首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
基于CERES-Maize模型春玉米水分优化管理决策   总被引:6,自引:0,他引:6  
在完成DSSAT(4.0.1.0)中CERES-Maize模型参数的校正和验证之后,利用30年(1976-2005年)的气象资料针对北京地区的春玉米生产进行模拟.结果表明,在充分灌溉的条件下,春玉米4月底播种多年平均产量为11.5 t/hm2,当播期推迟至5月底时产量平均提高了4.1%.推迟播期后,春玉米生育期内降雨分布更加均匀,4月底播期的推荐灌溉量多年平均为150 mm,推迟播期后推荐灌溉量减少了50 mm,水分利用率提高了14.9%,在仅灌底墒水及雨养条件下,推迟播期后WUE则分别提高了25.4%和35.6%.5月底播种时,仅灌底墒水在67%的年份里产量达到充分灌溉的水平,即使在雨养条件下仍在50%的年份里和自动灌溉持平.  相似文献   

2.
基于CERES-Maize模型的华北平原玉米生产潜力的估算与分析   总被引:15,自引:3,他引:12  
在对DSSAT4.0中CERES-Maize模型进行参数校正和验证的基础上,进一步利用华北地区具有代表性的10个气象站30年(1976~2005年)的气象资料以及华北地区典型的土壤数据展开模拟.结果表明,在一年一季的生产条件下,华北平原各地区玉米多年平均光温生产潜力为13.53~22.56 t/hm2;各地区玉米产量在4月下旬至6月中旬的播期范围内均呈随播期的延迟而增加的趋势,对这一趋势和各气象指标进行相关分析表明,在华北北部主要驱动因子是灌浆期平均日辐射量,而华北中南部主要驱动因子是灌浆期的温度.华北平原自北向南,优化播期呈逐渐推迟的趋势:北部怀来地区5月上旬播种较为适宜,北京、乐亭和天津地区以5月下旬至6月初播种产量最高;中南部以6月中上旬播种(夏播)较适宜.  相似文献   

3.
浙江地区甬优15直播稻的最佳播期分析   总被引:1,自引:0,他引:1  
以“甬优15”水稻为材料,于2017年在浙江龙游农业气象试验站进行5个播期的分期播种试验(A1:5月5日,A2:5月15日,A3:5月25日,A4:6月4日,A5:6月14日),分析播期对直播稻叶面积指数(LAI)、光合生产、群体干物质积累和转移以及产量的影响。结果表明:适宜播期(A2,5月15日)下,直播稻LAI、群体光合势、群体生长率高,群体干物质积累多,地上部干物质的输出量和转化率大,A2地上部营养器官干物质输出量和转换率分别比A1、A3、A4、A5高7.87%、15.29%、49.43%、56.43%和5.59%、13.18%、28.60%和39.83%。与当地常年单季晚稻适宜播种日期(5月25日)相比,适当早播(5月15日)可增加直播稻的有效穗数、结实率及穗粒数,提高水稻产量,其中A2产量最高(为8879.70kg·hm-2),分别比A1、A3、A4和A5高392.10、610.20、1445.85和2085.15kg·hm-2。由此可见,甬优15在浙江龙游最佳直播期为5月中旬,偏早或偏迟(5月上旬或5月下旬)播种均将导致减产,而过迟播种(6月及以后)将导致产量严重降低。  相似文献   

4.
以鲜食玉米“彩甜糯100”为材料,设置4月1、16日,5月1、16、31日,6月15、30日,7月15、30日和8月14日共10个播期,研究不同播期鲜食玉米的生育期、产量和产值及其与气象因子的关系,以明确安徽省沿江地区露地播种条件下鲜食玉米的适宜播期。结果表明:(1)随播期推迟,鲜食玉米生育期呈长-短-长变化趋势,株高、秸秆鲜重及产量表现为高-低-高,穗粒数呈多-少-多变化趋势。4月1日-5月1日和7月30日播期的鲜食玉米平均产量为20026.56kg·hm-2,显著高于其他播期处理(P<0.05);7月30日播期处理直接销售鲜穗产值为70245.00元·hm-2,较其他处理显著增加68.66%~123.50%(P<0.05)。(2)5月31日-7月15日播种鲜食玉米,生育期内≥32℃日数占全生育期日数的56.25%~60.26%,高温积热较4月1日-5月1日和7月30日播期处理高47.78%~54.46%;5月31日-7月15日播种鲜食玉米生育进程加快,株高降低,物质积累减少,产量降低。8月14日播种鲜食玉米,受灌浆期低温影响,...  相似文献   

5.
目前,应用农业模型去寻找改进农业生态系统的最佳农艺措施被认为是比单一的田间试验更为有效的途径之一。在应用和引进模型当中,一个很关键的环节是确定模型的输入参数对产量和土壤养分的敏感性,因为在一个地区的敏感性并不能保证在其它地区具有同样的影响。正因为如此,本文对农业技术转化决策系统(DSSAT)模型的农业管理参数进行敏感性分析。在吉林省黑土 (ollisols) 地区,于2008年田间试验条件下进行玉米 (ea mays L.)生长模拟(叶面积指数,地上干物质,籽粒重量)应用当地平均产量和生长期对玉米品种参数进行校验。模拟结果的综合分析表明,玉米提前播种8~10d比正常播种减产大约10%。玉米产量随播种密度呈现抛物线趋势;既当低密度下,产量曲线递增,但是当密度大于5株m-2时,产量增加平缓。产量和氮肥施用量呈典型的效应递减曲线,最佳施氮量为200~240 kg hm-2。最佳追肥时间为6月15日至6月28日。本研究证明DSSAT模型能够用于中国其它地区的玉米生长模拟,并且,本研究建立的敏感性分析方法能够用于其它作物,如水稻和小麦。进一步的研究需要包括测试土壤有机碳氮对作物生长管理参数的敏感性。  相似文献   

6.
玉米播期对大豆/玉米间作产量及种间竞争力的影响   总被引:2,自引:0,他引:2  
在间作系统中,间作作物间合理的共生期可有效提高间作系统作物对时空资源的高效利用。而间作作物播期直接影响间作作物间共生期的长短,由此导致的时空生态位分离会直接影响到作物生产力和种间相互作用。为明确大豆/玉米间作系统中玉米播期对间作作物产量、系统生产力及间作作物间资源竞争力的影响,本研究设置3个玉米播期处理——M1(4月24日与大豆同时播种,与大豆共生期165 d)、M2(5月4日播种,与大豆共生期150 d)、M3(5月14日播种,与大豆共生期140 d),通过对单间作条件下作物产量、干物质累积的测定,研究了玉米不同播期下大豆/玉米间作系统作物产量、系统生产力、共生期内种间竞争力变化。结果表明:3个播期处理不影响间作产量优势,土地当量比(land equivalent ratio,LER)均大于1;但随播期延迟,LER变小,M1处理LER最大,达1.37。玉米播期变化对间作大豆产量无显著影响;随玉米播期延迟,间作玉米产量下降,间作系统生产力随之下降。玉米播期对间作大豆产量构成无显著影响;随玉米播期延迟,间作玉米的百粒重随之减小,M3的百粒重(26.1 g)仅为M1(36.6 g)的71%。玉米播期延迟抑制了大豆玉米共生后期玉米资源竞争力的恢复,在大豆和玉米共生前期,大豆的资源竞争力强于玉米,而共生后期(9月至收获),玉米的资源竞争力显著提升;M3处理大豆相对于玉米的资源竞争力(aggressivity,A_(sm))始终高于M1和M2,玉米相对拥挤指数随播期延迟而降低,表现为M1M2M3,而竞争比率为M3M2M1。因此,就本研究而言,甘肃河西灌区大豆/玉米间作系统中4月24日大豆和玉米同时播种是此系统间作作物的适宜播期,两作物同时播种可有效稳定间作作物产量及系统生产力,间作玉米播种延迟会导致间作系统生产力下降。  相似文献   

7.
目前,应用农业模型去寻找改进农业生态系统的最佳农艺措施被认为是比单一的田间试验更为有效的途径之一.在应用和引进模型当中,一个很关键的环节是确定模型的输入参数对产量和土壤养分的敏感性,因为在一个地区的敏感性并不能保证在其他地区具有同样的影响.正因为如此,本文对农业技术转化决策系统(DSSAT)模型的农业管理参数进行敏感性分析.在吉林省黑土(ollisols)地区,于2008年田间试验条件下进行玉米(Zea mays L.)生长模拟(叶面积指数,地上于物质,籽粒重量),应用当地平均产量和生长期对玉米品种参数进行校验.模拟结果的综合分析表明:玉米提前播种8~10d比正常播种减产大约10%;玉米产量随播种密度呈现抛物线趋势,既当低密度下,产量曲线递增,但是当密度大于5株m-2时,产量增加平缓;产量和氮肥施用量呈典型的效应递减曲线,最佳施氮量为200~240 kg hm-2;最佳追肥时间为6月15日至6月28日.本研究证明DSSAT模型能够用于中国其他地区的玉米生长模拟,并且,本研究建立的敏感性分析方法能够用于其他作物,如水稻和小麦.进一步的研究需要包括测试土壤有机碳氮对作物生长管理参数的敏感性.  相似文献   

8.
冬前积温以及播前土壤墒情是旱作冬麦区播期选择的重要依据,利用模型选择不同降水年型下小麦适宜播期具有重要意义。收集山西省闻喜县旱作小麦区2009−2014年(2009、2010和2012年为枯水年,2011年和2013年为丰水年)的大田试验数据,对小麦决策系统进行品种参数校验和验证。利用校验过的决策系统模拟分析闻喜地区近36a(1980−2015年)冬小麦最佳播期变化以及不同降水年型下播期随产量的变化情况。结果表明:(1)1980−1984年,冬小麦最佳播期主要集中在9月25日前后;1985−1995年,历史最佳播期推迟至9月30日前后;1995−2015年,最佳播期推迟至10月5日前后。(2)研究期内,丰水年和平水年9月30日前后播种小麦平均产量最大,分别为4293.1kg·hm−2和4055.2kg·hm−2;枯水年10月5日前后播种小麦平均产量最高,为3334.5kg·hm−2。因此,随着气温的逐渐增高,冬小麦的历史最佳播期呈现明显后移趋势;丰水年和平水年9月30日前后播种,枯水年以10月5日前后播种为宜。  相似文献   

9.
为探究春玉米(Zea mays L.)干物质积累和产量对播期调控下水热变化的响应,在河北科技师范学院试验基地,于2017—2020 年进行了4年的播期试验,以京农科728和MC812为材料,分析了播期(5月1日、5月10日、5月20日、5月30日)引起的春玉米干物质积累量、产量构成因素、产量以及水分利用率的变化。结果表明,受温度与降水影响,春玉米干物质积累量在生育前、中期随播期的推迟而下降,而灌浆后期至成熟期以5月30日播种春玉米干物质积累量最多。春玉米干物质积累动态符合Logistic模型,5月30日播种春玉米干物质积累的总持续时间和快增期持续时间均最长。有效穗数、穗粗、轴粗、穗行数和出籽率不受温度与降水的影响,但穗粒数、千粒重、穗长、行粒数受其影响显著,各指标随播期延迟先下降再上升,并以5月20日播种的春玉米最低。产量与千粒重呈显著正相关,5月30日播种的春玉米产量最高。另外,随播期的推迟,总耗水量减少,水分利用效率提高。综上可知,合理安排播期,重视降雨对春玉米生长发育及产量形成的影响,是冀东地区春玉米获得高产的重要措施。本研究为冀东地区春玉米播期选择提供了理论依据和技术支持。  相似文献   

10.
为探讨不同品种和播期对春玉米生长发育及产量的影响,给河西地区玉米高产栽培提供依据。以主栽玉米品种先玉335、郑单958、农华101为供试材料,设置5个播期处理。结果表明,播期对玉米生长发育影响显著,播期推迟,生育进程逐渐加快,生育期逐渐缩短。播期对株高、穗位影响显著,平均播期每推迟5 d,株高增加11.6~14.8 cm,穗位高增加1.2~4.8 cm。播期对穗长、穗粗和秃尖长影响不明显,对穗粒数影响显著,最高穗粒数对应产量最高指标值。播期对玉米产量影响显著,先玉335、农华101于4月26日播种较5月6日播种产量分别提高了14.8%、7.6%;郑单958于4月21日播种产量较5月6日播种产量提高了14.0%;先玉335、农华101、郑单958在河西地区最适宜的播期分别为4月26日、4月26日、4月21日。  相似文献   

11.
播期对川中丘区玉米干物质积累与产量的影响   总被引:8,自引:0,他引:8  
以川中丘区主推玉米品种‘正红505’和‘成单30’为材料,15 d为间隔,从3月26日至5月25日设置5个播期,研究播期对川中丘区玉米干物质积累与产量的影响,以期为本区域玉米的适期播种提供理论依据。结果表明,随播期推迟,玉米的生育期尤其是播种到吐丝期缩短,吐丝后干物质积累量及其对产量的贡献减少,收获指数降低;早播有利于增加花后干物质积累,晚播的产量形成需要更多地调运花前积累的光合产物;‘正红505’的产量随播期推迟而降低,‘成单30’的产量随播期推迟先略升高后降低,早夏播(5月10日播种)与春播(4月10日)玉米产量差异不显著,但夏播(5月25日播种)与‘正红505’一样因生育期缩短、干物质积累减少、收获指数降低而较春播显著减产;早春播‘正红505’产量较‘成单30’高,夏播‘成单30’产量高于‘正红505’,表明‘成单30’耐夏播能力较‘正红505’强。播期对‘正红505’干物质积累和产量及其构成因素的影响程度较‘成单30’大,生产上更应注意适期播种。该地区春播适宜的播期相对较宽,生产上应解决耕作制度与机械化生产的矛盾;夏播应注重耐夏播品种的选择,并争取在5月中上旬完成播种。  相似文献   

12.
Abstract

A field study has been conducted to evaluate the importance of planting dates on earliness and second crop seed cotton yield in two cotton cultivars (Gossypium hirsutum L.). The experiment was designed as a split-plot with three replications in which planting dates were the main plots and cotton cultivars were subplots. Five planting dates were established at about 15-day intervals from mid-April to mid-June (15 April, 1 May, 15 May, 1 June, and 15 June). Data collected in both years indicated that planting on 15 April increased the seed cotton yield by 15%. 1 June planting resulted in lower yield (28%), micronaire (15%) and strength (10%) compared to 1 May. Short fibre content was 35% higher for the 15 June planting than for 1 May planting. Cultivar responses differed with planting date. The existence of cultivar×planting date interaction on yield highlights the importance of selecting the right cultivar for the specified planting date. An early planting production system for cotton has the potential to increase yield and quality. Planting cotton as a second crop after cereals could also be feasible for the regions which have an expanding textile industry, although yield and quality are not as high as in crops grown at optimum planting date.  相似文献   

13.
在旱作条件下,探讨播期及播量对小麦新品系‘小偃60’群体性状、产量及水分利用的影响,可为小麦适雨栽培提供技术依据。试验于2014—2015年在中国科学院南皮生态农业试验站进行,自10月15日至11月14日,每6 d设置一个播期,共设6个播期(T1~T6),设播量不变(B1)和逐期增加播量(B2)两个处理:B1为300 kg·hm~(-2),T1到T6播量相同;B2为随播期推迟播量逐期增加,每推迟1 d增加7.5 kg×hm~(-2),各播期的播量分别为300 kg·hm~(-2)(T1)、345 kg·hm~(-2)(T2)、390 kg·hm~(-2)(T3)、435 kg·hm~(-2)(T4)、480 kg·hm~(-2)(T5)和525 kg·hm~(-2)(T6),研究了不同播期和播量下‘小偃60’群体性状、产量及水分利用的变化规律。试验结果表明:1)随播期推迟,出苗时间延长、生育期推迟,全生育缩短;播量对生育期无显著影响。2)随播期推迟,出苗率和单株成穗数逐渐降低;播量增加,基本苗及穗数提高。3)随播期推迟,株高和生物量降低;播量增加,生物量提高,株高无显著变化。4)随播期推迟,籽粒产量下降;逐期增加播量后,11月2日前籽粒产量可达6 600 kg×hm~(-2)以上且无显著差异。5)若随播期推迟增加播量,前4个播期产量、水分利用效率无显著变化,皆达29 kg×hm~(-2)×mm-1以上。研究结果表明,‘小偃60’是一个播期宽泛的品种,随播期推迟产量下降,但在一定播期范围内通过增加播量,提高群体(穗数),可以获得与适时播种相近的产量,播量与播期推迟天数的理论关系为y=0.368 2x2+1.193 9x+316.7(R~2=0.983 9)。  相似文献   

14.
为挖掘玉米产量潜力,进一步提升玉米综合生产能力,利用在东北地区已验证的Hybrid-maize模型及多年气象数据对吉林省不同生态类型区[东部湿润生态区(桦甸)、中部半湿润生态区(公主岭)、西部半干旱生态区(乾安)]不同品种、播期和密度及其相互组合下的玉米产量潜力进行模拟,并对影响玉米高产稳产的因素进行定量分析,同时考虑产量潜力变异情况及品种本身的生产特性,构建了吉林省不同生态区玉米高产体系。研究结果表明:1)改变播期是一项重要的增产措施,不同生态区的表现不同,湿润区应选择早播,播种日期在4月20日左右较适宜,而半湿润和半干旱地区应尽量晚播,适宜播期应在5月中旬左右。2)不同生态区对密度的容纳能力表现为湿润区(桦甸)半湿润区(公主岭)半干旱区(乾安),3个地区的适宜密度分别为90 000株·hm~(-2)、80 000株·hm~(-2)和75 000株·hm~(-2)左右。3)选用生育期更长的品种表现出了较高的增产潜力,生产上应根据不同区域生态条件,尽量选择晚熟品种,在当前播期条件下半湿润和半干旱地区品种生育期内需要的有效生长积温(GDD)可增至1 600℃以上。4)与当前生产技术相比,将播期、密度、品种三者优化组合,高产体系长期平均产量潜力可增产14.39%~29.23%。本研究可为吉林省玉米高产措施的正确应用提供理论依据,为玉米产量大面积提升提供技术参考。  相似文献   

15.
为研究自然高温对水稻产量的影响,以南粳45为试材,于2013年在南京信息工程大学农业气象试验站进行3个播期的分期播种试验,分别为4月30日(第1播期,No.1)、5月15日(第2播期,No.2)和5月31日(第3播期,No.3),并分析水稻产量及其性状、产量贡献因子、灌浆期茎和叶向穗的干物质转运及收获指数(Harvest index,HI)对高温的响应特征。结果表明:(1)在试验播期范围内,随着播期的延后水稻表现为增产的趋势,其中No.1与其它两个播期间产量差异达到显著性水平(P0.05),相比No.2和No.3,No.1产量分别降低3495.08kg·hm-2和6319.58kg·hm~(-2);就产量性状来看,No.1的结实率与其它两个播期达到显著性差异(P0.05),而3个播期间千粒重和穗粒数的差异均达到显著性水平(P0.05),总体上来看,高温主要表现为降低结实率和穗粒数;(2)抽穗末穗干重P0、灌浆期同化的干物质量ΔW、灌浆期茎和叶向穗转移的干物质量ΔT这3个产量贡献因子的贡献量均随着播期的推迟逐渐增大;从贡献率来看,对No.1和No.3产量贡献率最大的是ΔW,而No.2是ΔT;(3)3个播期中茎的干物质输出率(Dry matter export rate,DMER)和转化率(Dry matter transformation rate,DMTR)均超过叶的两倍(除No.1的DMER),叶的DMER和DMTR均表现为No.1最大,No.3最小,分别相差4.37和7.35个百分点,但No.1茎的DMER和DMTR均最小;(4)3个播期HI大小趋势与产量一致,表现为No.1(28.84%)No.2(39.60%)No.3(46.92%)。由此可见,在2013年将播期调整至5月中下旬有助于缓解高温对水稻造成的危害,从而保证产量。  相似文献   

16.
气候变化背景下播期对东北三省春玉米产量的影响   总被引:1,自引:0,他引:1  
为探究气候变化背景下东北三省(黑龙江省、吉林省和辽宁省)春玉米适宜播期的变化程度,本文以东北三省春玉米潜在种植区为研究区域,基于1981—2015年气象资料,1981—2012年农业气象观测站玉米生育期、产量资料以及土壤资料,分气侯区对农业生产系统模型(APSIM)进行调参和验证,建立适用于东北三省10个不同气候区的模型相关参数,在各气候区利用调参验证后的APSIM-Maize模型设置不同播期,模拟各年代不同播期下春玉米潜在产量和气候生产潜力,综合高产和稳产性指标,明确了不同区域各年代不同条件下适宜播期范围。研究结果表明,APSIM模型对于东北三省7个春玉米品种开花和成熟两个关键生育期以及产量模拟结果与实测结果具有较好的一致性,表明APSIM模型能够较好地模拟研究区域春玉米生育期和产量。充分灌溉条件下,研究区域内适宜播期范围从4月16日至5月19日,空间上呈纬向分布南早北迟的特征; 20世纪90年代和21世纪00年代玉米适宜播期较20世纪80年代有提前趋势,其中20世纪90年代提前趋势更明显;第1、第3、第5、第7和第9气候区雨养条件下较充分灌溉条件下适宜播期有推迟趋势,推迟天数为3~6 d。雨养条件下各年代不同气候区理论上的适宜播期较目前生产中实际播期下的产量提高2.84%~9.96%。以上结果为进行未来气候变化对东北三省春玉米影响及其适宜播期等研究提供了技术支撑。  相似文献   

17.
基于中国冬小麦区14个站点近25a(1990?2015)农业气象站冬小麦观测资料、气象资料和土壤资料,利用DSSAT作物生长模型,模拟研究改变土壤养分条件、播期、种植密度和施氮量对缩小冬小麦产量差和提高N肥利用效率的影响,探索冬小麦高产高效的技术途径。结果表明:不同冬小麦站点的潜在产量区域间差异较大,其范围在7617~14242kg·hm-2。不同农艺措施对产量影响程度不同,其中提高土壤养分含量的增产潜力为53~3124kg·hm-2,对缩小产量差(缩差)的贡献率在8%以下,氮肥利用效率提高1.1~20.82kg·kg-1;播期提前的增产潜力为?327~2292kg·hm-2,其缩差贡献率为7%~17%,氮肥利用效率在?2.18~15.28kg·kg-1;增加种植密度的增产潜力为?255~699kg·hm-2,其缩差贡献率小于5%,氮肥利用效率在?1.7~4.66kg·kg-1;增施氮肥的增产潜力为0~4491kg·hm-2,其缩差贡献率为11%~33%,氮肥利用效率在?32.04~0kg·kg-1。表明增施氮肥和调整播期的增产潜力及缩差贡献率较大,提高土壤养分含量和增加种植密度次之,但是增加土壤施氮量使氮肥利用效率明显下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号