首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
丛枝菌根(AM)真菌对土壤中阿特拉津降解的影响   总被引:4,自引:0,他引:4  
于盆栽高粱(Sorghum,龙杂一号)条件下研究了丛枝菌根(AM)真菌根内球囊霉(Glomus intraradices,GI)和摩西球囊霉(Glomus mosseae,GM)降解土壤中阿特拉津的效用。结果表明,阿特拉津(浓度为50 mg/kg)污染土壤中,供试AM真菌都能够侵染高粱根系形成菌根,而且GM比GI侵染效果好,最高侵染率可达到90.5%,显著提高了植株的生物量。接种AM真菌后土壤中阿特拉津的残留浓度显著低于不接种对照处理,并且接种GM比GI对阿特拉津的降解效果显著。接种GM处理的土壤中阿特拉津最高降解率达到了91.6%,其中菌根效应占22.6%。接种AM真菌的宿主植物根际土壤中微生物数量多于不接种处理,且GM优于GI处理,说明AM真菌能促进根际微生物的繁殖。此外,接种AM真菌后能显著增加土壤中脲酶活性,但对过氧化氢酶活性影响不显著。认为GM是一株比较理想的修复阿特拉津污染土壤的AM真菌。  相似文献   

2.
丛枝菌根真菌对西藏高原草地植物和土壤环境的影响   总被引:2,自引:0,他引:2  
采用三室隔网装置,就Glomus etunicatum、Glomus intraradices、Glomus mossecte对2种高山草地植物和土壤环境的影响进行了研究。结果表明:(1)接种AM真菌对草地植物的侵染和生长均具显著效应,植株地上部、根系干物重以及含磷量、吸磷量均显著高于不接种处理,菌根菌丝对植株吸磷的贡献率达47.8%-69.5%。其中,Glomus intraradices、Glomus mosseae分别对穗序剪股颖、紫羊毛吸收土壤磷索更具促进作用。(2)各接种处理中室土壤中各类微生物数量均显著高于边室土壤,但边室土壤中放线菌,特别是细菌、真菌的平均增幅均远高于中室土壤,表明菌根际、菌丝际土壤中各类微生物的数量差异趋于明显缩小,微生物区系构成得以平衡与改善;解磷细菌(芽孢杆菌)亦呈同一趋势。(3)2—1 mm粒径团聚体在土壤水稳性团聚体构成中占有绝对比重,菌根菌丝对距根表不同距离处2—1 mm团聚体形成的贡献率均在70%以上,但距根表2—4cm处菌根菌丝贡献率明显低于0-2、4-6cm处,并未表现出随菌丝密度增加而提高的趋势;5—2mm水稳性团聚体仅距根表较远处有少量形成(菌丝贡献率达100%),0-2、2—4cm处则未见分布。(4)同一、不同AM真菌对不同或同一草地植物的侵染及所产生的菌根效应具有不同程度的差异,穗序剪股颖各接种处理普遍优于紫羊毛,紫羊毛+Glomus mosseae、穗序剪股颖+Glomus intraradices优于同组其他接种处理的趋势较为明显。  相似文献   

3.
丛枝菌根真菌对西藏高原固沙植物吸磷效率的影响   总被引:3,自引:0,他引:3  
采用盆栽方法,就外源菌种、土著菌种(含混合菌种)对固沙植物白草(Pennisetum.flaccidum)生长和吸磷效率的影响进行了研究。结果表明,白草具有较高的菌根依赖性(平均达166.4%);不同AM真菌(或真菌组合)对白草根系均具显著的侵染效应。随菌根侵染率的提高,植株生物量、吸磷量均呈显著增加(相关系数分别为0.7465*、0.6000*);菌根菌丝对白草吸收土壤磷素的贡献十分明显,各接种处理菌根菌丝对植物吸收土壤磷素的贡献量、贡献率分别在3.2~11.6.mg/pot和61.5%~85.3%之间;接种菌根处理植株吸磷量呈Glomus.intraradicesG.mosseae+G.etunicatum+G.intraradices+Scutellospora.erythropaG.mosseae(外源菌种)G.mosseae+G.intraradices+Scutellospora.calosporaG.mosseae-I(土著菌种)G.etunicatum的趋势。此外,不同AM真菌对寄主植物地上部、根部生物量和吸磷量的影响程度明显不同,一般呈地上部根系的趋势,但寄主植物根系的生长速率相对较快;土著菌种中,多菌混合接种对寄主植物的侵染效应明显高于单一接种。  相似文献   

4.
以筛选自渭北旱塬葡萄园的3种土著AM真菌菌株Glomus mosseae(GM)、Glomus intraradices(GI)和Glomus versiforme(GV)为试材,在盆栽条件下研究了3种AM真菌单独接种及混合接种对酿酒葡萄赤霞珠(Cabernet Sauvignon)扦插苗营养生长指标的影响。结果表明,不同接种处理的葡萄幼苗AM真菌侵染程度不同,混合接种显著高于单接种;混合接种GI+GVGM+GVGM+GI,单接种GVGIGM。接种AM真菌促进葡萄幼苗的生长,显著提高植株高度和地上、地下干重,并提高葡萄叶片净光合速率、气孔导度、胞间二氧化碳浓度和蒸腾速率,从而提高葡萄叶片的光合作用;葡萄叶片中叶绿素含量、可溶性糖含量、可溶性蛋白含量均高于未接种对照,且混合接种优于单接种。  相似文献   

5.
接种丛枝菌根真菌对土壤水稳性团聚体特征的影响   总被引:5,自引:0,他引:5  
为了研究接种丛枝菌根真菌对土壤团聚体特征的影响,采用盆栽试验,以小麦(Triticum aestivuml)为宿主植物,在两个不同供磷水平条件下,分别接种丛枝菌根真菌Glomus intraradices和Glomus mosseae,收获后分析土壤团聚体数量、分布和分形维数,并运用通径分析对不同作用因子进行统计。结果看出,与对照相比,接种丛枝菌根真菌显著提高了土壤中有机质含量、球囊霉素相关土壤蛋白含量,土壤水稳性大团聚体数量也显著增加。接种处理提高了土壤的平均重量直径、几何平均直径,而且降低了土壤分形维数。通径分析表明,在影响土壤水稳性大团聚体的众多因子中,菌丝密度具有最大的作用,且以直接作用为主;有机质和球囊霉素相关土壤蛋白也表现出较大的作用。接种G. mosseae对改良土壤结构的作用优于接种G. intraradices。  相似文献   

6.
内蒙古盐碱土中AM真菌的多样性与分布   总被引:1,自引:0,他引:1  
唐明  黄艳辉  盛敏  张峰峰  肖文发 《土壤学报》2007,44(6):1105-1110
在内蒙古盐碱土13种主要植物分离到3属26种AM真菌,其中球囊霉属(Glomus)22种,无梗囊霉属(Acaulospora)3种,原囊霉属(Archaeospora)1种。地球囊霉(Glomus geosporum)和地表球囊霉(Glomus ver-siforme)是该区域盐碱土中的优势种。13种主要植物均能被AM真菌侵染,其中玉米和马蔺的侵染率最高,达100%;根际土壤中AM真菌孢子密度范围为29~182个g-1烘干土,其中稻的孢子密度最高,达182个g-1烘干土;在不同土壤类型条件下植物的菌根侵染率具有明显的差异,其规律为草甸盐土>碱化盐土>盐化草甸土>碱化草甸土;根际土壤中孢子密度以碱化草甸土最高(101个g-1烘干土),其次为碱化盐土、草甸盐土和盐化草甸土。相关分析表明,根际土壤中AM真菌孢子密度与菌根侵染率无显著相关性。  相似文献   

7.
为明确丛枝菌根(AM)真菌对促进绿化苗木镉(Cd)吸收的影响,通过盆栽试验比较接种不同AM真菌对12种绿化苗木Cd吸收的差异,并进一步分析接种对金叶六道木根际微生物数量和AM真菌群落结构的影响。结果表明,12种绿化苗木,加Cd处理6个月后,其叶片浓度的变化范围为0.25~2.59 mg·kg-1。接种AM真菌处理组的叶片Cd含量均高于不接菌处理组。相比未接种,接种AM2摩西球囊霉(BGCAM00164)后金叶六道木叶片中Cd含量增加147.9%,故选择金叶六道木进行后续研究。接种AM212个月后,金叶六道木的根、枝、叶Cd浓度分别为164.7、22.86和10.57 mg·kg-1,为不接菌处理的2.64倍、2.06倍和1.76倍,全株总Cd含量达5078μg·株-1,显著高于不接菌对照(1745μg·株-1)。相比不接菌对照,接种AM2后降低了转移系数,将其更多吸收的Cd固定在根内,从而减少对植株的损害。接种AM真菌增加了AM真菌PLFA生物量,但降低了根际土壤微生物细菌和真菌PLFA生物量。所有样本中丰度较高的AM真菌为球囊霉科(Glomus)、类球囊霉科(Paraglomus)和原囊霉科(Archaeospora)。球囊霉科占总AM真菌的55%以上,是金叶六道木根际的主要优势种群。接种AM2后球囊霉丰度显著增加,由对照的61.8%上升至77.4%,但AM真菌的整体多样性和丰富度则表现为下降。接种AM1后类球囊霉科丰度显著增加,由对照的13.1%上升至17.8%,但球囊霉丰度无显著变化。主成分分析结果表明Cd和AM真菌接种可以改变金叶六道木根际AM真菌群落结构。总体而言,接种AM真菌(摩西球囊霉)能提高金叶六道木对土壤重金属Cd污染的修复效率,其联合修复技术可扩展Cd污染土壤植物修复的应用范围。  相似文献   

8.
通过盆栽试验,研究了在低氮(不施氮)和高氮(施氮0.2 g·kg~(-1))水平下接种不同种类丛枝菌根(AM)真菌[Funneliformis mosseae(BGC-NM03D)、Claroideoglomus etunicatum(BGC-NM01B)和Rhizophagus intraradices(BJ09)]对小麦生长、氮吸收及根内4个硝态氮转运蛋白(NRT)基因、1个辅助蛋白(NAR)基因和2个铵态氮转运蛋白(AMT)基因表达的影响。结果表明,3种AM真菌均能够侵染小麦根系,以R.intraradices菌根的侵染率最高;接种R.intraradices或C.etunicatum能够显著提高小麦的生物量或地上部氮吸收量;无论是高氮还是低氮处理,接种AM真菌后均显著下调了小麦根内NRT、NAR和AMT基因的表达水平,且不同AM真菌调控小麦根内氮转运蛋白基因表达的能力具有明显差异。  相似文献   

9.
补光光源对AM真菌生长发育的影响   总被引:1,自引:0,他引:1  
温室条件下,研究不同补光光源对丛枝菌根(Arbuscular mycorrhizae,AM)真菌Glomus mosseae生长发育的影响。结果表明:不同补光光源的光谱不同,对菌根共生体生长发育的影响不同,以农艺钠灯作为补光光源处理的宿主植物的光合速率及可溶性糖含量高于其它两种光源处理,综合比较菌根长度、根外菌丝量及孢子数三项指标,以农艺钠灯作为补充光源对真菌G. mosseae的生长发育最为有利。金属卤灯、荧光灯两处理宿主植物中氮、磷浓度高于农艺钠灯处理,可能对菌根真菌的生长发育有不利影响。因此,工厂化AM菌剂生产中,如果需要补充光照,应以农艺钠灯作为补光光源。  相似文献   

10.
【目的】研究3种AM真菌对离子型稀土废弃矿区的生态修复改良效果,为选择适宜的AM菌剂提供技术支撑。【方法】试验采用盆栽方法,供试土壤采自江西省赣州市定南县某废弃的离子型稀土矿区,供试作物为黑麦草。在灭菌的土壤上,分别接种摩西斗管囊霉(Glomus mosseae,G.m)、根内根孢囊霉(Rhizophagus intraradices,R.i)、幼套球囊霉(Glomus etunicatum,G.e),以不接种菌剂为对照,每个处理重复6次。播种催芽后的黑麦草,黑麦草生长210天,进行了8次株高和干物量监测,在黑麦草生长195天时(第8次监测),收获3个重复的黑麦草,植株样品用于分析地上部和根部干重、NPK含量,根际土壤样品用于分析pH、有机质、全量和速效氮磷钾含量。其余3个重复停止灌水用于干旱胁迫处理,在黑麦草生长210天时测定了植株超氧化物歧化酶(SOD)活性和脯氨酸含量。【结果】与不接菌空白组相比,接种G.m、R.i、G.e处理根际土壤pH由强酸性(4.60)提高至7.62~7.90,有机质分别提升了123.9%、126.8%、105.0%;G.m处理土壤全氮、碱解氮和全磷分别提升...  相似文献   

11.
Nutrient composition and yield of soybean [Glycine max (L.) Merr] seeds are heritable traits affected by environmental factors. This study determined the effects of arbuscular‐mycorrhizal (AM) fungi on seed protein, lipid, and phosphorus (P) composition and yield in soybean grown under a high nitrogen (N) regime. Plants were grown in pot cultures without AM fungi in P‐fertilized (+P) or unfertilized (‐P) soil, or in ‐P soil inoculated with one of the AM fungi Glomus mosseae (Nicol. & Gerd.) Gerd, and Trappe (Gm), Glomus etunicatum Becker and Gerd.(Ge), or Gigaspora rosea Nicol. and Schenck (Gr). Seed yields of+AM plants, as a group, were halfway between those of the +P and ‐P plants. Seed size was highest in Gm plants. Differences in protein concentrations between Ge and Gr and the other treatments were highly significant. Seed P and protein concentrations were not significantly correlated (p=0.162), but a highly significant (r =‐0.949) negative correlation between seed P and lipid concentrations was observed. Phosphorus concentration was highest and that of lipids lowest in +AM plants. Seed yield and nutrient composition were independent of the intensity of root colonization. The seed protein/lipid ratio was highly correlated with seed P concentration and was significantly higher for +AM plants, as a group, than for both +P and ‐P ‐AM plants. Differences in seed dry weight, size, seed/ stem ratio, P content, and protein concentration among +AM plants showed mycorrhiza‐specific host responses. These responses suggest that AM fungi can modify soybean seed development and chemical composition.  相似文献   

12.
The main objective of this study was to investigate the effects of co-inoculation with different strains of Bradyrhizobium japonicum (i.e. Helinitro, Rizoking, and Nitragin) and arbuscular mycorrhizal fungi (AMF) species (i.e. Glomus fasciculatum, Glomus versiforme, Glomus intraradices, Glomus mosseae, and Glomus etunicatum) on soybean growth, fungal root colonization, and nutrient uptake of nitrogen (N), phosphorus (P), zinc (Zn), iron (Fe), and copper (Cu). Co-inoculation with various AMF species and rhizobia significantly (p<0.01) increased the soybean biomass production as compared to the non-inoculated controls. Furthermore, AMF colonization of roots of soybean plants increased by 79, 70.1, 67, 63, 57.5, and 50.1% in the presence of G. fasciculatum (GF), G. versiforme (GV), G. intraradices (GI), G. mosseae (GM), and G. etunicatum (GE), and Gmix (a mixed culture of fungi), respectively. Higher nutrient contents were observed in plants co-inoculated with Helinitro and GF. More insight into these results will enable optimization of the effective use of AM fungi in combination with their bacterial partners as a tool for increasing soybean yields in Iran; however, its general analytical framework could be applied to other parts of the world.  相似文献   

13.
A preliminary investigation was conducted on the arbuscular mycorrhizal (AM) status of the dominant and common wild forage plants in typical steppe of eastern Inner Mongolia, a major semi-arid grassland region in China. Fifty-four wild forage plant species were collected and examined, and 27 of these were colonized by AM fungi. Some plants belonging to families that are presumed to lack mycorrhizas (Cyperaceae, Caryophyllaceae and Chenopodiaceae) were also found to be mycorrhizal. Higher proportions of arbuscular mycorrhizal plants were found in perennial (56.1%) and monocotyledonous (64.7%) forage species. However, neither percentage of root length colonized nor spore density varied significantly between the two life forms or cotyledon types. Twenty-seven species belonging to 7 genera of AM fungi were identified in total according to the morphological characteristics of the spores from field soil and trap cultures, and the results indicate that Glomus was the dominant AM genus and Glomus geosporum (Nicolson & Gerdemann) Walker and Glomus mosseae (Nicolson & Gerdemann) Gerdemann & Trappe were the dominant species in field soil and trap cultures, respectively. Glomus intraradices Schenck & Smith, Glomus etunicatum Becher & Gerdemann, Glomus claroideum Schenk & Smith emend Walker & Vestberg, Glomus clarum Nicolson & Schenck and Scutellospora callospora (Nicolson & Gerdemann) Walker & Sanders also occurred with high frequencies.  相似文献   

14.
Plant growth-promoting rhizobacteria and arbuscular mycorrhizal (AM) fungi represent two main groups of beneficial microorganisms of the rhizosphere. The role of different strains of Azospirillum on AM fungi development was evaluated by measuring the percentage of AM colonisation of the root system in durum wheat and maize plants, grown under both greenhouse and field conditions. The effect of wild-type Azospirillum brasilense strain Sp245 and genetically modified (GM) derivatives overproducing indole-3-acetic acid was assessed at greenhouse level in (1) three different cultivars of durum wheat, in the presence of indigenous AM fungi and (2) maize plants artificially inoculated with Glomus mosseae and Glomus macrocarpum. In addition, the establishment of natural AM fungal symbiosis was evaluated using Azospirillum lipoferum CRT1 in maize plants at field level. Despite the stimulatory effect of the different Azospirillum inocula on root growth, no significant differences in AM colonisation were found, independently of the AM fungus involved, either in wheat or in maize plants. Similarly, GM A. brasilense, which strongly stimulates root development, did not affect AM formation. Although these results were obtained in conditions in which the mycorrhization rate was moderate (15–30%), overall considered they indicate that the use of wild-type or GM Azospirillum phytostimulators does not alter mycorrhization.  相似文献   

15.
接种丛枝菌根真菌对脱毒马铃薯微型薯生长及产量的影响   总被引:2,自引:1,他引:1  
在大田条件下采用混合菌种(Glomus mosseas+Glomus intraradices)作为接种剂,研究了接种丛枝菌根真菌对脱毒马铃薯微型薯菌根侵染、磷吸收和产量的影响。结果表明,接种菌根真菌,马铃薯菌根侵染率增加73.3%,植株吸磷量增加15.4%,块茎产量增加8.0%。上述结果证明,在大田条件下,接种菌根真菌能侵染马铃薯根部,促进植株对磷的吸收,从而增加产量。  相似文献   

16.
Previous greenhouse and field studies have shown arbuscular mycorrhizal (AM) plants usually have greater P uptake and growth when raised in undisturbed soil compared to soil disturbed between plantings, such as by tillage. We report here for the first time that AM fungi able to stimulate shoot P uptake in experimental comparisons to non-mycorrhizal plants differ in their ability to bring about similar responses in undisturbed soil compared to disturbed soil. This outcome indicates a difference in functional character between the two stimulation processes. Three isolates of AM fungi were tested for growth promotion of maize (Zea mays L.) in pots in a soil disturbance experiment that included non-mycorrhizal controls. All three fungi colonized roots well and promoted shoot P uptake compared to non-inoculated controls, but only Glomus mosseae was able to stimulate growth in undisturbed soil compared to disturbed soil. This effect was seen when Glomus mosseae was alone or in combination with Gigaspora margarita. However, the presence of Glomus aggregatum in combination with Glomus mosseae prevented any stimulation, presumably due to domination by Glomus aggregatum. The ability of AM fungi to be beneficial to plants in comparison to non-mycorrhizal situations likely relates to the spread of mycelium in the soil and the capacity for nutrient transfer to the root. The ability of an AM fungus to promote growth in undisturbed soil appears to be related to these features and, in addition, a capacity for persistence and retention of functional capacity of the extraradical mycelium from one plant generation to the next.  相似文献   

17.
Arbuscular mycorrhizal (AM) fungi have a key role for plant nutrition in organic farming systems where crop protection relies on biopesticides. Although these are considered safe, their effects on non-target organisms, such as AM fungi, are not known and should be evaluated. A pot and a field experiment were employed to investigate the impact of biological pesticides (azadirachtin, spinosad, pyrethrum and terpens) on exogenous AM fungal inoculum (pots) and on indigenous AM fungi (field). The synthetic fungicide carbendazim and non-pesticide treated controls with or without mycorrhizal inoculation were also included. Plant growth and root colonization were measured 20 and 40 days post inoculation (dpi) in the pot experiment, or 40 and 90 dpi in the field study. Pesticide effects on the structure of the intraradical AM fungal community were determined via DGGE and cloning. Spinosad, pyrethrum and terpenes did not affect the colonization ability and the structure of the AM fungal community. On the contrary, pot application of azadirachtin resulted in a selective inhibition of the Glomus etunicatum strain of the inoculum. DGGE analysis showed that the field application of azadirachtin induced significant and persistent shifts in the AM fungal community. Carbendazim completely hampered mycorrhizal colonization in pots, compared to its field application which had a transitory effect on the colonization ability and the community structure of indigenous AM fungi. Our study provides first evidence for the effects of biological pesticides on the diversity of AM fungi.  相似文献   

18.
The influence of mycelium of two arbuscular mycorrhizal (AM) fungi, Glomus intraradices and Glomus mosseae, on other soil microorganisms, was examined in root-free soil with and without organic substrate amendment in terms of cellulose. The AM fungi were grown in symbiosis with cucumber in a compartmented growth system, which allowed AM fungal external mycelium to grow into root-free compartments. The fungicide Benomyl was applied to the root-free compartments to create an alternative non-mycorrhizal control treatment. Whole cell biomarker fatty acids were employed to quantify different groups of soil microorganisms including the two AM fungi. Abundance of most microbial groups were reduced by external mycelium of both AM fungi, though differential effects on the microbial community composition were observed between the two AM fungi as revealed from principal component analysis. Inhibition of other soil microorganisms was more pronounced in root-free soil with mycelium of G. mosseae than with mycelium of G. intraradices. In general, cellulose increased the amount of biomarker fatty acids of most groups of soil microorganisms, but cellulose did not affect the influence of AM fungi on other soil microorganisms. Benomyl suppressed growth of the external mycelium of the two AM fungi and had limited non-target effects on other microbial groups. In conclusion, our results show differential effects of external mycelium of AM fungi on other soil microbial communities, though both AM fungi included in the study overall inhibited most microbial groups as examined using whole cell biomarker fatty acids.  相似文献   

19.
The effect of three arbuscular mycorrhizal (AM) fungi on phosphorus (P) nutrient activation and acquisition by maize from spatially heterogeneous sand was investigated using dual-mesh packages enriched with different P concentrations and compared with non-mycorrhizal cotrols. As would be expected the AM fungi significantly enhanced leaf photosynthetic rate and the biomass and P concentrations in shoots and roots. All three fungi (Glomus intraradices, Glomus mosseae and Glomus etunicatum) displayed the capacity to dissolve inorganic P and promoted P nutrient availability in the packages (P patches). G. etunicatum showed the largest effect comparing with Glomus intraradices and Glomus mosseae, particularly in packages with high concentrations of P. Possible mechanisms involved include the acidification of the P patches by the AM fungi, promotion of the dissolution of the P, and more marked effects of the three fungal isolates with increasing enrichment of P in the patches. Inoculation with G. etunicatum resulted in greater acidification compared to the other two fungi. We conclude that AM fungi can promote P availability by acidifying the soil and consequently exploiting the P in nutrient patches and by facilitating the growth and development of the host plants.  相似文献   

20.
A greenhouse study was conducted to study the efficiency of 14 isolates of arbuscular mycorrhizal (AM) fungi isolated from a local agricultural soil on the productivity of sweet potato (Ipomoea batatas). The different AM fungi enhanced the biomass and nutritional status of sweet potato seedlings to different extents. The genus Glomus was more effective than Acaulospora or Scutellospora. Efficiency also varied among isolates of Glomus irrespective of individual host plant or location of origin. Intraspecific differences were sometimes greater than interspecific differences. Benefits deriving from fungal isolates were positively correlated with the root-colonization rate and the abundance of extraradical propagules of the AM fungi. Taking plant yield parameters, nutritional status of the plants, and fungal attributes into consideration, GEGM (Glomus etunicatum together with Glomus mosseae) and GE6 (Glomus etunicatum) were the most effective AM symbionts for sweet potato under the experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号