首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Difloxacin (DIF) belongs to the fluoroquinolones, a frequently detected group of antibiotics in the environment. It is excreted in pig manure to a large extent and may consequently reach soils in potentially effective concentrations via manuring. The aim of this study was to assess the effects of DIF-spiked manure on microbial communities and selected functions in soils in a microcosm experiment up to 1 month after application. To test a dose dependency of the effects, three different concentrations of DIF (1, 10 and 100 mg/kg of soil) were used. Microcosms with application of pure manure, as well as untreated microcosms served as control. The addition of pure manure resulted in an increase of microbial biomass and soil respiration as well as a reduced bacteria/fungi ratio. Due to the fast and strong immobilisation of DIF, effects of the antbiotic compound were only visible up to 8 days after application (microbial biomass; respiration; potential denitrification; ratio of bacteria/fungi). As expected these short-term effects resulted in reduced potential denitrification rates as well as a reduced bacteria/fungal ratio in the treatments were DIF has been applied. Surprisingly, microbial biomass values as well as respiration rates were increased by DIF application. Other parameters like nitrate and ammonium content in soil were not influenced by DIF application at any time point. Long-term effects (32 days after application) were only visible for the potential nitrification rates. For those parameters that were influenced by the DIF application a clear dose dependency could not be described.  相似文献   

2.
Sulfonamides are the second most used antibiotic class in veterinary medicine and applied to livestock to treat bacterial infections. Subsequently, they are spread onto agricultural soils together with the contaminated manure used as fertilizer. Both manure and antibiotics affect the soil microbial community. However, the influence of different liquid manure loads on effects of antibiotics to soil microorganisms is not well understood. Therefore, we performed a microcosm experiment for up to 32 d to clarify whether the function and structure of the soil microbial community is differently affected by interactions of manure and the antibiotic sulfadiazine (SDZ). To this end selected concentrations of pig liquid manure (0, 20, 40, 80 g kg–1) and SDZ (0, 10, 100 mg kg–1) were combined. We hypothesized that incremental manure amendment might reduce the effect of SDZ in soils, due to an increasing sorption capacity of SDZ to organic compounds. Clear dose‐dependent effects of SDZ on microbial biomass and PLFA pattern were determined, and SDZ effects interacted with the liquid manure application rate. Soil microbial biomass increased with incremental liquid manure addition, whereas this effect was absent in the presence of additional SDZ. However, activities of enzymes such as urease and protease were only slightly affected and basal respiration was not affected by SDZ application, while differences mostly depended on the concentration of liquid manure. These results illustrated that the microbial biomass and structural composition react more sensitive to SDZ contamination than functional processes. Furthermore, effects disproportionally increased with incremental liquid manure addition, although extractable amounts of SDZ declined with increasing liquid manure application.  相似文献   

3.
Summary We studied the build-up and turnover of microbial biomass following the addition of farmyard manure to an unmanured soil and to soils from a long-term experiment in which different levels of farmyard manure had been applied for the last 23 years. The application of farmyard manure at 15–90 t ha-1 to previously unmanured soil increased the microbial biomass during the first 3 months of incubation but a gradual decline occurred with further incubation for up to 12 months. Microbial biomass C was positively correlated with soil organic C and ranged from 1.8% to 2.2% of organic C after 12 months of farmyard manure applications. Biomass turnover increased with the application of farmyard manure, ranging from 0.81 to 0.87 year-1 with various levels of manure. Amendment of soils from the long-term manure experiment with various levels of farmyard manure led to a build-up and decline in biomass C as seen in the unmanured soils, but biomass C was higher in all treatments compared to the corresponding unmanured soil treatments. Biomass turnover was greater compared to the unmanured soil treatments and it decreased with increasing levels of farmyard manure. The average soil respiratory activity increased with increasing levels of farmyard manure, but respiratory activity per unit of biomass C decreased with increasing levels of manure. Enzyme activities were greater in long-term manured soils compared to unmanured soils amended with various levels of manure. There was a significant correlation between biomass C and enzyme activities.  相似文献   

4.
土壤中恩诺沙星的吸附-解吸特性和生物学效应   总被引:12,自引:0,他引:12  
抗生素药物残留对生存环境的影响已受到人们广泛的关注。本文研究了我国应用较为广泛的抗生素恩诺沙星在几种农业土壤中的吸附和解吸特性及其对土壤微生物区系和有机碳矿化的影响。结果表明,土壤对恩诺沙星具有较强的吸附作用,残留在土壤中的低量恩诺沙星主要被吸附在固体颗粒上,不易释放和随水迁移。但残留在土壤中的恩诺沙星可影响土壤微生物数量和有机碳的矿化。低浓度的恩诺沙星可刺激土壤微生物活性,增加土壤有机碳的矿化;高浓度的恩诺沙星则会抑制土壤微生物活性和有机碳的矿化。恩诺沙星对土壤生物学性质影响的持续时间较短,约10天左右,这可能与土壤对恩诺沙星具强吸附作用及恩诺沙星在土壤中自然降解削弱了其活性等有关。  相似文献   

5.
The application of animal manure effluents in agriculture in combination with nitrification inhibitors should be beneficial for nutrient recycling, soil quality, plant productivity, and greenhouse gas emission and offer economic advantages to make them an alternative to conventional fertilizers. The present study aims to estimate the effects of the addition of bovine manure effluent alone or together with a nitrification inhibitor (3,4-dymethylpyrazol-phosphate (3,4 DMPP)) on the microbial community dynamics in a Mediterranean soil in an incubation experiment over 28 days. The application of the bovine manure effluent increased respiration, microbial biomass carbon, fungal and bacterial growth, and enzyme activities and changed the microbial community structure evaluated by the phospholipid fatty acid pattern. Adding the bovine manure effluent together with the nitrification inhibitor, although partly negating the positive effect of the effluent on soil microbial activity, still resulted in higher or similar growth and activity as in the control. Our results indicate that the addition of the nitrification inhibitor 3,4 DMPP together with a bovine manure effluent could be a promising solution to control the animal manure effluent application effects on soil microbiological properties and microbial dynamics, as well as counteracting direct inhibiting effects of 3,4 DMPP on the soil heterotrophic community.  相似文献   

6.
The soil conditioners anionic polyacrylamide (PAM) and dicyandiamide (DCD) are frequently applied to soils to reduce soil erosion and nitrogen loss, respectively. A 27‐day incubation study was set up to gauge their interactive effects on the microbial biomass, carbon (C) mineralization and nitrification activity of a sandy loam soil in the presence or absence of maize straw. PAM‐amended soils received 308 or 615 mg PAM/kg. Nitrogen (N)‐fertilized soils were amended with 1800 mg/kg ammonium sulphate [(NH4)2SO4], with or without 70 mg DCD/kg. Maize straw was added to soil at the rate of 4500 mg/kg. Maize straw application increased soil microbial biomass and respiration. PAM stimulated nitrification and C mineralization, as evidenced by significant increases in extractable nitrate and evolved carbon dioxide (CO2) concentrations. This is likely to have been effected by the PAM improving microbial conditions and partially being utilized as a substrate, with the latter being indicated by a PAM‐induced significant increase in the metabolic quotient. PAM did not reduce the microbial biomass except in one treatment at the highest application rate. Ammonium sulphate stimulated nitrification and reduced microbial biomass; the resultant acidification of the former is likely to have caused these effects. N fertilizer application may also have induced short‐term C‐limitation in the soil with impacts on microbial growth and respiration. The nitrification inhibitor DCD reduced the negative impacts on microbial biomass of (NH4)2SO4 and proved to be an effective soil amendment to reduce nitrification under conditions where mineralization was increased by addition of PAM.  相似文献   

7.
为了解随粪肥进入农田中的土霉素对土壤生物化学性质产生的可能影响,采用实验模拟方法研究了土霉素污染对土壤微生物生物量碳、土壤酶活性及微生物组成的影响。结果表明,土霉素污染对土壤细菌、放线菌数量和微生物总量均有一定的抑制作用,随土霉素污染程度的提高抑制作用也有所增强;但土霉素污染对真菌的作用较为复杂,一般是低浓度时有促进作用,高浓度时有抑制作用。低量土霉素污染对土壤脲酶和中性磷酸酶活性均无明显的影响,但高量的土霉素污染对土壤脲酶活性起抑制作用。土霉素对土壤微生物生物量碳的影响因土壤类型、土霉素加入量和培养时间不同有所差异。土霉素污染对土壤生物化学性质的影响主要发生在土霉素进入土壤的初期,随着时间的增加,影响逐渐减弱和消失;  相似文献   

8.
长期施肥对黑土氮素矿化与硝化作用特征的影响   总被引:9,自引:1,他引:8  
采用培养试验研究了长期施肥对黑土矿化与硝化作用特征的影响。结果表明,黑土的矿化作用和硝化作用都较强,长期施肥对黑土矿质态氮量有显著影响,施用化肥能够增加矿质态氮量,在施用NPK肥基础上增施有机肥,矿质态氮量进一步增加,表明在土壤管理上如果增加有机肥的施用,可以提高土壤的供氮能力。长期施肥黑土的硝化率与施N肥相关性较好,其次是施用PK肥。有机肥与无机肥配施可使土壤硝化率显著提高;硝化率高低取决于黑土可矿化态氮素含量和土壤pH。  相似文献   

9.
泰乐菌素和土霉素在农业土壤中的消解和运移   总被引:3,自引:0,他引:3  
长期施用禽畜排泄物可导致抗生素在土壤中的积累, 对环境产生不良影响.为了解进入农田后抗生素的去向及残留动态, 选择2个典型农业土壤, 利用田间小区试验, 研究了田间实际状况下泰乐菌素和土霉素2种抗生素在土壤中的消解与运移行为.研究表明, 抗生素在土壤中的消解和运移与抗生素种类和土壤性质有关.抗生素在砂质土壤(清水砂)中的下移明显高于粘壤土(泥质田), 泰乐菌素在土壤中的垂直迁移强于土霉素.表层土壤中抗生素因降解和下移随时间逐渐下降, 消解速率在试验初期大于后期, 并且土霉素消解速率大于泰乐菌素.砂质土壤中抗生素的消解速率在试验初期明显高于粘壤土, 但至试验后期, 二者渐趋相似.田间条件下测得的抗生素消解速率明显低于实验室条件下, 这可能与抗生素进入田间深层土壤后稳定性增加有关.农田施用抗生素初期产生的径流中含较高浓度的抗生素, 但随时间(10 d之内)很快下降至检测下限以下; 试验初期径流中抗生素浓度为泰乐菌素大于土霉素, 砂质土高于粘壤土.  相似文献   

10.
The study of interactions between minerals, organic matter (OM) and microorganisms is essential for the understanding of soil functions such as OM turnover. Here, we present an interdisciplinary approach using artificial soils to study the establishment of the microbial community and the formation of macro-aggregates as a function of the mineral composition by using artificial soils. The defined composition of a model system enables to directly relate the development of microbial communities and soil structure to the presence of specific constituents. Five different artificial soil compositions were produced with two types of clay minerals (illite, montmorillonite), metal oxides (ferrihydrite, boehmite) and charcoal incubated with sterile manure and a microbial community derived from a natural soil. We used the artificial soils to analyse the response of these model soil systems to additional sterile manure supply (after 562 days). The artificial soils were subjected to a prolonged incubation period of more than two years (842 days) in order to take temporally dynamic processes into account. In our model systems with varying mineralogy, we expected a changing microbial community composition and an effect on macro-aggregation after OM addition, as the input of fresh substrate will re-activate the artificial soils. The abundance and structure of 16S rRNA gene and internal transcribed spacer (ITS) fragments amplified from total community DNA were studied by quantitative real-time PCR (qPCR) and denaturing gradient gel electrophoresis (DGGE), respectively. The formation of macro-aggregates (>2 mm), the total organic carbon (OC) and nitrogen (N) contents, the OC and N contents in particle size fractions and the CO2 respiration were determined. The second manure input resulted in higher CO2 respiration rates, 16S rRNA gene and ITS copy numbers, indicating a stronger response of the microbial community in the matured soil-like system. The type of clay minerals was identified as the most important factor determining the composition of the bacterial communities established. The additional OM and longer incubation time led to a re-formation of macro-aggregates which was significantly higher when montmorillonite was present. Thus, the type of clay mineral was decisive for both microbial community composition as well as macro-aggregation, whereas the addition of other components had a minor effect. Even though different bacterial communities were established depending on the artificial soil composition, the amount and quality of the OM did not show significant differences supporting the concept of functional redundancy.  相似文献   

11.
Analysis of manure and soil nitrogen mineralization during incubation   总被引:1,自引:0,他引:1  
Understanding the N-cycling processes that ensue after manuring soil is essential in order to estimate the value of manure as an N fertilizer. A laboratory incubation of manured soil was carried out in order to study N mineralization, gas fluxes, denitrification, and microbial N immobilization after manure application. Four different manures were enclosed in mesh bags to allow for the separate analysis of manure and soil. The soils received 0.15 mg manure N g–1 soil, and the microcosms were incubated aerobically and sampled throughout a 10-week period. Manure addition resulted in initial NH4-N concentrations of 22.1 to 36.6 mg kg–1 in the microcosms. All manured microcosms had net declines in soil mineral N. Denitrification resulted in the loss of 14.7 to 39.2% of the added manure N, and the largest N losses occurred in manures with high NH4-N content. Increased soil microbial biomass N amounted to 6.0 to 8.6% of the added manure N. While the microcosms as a whole had negative N mineralization, all microcosms had positive net nitrification within the manure bags. Gas fluxes of N2O and CO2 increased in all manured soils relative to the controls. Our results show that measurement of microbial biomass N and denitrification is important to understand the fate of manure N upon soil application.  相似文献   

12.
Abstract

A series of laboratory incubation experiments were conducted on soils from Maindample and Ruffy in northeast Victoria and from Whittlesea in the Plenty Valley, north of Melbourne, Victoria, Australia, to develop a technique for quantifying both autotrophic and heterotrophic nitrification in acidic pasture soils. The use of a specific inhibitor of the autotrophic ammonium oxidizers (N‐serve) did not completely inhibit autotrophic nitrification in its commonly recommended concentrations (10 and 20 µg g?1 soil) in these soils. The N‐serve concentration, which completely inhibited autotrophic nitrification, was found to be 60–80 µg g?1. Varying soil types, pHs, and organic‐matter contents affected the optimum dose of N‐serve required for complete inhibition of autotrophic nitrification. Mixing the inhibitor with the soil after application was also important for immediate inhibition of autotrophic nitrification. Using N‐serve in combination with 15N‐labeled glycine in the Maindample soil showed that heterotrophic organisms were using the organic route for nitrification, and N‐serve did not affect heterotrophic nitrification. A lag of 12 to 24 h in complete inhibition of autotrophic nitrification by N‐serve may have occurred suggesting nitrification studies using N‐serve should include pre‐incubation of the soils with N‐serve for at least 1 day.  相似文献   

13.
Abstract

Laboratory incubation studies were conducted with south Indian tea soils to investigate the influence of soil pH, incubation period, and nitrification inhibitor on urea hydrolysis. The soils used in this experiment were sampled from six different regions of south India. The physicochemical properties, urea hydrolysis as influenced by soil pH, incubation period, and nitrification inhibitor were determined. There was a strong positive correlation between urease activity and organic‐matter content of tea soils, whereas physicochemical properties failed to show any relationship with urease activity. The urease activity was highest in Munnar soils. At 25°C, the activity reached maximum within 15 days after fertilizer application, and it was considerably high up to 36 days in the soils of Anamallais, 18 days in Munnar, and 27 days in other zones studied, which revealed the minimum interval between two successive urea fertilizer applications. Soils of different zones showed a different pattern of urease activity when the soil pH was changed artificially between 4 and 5.5. Addition of nitrification inhibitor [dicyandiamide, DCD] to urea prevented nitrate ion formation, resulting in the accumulation of desirable ammonium ions.  相似文献   

14.
菜地土壤氮素矿化和硝化作用的特征   总被引:23,自引:4,他引:23  
采用培养试验对南京郊区 6 对菜地土和水稻土的土壤 N 素矿化和硝化作用特征进行了研究。菜地土为相同类型水稻土改种蔬菜约 20 年的土壤。结果表明,培养 28 天期间,6 对供试土壤中有 4 对土壤都是菜地土壤矿化 N 量低于相同类型水稻土,其日矿化速率也低于相应的水稻土,而其他 2 对供试土壤之间无明显差异。大多数菜地土的土壤硝化率低于相应的水稻土。培养28 天时的矿化率和硝化率与土壤 pH、速效 P 呈显著相关。  相似文献   

15.
Abstract

Higher rates of nitrification often reported in fine than in coarse textured soils may not be a direct effect of soil texture because in most of the earlier studies, soil water content has been usually expressed as gravimetric, volumetric or soil's water‐holding capacity without consideration of differences in density/ porosity for soils of varying texture. The same water content in texturally different soils could provide very different conditions of soil aeration and associated nitrifying activity. Effects of soil texture on nitrification was studied by incubating three semiarid subtropical soils having sandy loam, loam, and silty clay textures at 35°C for 30 days using water‐filled pore space (WFPS) as the criterion of soil aeration. Upland or aerobic soil conditions, simulated by incubating soil at 60% WFPS, exhibited very fast nitrification of added fertilizer nitrogen (N) and most of the applied 100 mg of ammonium‐nitrogen (NH4+‐N/kg soil) was nitrified within 10 days of incubation in all three soils irrespective of the differences in texture. Under flooded soil conditions (120% WFPS), nitrification was slow and only 84 to 92% of the applied NH4+‐N was nitrified even after 30 days. Nitrification could be described by first‐order kinetics for both the upland and flooded moisture regimes, thus nitrification rate depended upon NH4+ concentration. At similar gravimetric water contents, rates of nitrification differed greatly in soils of varying texture, but when varying water‐holding capacity and bulk density were accounted for using WFPS, all the soils behaved similarly at 60% WFPS. Under impeded aeration (flooded conditions), however, substantial differences were observed in nitrification in soils of varying texture, the largest in fine‐textured Chamror silty clay followed by Habowal loam and the smallest in Tolewal sandy loam soil. These results illustrate the utility of WFPS, compared with soil water content, and its reliability as an indicator of aeration dependent nitrification for soils of varying texture.  相似文献   

16.
有机无机肥配施对酸性菜地土壤硝化作用的影响   总被引:5,自引:0,他引:5  
通过室内培养和田间试验, 研究了有机无机肥配施对酸性菜地土硝化作用的影响。培养试验条件为60%土壤最大持水量和25 ℃。 结果表明,土壤硝化作用模式为指数方程,延滞期10天。与纯化肥处理(NPK)相比,鲜猪粪配施无机肥(FPM+NPK)和猪粪堆肥配施无机肥(CPM+NPK)均能降低土壤硝化势和氨氧化潜势,猪粪堆肥配施无机肥还能增加土壤微生物量碳、 氮。鲜猪粪配施无机肥和猪粪堆肥配施无机肥处理在硝化培养和田间试验期间N2O释放量均没有差异,但硝化培养期间鲜猪粪配施无机肥的N2O释放量显著低于纯化肥处理,田间试验期间猪粪堆肥配施无机肥的N2O释放量显著低于纯化肥处理。培养试验结束后的土壤pH值与土壤硝化势间,以及硝化培养期间N2O累积释放量与土壤硝化势间均存在显著正相关关系。本研究表明, 有机无机肥配施显著影响土壤硝化作用以及硝化培养期间和田间N2O释放。  相似文献   

17.
长期施肥对栗褐土有机碳矿化的影响   总被引:7,自引:0,他引:7  
【目的】 土壤有机碳矿化是土壤中重要的生物化学过程,与土壤养分的释放、土壤质量的保持以及温室气体的形成密切相关。本文以 25 年长期定位施肥试验为依托,对栗褐土土壤有机碳矿化速率、有机碳累积矿化量的动态变化进行研究,为科学管理土壤肥力、增加栗褐土碳汇、减少温室气体排放提供依据。 【方法】 田间试验开始于 1988,共设置 8 个施肥处理:不施肥 (CK);单施氮肥 (N);氮磷肥合施 (NP);单施低量有机肥(M1);低量有机肥与氮肥合施 (M1N);低量有机肥与氮磷肥合施(M1NP);高量有机肥与氮肥合施 (M2N);高量有机肥与氮磷肥合施 (M2NP)。于 2013 年玉米播种前,采集耕层 (0—20 cm) 土壤样品,采用室内培养方法,对土壤碳矿化释放 CO2 的数量和速率进行测定,并利用一级动力学方程计算出土壤有机碳库潜在矿化势和周转速率。 【结果】 各肥料处理不同程度地提高了栗褐土总有机碳含量,以高量有机肥与化肥配施作用最为显著。与 CK 相比,M2N、M2NP 处理土壤总有机碳含量增加了 121.1%、166.8%。不同处理土壤样品培养有机碳矿化速率均在第一天达到峰值,随后急剧下降。5 d 后,下降趋缓,不同处理 CO2 产生速率趋于一致。培养期间,各处理矿化速率变化符合对数函数关系。长期施用不同肥料均可以提高栗褐土有机碳的矿化速率,其大小顺序为:有机肥与化肥配施 > 单施有机肥 > 单施化肥 > 对照。培养 57 d 后,各处理土壤有机碳累积矿化量为 555.0~980.3 mg/kg,以 M2NP、M1N 的累积量较高,为对照的 1.77 倍、1.73 倍。长期施肥栗褐土有机碳矿化率呈下降趋势,以处理 M2NP 下降最明显,与对照相比,降低了 6.3 个百分点。施肥处理土壤的潜在矿化势均高于对照,M1N、M2NP 最高,为 923.7 mg/kg 和 926.4 mg/kg,较对照增加了 74.0% 和 74.5%。不同施肥处理均可明显提升土壤有机碳的周转速率,减少周转时间,其中处理 M1NP、M2NP 效果最为明显。 【结论】 长期施用化肥、有机肥及有机无机肥配施可有效促进栗褐土有机碳的积累,提高有机碳的矿化速率和周转速率,降低有机碳的矿化率 (累积矿化量占有机碳总量的比率),加强了土壤的固碳能力,以 M2NP 处理的效果更佳。   相似文献   

18.
Under the hot and moist conditions of irrigated agriculture in the arid subtropics, turnover of organic matter is high, which can lead to considerable carbon (C) and nitrogen (N) losses. Therefore, sustainable use of these soils requires regular manure application at high rates. To investigate the contribution of consecutive manure applications to an arid sandy soil to various soil N pools, goat manure was isotopically labeled by feeding 15N‐enriched Rhodes grass hay and applied to the soil during a two‐year field experiment. In the first year, soils received 15N‐labeled manure to distinguish between soil‐derived and manure‐derived N. In the second year, these plots were split for the application of either 15N‐labeled or unlabeled manure to discriminate N derived from previous (first year) and recent (second year) manure application. Soil samples (of control and 15N‐manured soil) were collected at the end of the first and the second year, and incubated in two laboratory experiments with labeled or unlabeled manure. At the beginning of Experiment 1, 7% of total N, 11% of K2SO4 extractable N, and 16% of microbial biomass N were derived from previously field‐applied manure. While the application of manure during incubation increased microbial biomass N by 225% and 410% in the control soil and the previously field‐manured soil, respectively, N2O emissions were more affected on the control soil, releasing considerable amounts of the soil N‐pool (80% of total emissions). In Experiment 2, 4% of total N, 7% of K2SO4 extractable N, and 7% of microbial biomass N derived from previously applied manure, and 4%, 8%, and 3% from recently applied manure, respectively. Microbial biomass N and N2O‐N derived from manure declined with time after manure application, whereas in Experiment 1 this tendency was only observed for microbial biomass N.  相似文献   

19.
长期施肥对黑土呼吸过程的影响   总被引:26,自引:2,他引:26  
土壤呼吸是土壤有机C矿化分解,释放无机养分的重要生物化学过程。对公主岭地区长期有机肥(不施有机肥、施中量和高量有机肥处理)与化肥(不施化肥、施用N、NP、NPK化肥)配合施用的12个处理的黑土进行室内好气培养(196天),采用一级动力学方程模拟土壤的呼吸过程,结果表明,有机肥和化肥的施用能显著增加土壤呼吸释放的CO2 -C的累积量,提高土壤中潜在矿化的有机碳含量及其占土壤有机质的比例,促进土壤有机质中无机养分的释放,有利于提高土壤养分的有效性,改善黑土的供肥状况。有机肥与NPK化肥配合施用效果更为明显。  相似文献   

20.
Under conventional farming practices, lime is usually applied on the soil surface and then incorporated into the soil to correct soil acidity. In no-till (NT) systems, where lime is surface applied or only incorporated into the soil to very shallow depth, lime will likely not move to where it is required within reasonable time. Consequently, lime may have to be incorporated into the soil by mechanical means. The objective of this laboratory study was to characterize the effect of lime, incorporated to different depths, on chemical and biological soil properties in a long-term NT soil. Soil samples taken from the 0–5, 0–10, and 0–20 cm depths were analyzed in incubation studies for soil pH, nitrate, CO2 respiration, and microbial biomass-C (MBC). Lime (CaCO3) was applied at rates equivalent to 0, 4.4, 8.8, and 17.6 Mg ha−1. Application of lime to both 0–10 and 0–20 cm depths increased soil pH from about 4.9 by 1, 1.7, and 2.8 units for the low, medium, and high liming rates, respectively. Soil nitrate increased over time and in proportion to liming rate, suggesting that conditions were favorable for N-mineralization and nitrification. Greater respiration rates and greater MBC found in lime-treated than in non-limed soils were attributed to higher soil pH. Faster turnover rates and increased mineralization of organic matter were found in lime-treated than in non-limed soils. These studies show that below-surface lime placement is effective for correcting soil acidity under NT and that microbial activity and nitrification can be enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号