首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Veterinary antibiotics such as sulfadiazine (SDZ) are applied with manure to agricultural soil. Antimicrobial effects of SDZ on soil microbial community structures and functions were reported for homogenized bulk soils. In contrast, field soil is structured. The resulting microhabitats are often hot spots that account for most of the microbial activity and contain strains of different antibiotic sensitivity or resilience. We therefore hypothesize that effects of SDZ are different in diverse soil microhabitats. We combined the results of laboratory and field experiments that evaluated the fate of SDZ and the response of the microbial community in rhizosphere, earthworm burrow, and soil macroaggregate microhabitats. Microbial communities were characterized by phenotypic phospholipid fatty acid (PLFA) and genotypic 16S rRNA gene patterns (DGGE) and other methods. Data was evaluated by principle component analyses followed by two-way ANOVA with post-hoc tests. Extractable SDZ concentrations in rhizosphere soil were not clearly different and varied by a factor 0.7–1.2 from those in bulk soil. In contrast to bulk soil, the extractable SDZ content was two-fold larger in earthworm burrows, which are characterized by a more hydrophobic organic matter along the burrow surface. Also, extractable SDZ was larger by up to factor 2.6 in the macroaggregate surface soil. The rhizosphere effect clearly increased the microbial biomass. Nonetheless, in the 10 mg SDZ kg−1 treatment, the biomass deceased by about 20% to the level of uncontaminated bulk soil. SDZ contamination lowered the total PLFA concentrations by 14% in the rhizosphere and 3% in bulk soil of the field experiment. Structural shifts represented by Pseudomonas DGGE data were larger in SDZ-contaminated earthworm burrows compared to bulk soils. In the laboratory experiment, a functional shift was indicated by a four-fold reduced acid phosphatase activity in SDZ-contaminated burrows compared to bulk soil. Structural and functional shifts after SDZ contamination were larger by a factor of 2.5 in the soil macroaggregate surface versus interior, but this relation reversed over the long-term under field conditions. Overall, the combined effects of soil microhabitat, microbial community composition, and exposure to SDZ influenced the microbial susceptibility towards antibiotics under laboratory and field conditions.  相似文献   

2.
Most veterinary drugs enter the environment via manure application. However, ecotoxic effects of antibiotics are varying as a function of their physicochemical characteristics and for most antibiotics it is still unclear how these substances interact with soil biota. It was the aim of the present study to investigate effects of manure containing different concentrations of the antibiotic amoxicillin (AMX) on microbial‐community function in two different soils over an incubation time of 18 d. Therefore, soil respiration, potential nitrification, and the products of N turnover were measured. We could show that CaCl2‐extractable amounts of AMX in soil are low, even shortly after the application of high doses together with manure. Thus, not surprisingly basal respiration in soil was not influenced by the addition of the antibiotic with manure. In contrast, mainly shortly after manure addition the kinetic of substrate‐induced respiration was clearly shifted by the treatments depending on the presence of AMX in the manure. Potential nitrification rates in the two different soils were not significantly affected when data were related to the overall incubation time by the application of AMX to the manure. However, shortly after the addition of the manure containing AMX, a tendency to lower turnover rates was visible compared to the application of pure manure.  相似文献   

3.
Large amounts of veterinary antibiotics enter soil via manure of treated animals. The effects on soil microbial community structure are not well investigated. In particular, the impact of antibiotics in the presence of manure is poorly understood. In this study, two agricultural soils, a sandy Cambisol (KS) and a loamy Luvisol (ML), were spiked with manure and sulfadiazine (SDZ; 0, 10 and 100 μg g?1) and incubated for 1, 4, 32 and 61 days. Untreated controls received only water. The microbial community structure was characterised by investigating phospholipid fatty acids (PLFA) and using PCR–denaturing gradient gel electrophoresis (DGGE) of 16S rDNA. The total concentration of PLFA increased with addition of manure and was reduced by both SDZ concentrations at incubation times >4 days. The SDZ addition decreased the bacteria:fungi ratio. The largest stress level, measured as ratio of PLFA (cyc17:0 + cyc19:0)/(16:1ω7c + 18:1ω7c), was found for the controls, followed by the manure treatments and the SDZ treatments. A discriminant analysis of the PLFA clearly separated treatments and incubation times. Both soils differed in total PLFA concentrations and Gram?:Gram+ ratios, but showed similar changes in PLFA pattern upon soil treatment. Effects of manure and SDZ on the bacterial community structure were also revealed by DGGE analysis. Effects on pseudomonads and β-proteobacteria were less pronounced. While community structure remained altered even after two months, the extractable concentrations of SDZ decreased exponentially and the remaining solution concentrations after 32 days were ≤27% of the spiking concentration. Our results demonstrate that a single addition of SDZ has prolonged effects on the microbial community structure in soils.  相似文献   

4.
Removing solids from liquid dairy manure slurry reduces manure phosphorus (P) and increases the available (mineral) fraction of nitrogen (N) but also decreases the organic matter content of the manure. While this novel treatment reduces environmental concerns associated with excess N and P application to soils, it may also reduce microbial biomass and activity in soil. This study evaluated the long-term effects of this alternative manure treatment compared to more typical nutrient applications in a perennial grass sward (tall fescue, Festuca arundinacea Schreb.) on soil microbial biomass, community composition, hydrolytic enzyme activity, and forage yield. Nutrient treatments for this long-term field experiment in Agassiz, British Columbia, Canada were started in 2003. The treatments included liquid dairy manure slurry, liquid dairy manure with solids removed, commercial fertilizer, a combination of fertilizer and dairy manure, and a control. All treatments were applied at 400–600 kg total N ha?1 year?1 in four equal doses. Soil microbial community composition (phospholipid fatty acid analysis) and activity (hydrolytic enzyme activity) were determined several times during the 2013 and 2014 growing seasons to a depth of 15 cm. Time of sampling (date) had a strong influence on microbial biomass, community composition, and activity, while the response to soil properties and yield was more varied. All manure treatments (dairy manure slurry, liquid fraction, and the combination) increased microbial biomass (by 19–32%) and the potential activity of cellulose-degrading enzymes (by 31–47%) compared to commercial fertilizer and unamended plots. The commercial fertilizer and liquid fraction lowered fungal/bacterial ratios compared with both whole manure and unamended plots. Our results indicate that separating the solid from the liquid fraction of manure, to improve crop yield and reduce P loading, did not reduce microbial community size and activity and that all manure treatments increased microbial biomass and activity compared to mineral fertilizer application.  相似文献   

5.
Summary We studied the build-up and turnover of microbial biomass following the addition of farmyard manure to an unmanured soil and to soils from a long-term experiment in which different levels of farmyard manure had been applied for the last 23 years. The application of farmyard manure at 15–90 t ha-1 to previously unmanured soil increased the microbial biomass during the first 3 months of incubation but a gradual decline occurred with further incubation for up to 12 months. Microbial biomass C was positively correlated with soil organic C and ranged from 1.8% to 2.2% of organic C after 12 months of farmyard manure applications. Biomass turnover increased with the application of farmyard manure, ranging from 0.81 to 0.87 year-1 with various levels of manure. Amendment of soils from the long-term manure experiment with various levels of farmyard manure led to a build-up and decline in biomass C as seen in the unmanured soils, but biomass C was higher in all treatments compared to the corresponding unmanured soil treatments. Biomass turnover was greater compared to the unmanured soil treatments and it decreased with increasing levels of farmyard manure. The average soil respiratory activity increased with increasing levels of farmyard manure, but respiratory activity per unit of biomass C decreased with increasing levels of manure. Enzyme activities were greater in long-term manured soils compared to unmanured soils amended with various levels of manure. There was a significant correlation between biomass C and enzyme activities.  相似文献   

6.
Veterinary medicines enter agricultural soils by the use of animal excrements as fertilizers. To study their impact on soil bacterial communities, microcosms containing orthic luvisol soil were spiked with the antimicrobial agents sulfadiazine (SDZ) and chlorotetracycline (CTC) at three different concentrations (1, 10, 50 mg kg−1 soil) and incubated for 48 days at 20 °C. The impact on the microbial respiratory activity was measured continuously in a respirometer (Sapromat). Changes in bacterial community structure were visualized by means of PCR-denaturing gradient gel electrophoresis (DGGE) of 16S rDNA derived from soil samples after 1, 7, 11 and 48 days. Additionally, growth inhibitory effects of SDZ and CTC on bacteria previously isolated from the same soil were tested in agar diffusion tests. In microcosms with soil and antibiotics only, no effects could be observed, either on respiratory activity or on bacterial population structure. Therefore, further incubations were conducted in the presence of an additional assimilable carbon source (5 g glucose kg−1 soil). In the presence of glucose, SDZ affected soil respiration as well as the bacterial community structure: Additional bands appeared and some bands already visible at the beginning of incubations increased in intensity. A clear relationship between SDZ concentrations and changes in DGGE patterns became visible. During 48 days of incubation, changes in DGGE patterns were minimal in microcosms with 50 mg SDZ kg−1soil indicating an inhibition of strains, which were capable of growing on glucose in the presence of lower SDZ concentrations. Only a few soil bacterial isolates (5 out of 47 strains tested) were weakly inhibited by SDZ in agar diffusion disk tests. Contrastingly, CTC inhibited growth of 12 soil bacterial isolates significantly in disk tests, but no effects on soil respiration and bacterial community structure could be observed. In the presence of the soil matrix the growth inhibitory potential of CTC decreased due to adsorption or complexation. This was confirmed in growth inhibition experiments with soil suspensions and time-dependent sampling.  相似文献   

7.
Sulfonamide antibiotics reach soil via manure and adversely affect microbial diversity. Clear effects of these bacteriostatic, growth‐inhibiting antibiotics occur in the presence of a parallel input of microbial activity stimulating manure. Natural hot spots with already increased soil microbial activity are located in the rhizosphere, comprising microorganism such as Pseudomonas with plant growth promoting and pathogenic strains. The hypothesis was therefore that the antibiotic activity of sulfonamides is promoted in the rhizosphere even in the absence of manure, followed by shifts of the natural plant‐specific microbial community structure. This was evaluated by a laboratory experiment with Salix fragilis L. and Zea mays L. After 40 d of incubation, sub‐areas such as non‐rhizosphere soil, rhizosphere soil and plant roots were sampled. Effects on microbial community structure were analyzed using 16S rRNA gene fragment patterns of total bacteria community and Pseudomonas. Selected exoenzymes of N‐, P‐, and C‐cycling were used to test effects on microbial functions. Compared to the factors soil sub‐area and sulfadiazine (SDZ) content, plant species had the largest influence on the bacterial community structure and soil exoenzyme activity pattern. This was also reflected by an up to 1.5‐fold higher acid phosphatase activity in samples from maize‐ compared to willow‐planted soil. We conclude that antibiotic effects on the bacterial community structures are influenced by the antibiotic concentration and root influence.  相似文献   

8.
Soil organic matter level, soil microbial biomass C, ninhydrin-N, C mineralization, and dehydrogenase and alkaline phosphatase activity were studied in soils under different crop rotations for 6 years. Inclusion of a green manure crop of Sesbania aculeata in the rotation improved soil organic matter status and led to an increase in soil microbial biomass, soil enzyme activity and soil respiratory activity. Microbial biomass C increased from 192 mg kg–1 soil in a pearl millet-wheat-fallow rotation to 256 mg kg–1 soil in a pearl millet-wheat-green manure rotation. Inclusion of an oilseed crop such as sunflower or mustard led to a decrease in soil microbial biomass, C mineralization and soil enzyme activity. There was a good correlation between microbial biomass C, ninhydrin-N and dehydrogenase activity. The alkaline phosphatase activity of the soil under different crop rotations was little affected. The results indicate the green manuring improved the organic matter status of the soil and soil microbial activity vital for the nutrient turnover and long-term productivity of the soil. Received: 7 January 1996  相似文献   

9.
生物黑炭被作为土壤改良剂应用逐渐被认可,但其应用机制特别是生物黑炭对氮素形态和根际微生物的影响机理尚不明确,影响其推广。本文采用盆栽试验,研究了玉米和水稻秸秆烧制的生物黑炭按不同量施入土壤后,对玉米苗期株高、生物量和根际土壤氮素形态及相关微生物的影响。结果表明,施入60 g·kg-1玉米黑炭和40~60 g·kg-1水稻黑炭均对玉米苗期株高有显著(P0.05)降低作用,其中水稻黑炭的降低效果更为明显;分别施入60 g·kg-1玉米黑炭和20~60 g·kg-1水稻黑炭后,玉米植株地上部生物量均显著降低。施入60 g·kg-1玉米黑炭后根际土壤含水量和微生物量氮显著提高。随两种生物黑炭施入量的不断增加,玉米苗期根际土壤全氮、硝态氮含量以及固氮作用强度也显著增加,且均在60 g·kg-1施用量下达最大值。施用40 g·kg-1玉米黑炭可显著提高玉米苗期根际土壤氨态氮含量。同时,施用两种生物黑炭后,均不同程度地抑制了玉米根际土壤中细菌总体数量,促进了固氮菌和纤维素降解菌的生长,其中施入60 g·kg-1玉米黑炭的效果最为明显。综上,玉米和水稻秸秆生物黑炭的适量施用,可以促进玉米根际土壤氮素的循环转化,影响相关微生物的群落结构,且与水稻秸秆相比,玉米秸秆生物黑炭的施用效果更加明显。本文针对作物生长、土壤氮素形态及相关微生物数量3个方面研究生物黑炭施入土壤对氮有效性的影响,能够更全面、更准确地将生物黑炭如何影响土壤氮素转化展现出来,促进生物黑炭的深入开发利用,对黑土肥力保护具有一定意义。  相似文献   

10.
ABSTRACT

Veterinary antibiotics can enter the environment especially agricultural soils via animal manure application in which Sulfadiazine (SDZ) is considered as one of the most used antibiotic. After soil application, it may be transported into subsurface water. The sorption behavior of SDZ is not only influenced by the soil type but also by soil organic matters as well. Hence, an experiment was executed aimed to study sorption/desorption processes of SDZ under experimental conditions in three various soils treated by different bio fertilizers including rice husk compost (RHC), rice husk biochar (RHB) and Micrococcus yunnanensis (My) bacterium. Sorption/desorption data of soils with and without bio-fertilizers were well fitted with Freundlich model (R2 = 0.97). Results showed that bio-amended soils had higher values of kd sorption ranged from 1.16 to 52.4 without and with bio-fertilizers application respectively, proposing low sorption of SDZ with substantial risk of leaching without bio-fertilizers application. Also for the desorption cycle values of Kd increased from 1.03 to 39.1 without and with bio-fertilizers application, respectively. Furthermore, there was a hysteresis effect using organic matter. As a result of bio-fertilizers application, a significant value of SDZ was strongly adsorbed on the soil particles which was not desorb through desorption process.  相似文献   

11.
Monomethyl-mercury is one of the most toxic compounds. Methylation of Hg usually appears under anoxic conditions. In Swiss forest soils, methyl-Hg concentrations of up to 3 μg kg−1 soil dw have been observed, but the impact of methyl-Hg on soil microorganisms have rarely been examined so far. In this study, we investigated the effect of increasing concentrations of methyl-Hg (0, 5, 20, 90 μg kg−1 soil dw) on the microbial communities in various forest soils differing in their physico-chemical properties. Experiments were conducted in microcosms under controlled conditions and the basal respiration (BR), the microbial biomass carbon (MBC) and the bacterial and fungal community structures using T-RFLP-profiling were investigated. BR was significantly affected by methyl-Hg. In general, the BR increased with increasing methyl-Hg concentrations, whereas the MBC was significantly reduced. Bacterial communities were more sensitive to methyl-Hg than fungal communities. In five out of seven soils, the bacterial community structures differed significantly between the treatments whereas the fungal communities did not. The impact of methyl-Hg on the soil bacterial communities was site specific. In one soil, a methyl-Hg concentration of already 5 μg kg−1 soil dw significantly affected the relative abundance of 13% bacterial operational taxonomic units (OTU), whereas in other soils concentrations of even 90 μg kg−1 soil dw rarely affected the abundance of OTUs. In this study, for the first time, the impact of methyl-Hg on soil bacterial and fungal communities in forest soils was assessed. We showed that its impact strongly depends on the physico-chemical conditions of the soil and that bacterial communities were more sensitive to methyl-Hg than fungi.  相似文献   

12.
 Soil organic matter level, mineralizable C and N, microbial biomass C and dehydrogenase, urease and alkaline phosphatase activities were studied in soils from a field experiment under a pearl millet-wheat cropping sequence receiving inorganic fertilizers and a combination of inorganic fertilizers and organic amendments for the last 11 years. The amounts of soil organic matter and mineralizable C and N increased with the application of inorganic fertilizers. However, there were greater increases of these parameters when farmyard manure, wheat straw or Sesbania bispinosa green manure was applied along with inorganic fertilizers. Microbial biomass C increased from 147 mg kg–1 soil in unfertilized soil to 423 mg kg–1 soil in soil amended with wheat straw and inorganic fertilizers. The urease and alkaline phosphatase activities of soils increased significantly with a combination of inorganic fertilizers and organic amendments. The results indicate that soil organic matter level and soil microbial activities, vital for the nutrient turnover and long-term productivity of the soil, are enhanced by use of organic amendments along with inorganic fertilizers. Received: 6 May 1998  相似文献   

13.
Analysis of manure and soil nitrogen mineralization during incubation   总被引:1,自引:0,他引:1  
Understanding the N-cycling processes that ensue after manuring soil is essential in order to estimate the value of manure as an N fertilizer. A laboratory incubation of manured soil was carried out in order to study N mineralization, gas fluxes, denitrification, and microbial N immobilization after manure application. Four different manures were enclosed in mesh bags to allow for the separate analysis of manure and soil. The soils received 0.15 mg manure N g–1 soil, and the microcosms were incubated aerobically and sampled throughout a 10-week period. Manure addition resulted in initial NH4-N concentrations of 22.1 to 36.6 mg kg–1 in the microcosms. All manured microcosms had net declines in soil mineral N. Denitrification resulted in the loss of 14.7 to 39.2% of the added manure N, and the largest N losses occurred in manures with high NH4-N content. Increased soil microbial biomass N amounted to 6.0 to 8.6% of the added manure N. While the microcosms as a whole had negative N mineralization, all microcosms had positive net nitrification within the manure bags. Gas fluxes of N2O and CO2 increased in all manured soils relative to the controls. Our results show that measurement of microbial biomass N and denitrification is important to understand the fate of manure N upon soil application.  相似文献   

14.
The veterinary antibiotic sulfadiazine (SDZ), labelled by 14C, was administered to pigs to follow the fate of the drug and its metabolites in manure and manure-amended soil, and to investigate the dynamics of drug effects on resistance genes and bacterial communities. In the manure sampled over 10 days, more than 96% of the drug was found as parent compound or metabolites N-acetyl-SDZ and 4-hydroxy-SDZ. While the manure was stored the concentration of SDZ increased by 42% due to deacetylation of the metabolite N-acetyl-SDZ, whereas the minor metabolite 4-hydroxy-SDZ kept constant. In the soil the extractable amounts of the compounds decreased exponentially to less than 1 mg kg?1 within 11 days after manure amendment. The abundances of SDZ resistance genes sul1 and sul2 were determined by qPCR relative to 16S rRNA genes in total DNA from manure and manure-amended soil. In manure both genes increased exponentially in copy number during the first 60 days of storage, suggesting preferential growth of resistant populations. However, the abundance of sul1 and sul2 decreased below 10?5 copies per 16S rRNA gene after 175 days. With manure high amounts of sul1 and sul2 were introduced into the soil which were reduced by more than 10 times within 24 days. Thereafter, sul1 was stably maintained in soil, while sul2 further decreased between day 60 and day 165. A mathematical model was developed that could well explain the time course of sul gene abundance by considering the cost of sul genes, horizontal gene transfer, and selection of the resistant populations in the presence of SDZ. Modelling revealed a selective effect of SDZ on sul2 even at low concentrations down to 0.15 mg kg?1 soil. Bacterial community profiles of manure and manure-amended soil were distinct, indicating that bacteria introduced with manure do not become prominent in soil. The composition of the bacterial community in manure constantly changed during storage, but mainly during the first 10 days. Profiles of soil bacterial communities revealed only a transient perturbation by manure containing SDZ.  相似文献   

15.
Difloxacin (DIF) belongs to the fluoroquinolones, a frequently detected group of antibiotics in the environment. It is excreted in pig manure to a large extent and may consequently reach soils in potentially effective concentrations via manuring. The aim of this study was to assess the effects of DIF-spiked manure on microbial communities and selected functions in soils in a microcosm experiment up to 1 month after application. To test a dose dependency of the effects, three different concentrations of DIF (1, 10 and 100 mg/kg of soil) were used. Microcosms with application of pure manure, as well as untreated microcosms served as control. The addition of pure manure resulted in an increase of microbial biomass and soil respiration as well as a reduced bacteria/fungi ratio. Due to the fast and strong immobilisation of DIF, effects of the antbiotic compound were only visible up to 8 days after application (microbial biomass; respiration; potential denitrification; ratio of bacteria/fungi). As expected these short-term effects resulted in reduced potential denitrification rates as well as a reduced bacteria/fungal ratio in the treatments were DIF has been applied. Surprisingly, microbial biomass values as well as respiration rates were increased by DIF application. Other parameters like nitrate and ammonium content in soil were not influenced by DIF application at any time point. Long-term effects (32 days after application) were only visible for the potential nitrification rates. For those parameters that were influenced by the DIF application a clear dose dependency could not be described.  相似文献   

16.
The objective of the present study was to increase understanding of the effects of heavy metal pollution and soil properties on microorganisms in relation to the biomass and microbial functional community. Soil samples were collected from aged polluted and reference sites on a floodplain. The soil Cu, Zn and Pb total concentrations were much higher at the polluted sites (average 231.6–309.9 mg kg?1, 195.7–233.0 mg kg?1, and 72.4–86.0 mg kg?1, respectively) than at the reference site (average 33.3–44.0 mg kg?1, 76.7–98.0 mg kg?1, and 30.8–41.6 mg kg?1, respectively), while the available heavy metal concentrations in CaCl2 extraction were similar in all sites. Small seasonal variations in the size of microbial biomass were observed. Ambient soil properties (e.g. total C, N, pH, moisture content, and CEC) affected the soil microbial biomass more than the heavy metal pollution. However, the aged pollution tended to impact on the composition of the microbial community. PICT (pollution-induced community tolerance) test using BIOLOG Ecoplates showed enhanced tolerance of the microbial community to Cu stress in the polluted site. In non polluted but low nutrient, low pH and low moisture soil, the microbial biomass was lower and the microbial community was more vulnerable to Cu stress. In spite of the low heavy metal availability due to ageing, the BIOLOG technique provided sensitive detection of microbial community level changes in PICT analysis.  相似文献   

17.
Under the hot and moist conditions of irrigated agriculture in the arid subtropics, turnover of organic matter is high, which can lead to considerable carbon (C) and nitrogen (N) losses. Therefore, sustainable use of these soils requires regular manure application at high rates. To investigate the contribution of consecutive manure applications to an arid sandy soil to various soil N pools, goat manure was isotopically labeled by feeding 15N‐enriched Rhodes grass hay and applied to the soil during a two‐year field experiment. In the first year, soils received 15N‐labeled manure to distinguish between soil‐derived and manure‐derived N. In the second year, these plots were split for the application of either 15N‐labeled or unlabeled manure to discriminate N derived from previous (first year) and recent (second year) manure application. Soil samples (of control and 15N‐manured soil) were collected at the end of the first and the second year, and incubated in two laboratory experiments with labeled or unlabeled manure. At the beginning of Experiment 1, 7% of total N, 11% of K2SO4 extractable N, and 16% of microbial biomass N were derived from previously field‐applied manure. While the application of manure during incubation increased microbial biomass N by 225% and 410% in the control soil and the previously field‐manured soil, respectively, N2O emissions were more affected on the control soil, releasing considerable amounts of the soil N‐pool (80% of total emissions). In Experiment 2, 4% of total N, 7% of K2SO4 extractable N, and 7% of microbial biomass N derived from previously applied manure, and 4%, 8%, and 3% from recently applied manure, respectively. Microbial biomass N and N2O‐N derived from manure declined with time after manure application, whereas in Experiment 1 this tendency was only observed for microbial biomass N.  相似文献   

18.
《Applied soil ecology》2007,35(1):79-93
Microbial diversity in soils is considered important for maintaining sustainability of agricultural production systems. However, the links between microbial diversity and ecosystem processes are not well understood. This study was designed to gain better understanding of the effects of short-term management practices on the microbial community and how changes in the microbial community affect key soil processes. The effects of different forms of nitrogen (N) on soil biology and N dynamics was determined in two soils with organic and conventional management histories that varied in soil microbial properties but had the same fertility. The soils were amended with equal amounts of N (100 kg ha−1) in organic (lupin, Lupinus angustifolius L.) and mineral form (urea), respectively. Over a 91-day period, microbial biomass C and N, dehydrogenase enzyme activity, community structure of pseudomondas (sensu stricto), actinomycetes and α proteobacteria (by denaturing gradient gel electrophoresis (DGGE) following PCR amplification of 16S rDNA fragments) and N mineralisation were measured. Lupin amendment resulted in a two- to five-fold increase in microbial biomass and enzyme activity, while these parameters did not differ significantly between the urea and control treatments. The PCR–DGGE analysis showed that the addition of mineral and organic compounds had an influence on the microbial community composition in the short term (up to 10 days) but the effects were not sustained over the 91-day incubation period. Microbial community structure was strongly influenced by the presence or lack of substrate, while the type of amendment (organic or mineral) had an effect on microbial biomass size and activity. These findings show that the addition of green manures improved soil biology by increasing microbial biomass and activity irrespective of management history, that no direct relationship existed among microbial structure, enzyme activity and N mineralisation, and that microbial community structure (by PCR–DGGE) was more strongly influenced by inherent soil and environmental factors than by short-term management practices.  相似文献   

19.
Effects of goat manure application combined with charcoal and tannins, added as feed additives or mixed directly, on microbial biomass, microbial residues and soil organic matter were tested in a 2-year field trial on a sandy soil under Omani irrigated subtropical conditions. Soil microbial biomass C revealed the fastest response to manure application, followed by microbial residue C, estimated on the basis of fungal glucosamine and bacterial muramic acid, and finally soil organic C (SOC), showing the slowest, but still significant response. At the end of the trial, microbial biomass C reached 220 μg g?1 soil, i.e. contents similar to sandy soils in temperate humid climate, and showed a relatively high contribution of saprotrophic fungi, as indicated by an average ergosterol to microbial biomass C ratio of 0.35 % in the manure treatments. The mean fungal C to bacterial C ratio was 0.55, indicating bacterial dominance of microbial residues. This fraction contributed relatively low concentrations of between 20 and 35 % to SOC. Charcoal added to manure increased the SOC content and the soil C/N ratio, but did not affect any of the soil microbial properties analysed. Tannins added to manure reduce the 0.5 M K2SO4-extractable N to N total ratio compared to manure control. These effects occurred regardless of whether charcoal or tannins were supplied as feed additive or directly mixed to the manure.  相似文献   

20.
菌肥对青稞根际土壤理化性质以及微生物群落的影响   总被引:6,自引:0,他引:6  
应用化学分析、聚合酶链反应-变性梯度凝胶电泳(PCR-DGGE)技术和DNA测序技术,研究了西藏棕色砂壤土中微生物肥料不同施用量和施用期对青稞根际土壤理化性质和细菌群落多样性的影响。结果表明,施用谷特菌肥能显著提高土壤全氮、全磷、全钾、有机质、碱解氮、有效磷和速效钾的水平,如播前施用菌肥浓度750 ml hm-2的处理较不施用菌肥的处理上述指标分别提高13.32%、28.42%、16.20%、9.81%、21.36%、39.35%和30.48%,拔节期施用菌肥浓度2 250 ml hm-2的处理较不施用菌肥的处理分别提高7.25%、29.35%、18.04%、12.86%、15.90%、43.27%和53.99%。DGGE分析表明,相同施用方式中不同施用量土样中微生物的DGGE图谱相似。非加权组平均法(UPGMA)聚类分析将DGGE图谱分为2大类群。Shannon-Wiener指数表明,施用菌肥的土壤细菌多样性先增加后逐渐降低,播前以喷施谷特菌浓度750 ml hm-2时的细菌多样性最高;拔节期则以喷施谷特菌浓度2 250 ml hm-2处理的细菌多样性最高,且两种施用方式土壤养分的释放与Shannon指数的变化规律均为播前﹥拔节期。测序结果表明,不同施肥浓度土样微生物种群分布较为广泛,其中Actinobacteria纲细菌种类略多,少数菌种为未经培养菌种(Uncultured bacterium)。典型对应分析(CCA)表明,DGGE图谱条带分布与土壤理化性质密切相关,碱解氮、全磷和全氮是影响微生物群落的主要环境因子。研究结果表明,施用谷特菌肥可明显改善青稞根际土壤理化性状,提高土壤细菌多样性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号