人工驯化后的栽培黄瓜(Cucumis sativus var.sativus)的叶片面积扩大了2~3倍。前人研究已经将控制黄瓜叶面积的主效基因之一ll(little leaf)定位在第6号染色体上。本研究以黄瓜小叶品系XF-24(P1)、大叶品系DF-32(P2)杂交产生的205个单株的F2群体为研究材料,用SAS软件对成熟期调查的各单株相同节位的叶面积进行正态性检验,结果服从正态分布,符合数量性状的遗传特征。为了有效地加快研究进程,在双亲测序情况下,采用插入缺失位点(insertion and deletion,InDel)标记进行基因定位。研究结合双亲全基因组测序数据,生物信息学分析得出双亲序列之间的InDel位点,用Primer Premier 5.0软件在所有染色体上均匀设计88对InDel标记引物,扩增采用分离群体分组混合分析法(bulked segregant analysis,BSA)组建大叶、小叶基因池,池间有多态的引物再进一步扩增F2群体DNA,筛选到7个与黄瓜叶面积基因ll2连锁的分子标记,位于黄瓜第7号染色体上,分别是InDel-1、InDel-2、InDel-3、InDel-4、InDel-5、InDel-6、InDel-7。建立遗传连锁图谱并进行区间作图寻找QTL位点,结果显示,遗传连锁图谱包含以上7个InDel标记,连锁区间为22.1 cM,包括1个控制黄瓜叶片大小的主效QTL位点ll2(little leaf 2),位于标记InDel-2与InDel-4之间,这两个标记之间物理距离为1.24 Mb。与前人的研究结果相比,定位区间更小且是7号染色体上首次发现的黄瓜叶面积QTL位点。截止目前,在黄瓜6号、7号染色体共发现了2个黄瓜叶面积主效QTL位点,分别是ll和ll2,表明黄瓜叶面积遗传机制复杂。叶面积主效QTL ll2的遗传定位,对于控制黄瓜叶片面积的遗传机制和分子机理研究以及分子标记辅助育种具有重要的意义。  相似文献   

19.
普通野生稻稻米加工品质和外观品质性状QTL定位   总被引:5,自引:0,他引:5  
本研究利用一套以籼稻品种“特青”为遗传背景的云南元江普通野生稻(Oryza rufipogon Griff.)渗入系为材料,采用单标记回归分析和渗入片段叠代法,对出糙率、整精米率、垩白粒率、垩白度、长宽比等5个品质性状的QTL进行了分析,初步定位了16个QTL,有10个QTL来自野生稻的等位基因能改良群体的品质性状。在第5染色体RM289附近检测到了同时影响长宽比、垩白粒率QTL,来自野生稻的等位基因能增加长宽比、降低垩白粒率,贡献率也较高。在第8染色体RM152附近检测到降低垩白粒率和垩白度的QTL,其贡献率分别为14%和9%。本研究结果不仅为品质性状分子标记辅助选择提供参考,而且充分显示了利用野生稻的优异基因改良栽培稻品质性状的巨大潜力。  相似文献   

20.
用Unispec光谱仪测定水稻颖壳反射光谱,筛选对水稻颖壳色素敏感的色素指数,用筛选出的最佳植被指数NDVI作为检测颖壳颜色的指标,测定106个家系的颖壳颜色用于QTL定位分析.共检测到12个与颖壳颜色相关的QTL,其中有4个来源于栽培稻特青,分别位于第1染色体RM243附近,贡献率为5%;第7染色体RM295、RM481和RM82附近,贡献率分别为4%、7%和4%.另外8个QTL位点来源于野生稻,分别位于第1染色体RM5和RM212附近,贡献率分别为5%和6%,第2染色体RM233A附近,贡献率为6%;第4染色体RM273附近,贡献率为38%;第6染色体RM204和RM3附近,贡献率分别为17%和5%;第8染色体RM38附近,贡献率为6%,以及位于第12染色体RM235附近,贡献率为5%.在检测到的12个QTL中,来源于野生稻的位于第4染色体RM273附近,以及位于第6染色体RM204附近的QTL的加性效应及贡献率较大,分析是主效QTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号