首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthetic pyrethroids contain two or three chiral centers, making them a family of chiral pesticides with a large number of stereoisomers. Recent studies showed significant differences in aquatic toxicity between enantiomers from the same diastereomers of pyrethroids. To better understand the ecotoxicological effect and fate of pyrethroid insecticides, chirality in biodegradation must also be considered. In this study, we examined enantiomer compositions of selected pyrethroids in field sediment samples taken from various locations in southern California. Enantioselective degradation was frequently observed for cis-bifenthrin, permethrin, and cyfluthrin under field conditions. We further conducted long incubation experiments under laboratory-controlled conditions using single enantiomers of cis-bifenthrin, cis-permethrin, and cypermethrin. The half-lives for individual enantiomers were calculated to be 277-770 days for cis-bifenthrin enantiomers, 99-141 days for cis-permethrin enantiomers, and 52-135 days for cypermethrin enantiomers, respectively. The direction and degree of enantioselectivity in degradation were found to closely depend on the specific compound as well as experimental conditions. Because no significant difference in degradation was observed after samples were sterilized, the observed enantioselectivity may be attributed to preferential biological transformations.  相似文献   

2.
Determination of the botanical origin of raw spirit used for alcoholic beverage production is of great importance for rectifying units, control laboratories, and proper product labeling. Raw spirit samples (138) produced from rye, corn, and potato were analyzed using a solid phase microextraction-mass spectrometry (SPME-MS) method, which involved volatiles preconcentration by SPME with subsequent volatile fraction characterization by MS without particular compounds separation by GC. Obtained data were treated using principal component analysis and linear discriminant analysis (LDA) to test the possibility of sample classification. SPME sampling conditions allowed rapid extraction in 2 min at 50 °C using a carboxen/divinylbenzene/polydimethylsiloxane fiber, followed by rapid MS analysis. Use of LDA made possible the classification of raw spirits based on the material they were produced from. The classification ability of the developed SPME-MS method was 100%, whereas its prediction ability was 96%.  相似文献   

3.
Investigations were carried out to determine whether flavor compounds characteristic for fresh cucumbers could be rapidly determined using a solid-phase microextraction (SPME) dynamic headspace sampling method combined with gas chromatography and flame ionization detection. Cucumbers were sampled, during blending, for fresh cucumber flavor compounds (E,Z)-2,6-nonadienal and (E)-2-nonenal. The GC was such that the two target compounds were separated and baseline-resolved. Relative standard deviations for analysis of both (E,Z)-2,6-nonadienal and (E)-2-nonenal using this SPME sampling method were +/-10%. Utility of the analytical method was demonstrated by determining the effect of heat treatments on the ability of cucumbers to produce these flavor impact compounds.  相似文献   

4.
A stable isotope dilution assay (SIDA) was developed for the quantitation of both linalool enantiomers using synthesized [2H(2)]R/S-linalool as the internal standard. For enrichment of the target compound from beer, a solid phase microextraction method (SPME) was developed. In comparison to the more time-consuming extraction/distillation cleanup of the beer samples, the results obtained by SPME/SIDA were very similar, even under nonequilibration conditions. Analysis of five different types of beer showed significant differences in the linalool concentrations, which were clearly correlated with the intensity of the hoppy aroma note as evaluated by a sensory panel. In addition, significant differences in the R/S ratios were measured in the beers. The SPME/SIDA yielded exact data independently from headspace sampling parameters, such as exposure time or ionic strength of the solution.  相似文献   

5.
The application of headspace solid phase microextraction (SPME) for flavor analysis has been studied. Headspace SPME sampling was tested for nine common wine flavor compounds in 10% (v/v) aqueous ethanol: linalool, nerol, geraniol, 3-methyl-1-butanol, hexanol, 2-phenylethanol, ethyl hexanoate, ethyl octanoate, and ethyl decanoate. The chemical groups (monoterpenoids, aliphatic and aromatic alcohols, and esters) showed specific behavior in SPME analysis. SPME sampling parameters were optimized for these components. Relative response factors (RRFs), which establish the relationship between the concentration of the compound in the matrix liquid solution and the GC peak area, were estimated for all compounds. Log(10)(RRF) varied from 0 (3-methyl-1-butanol) to 3 (ethyl decanoate), according to their molecular weight. Quantification by SPME was shown to be highly dependent on the matrix composition; the compounds with higher RRF were the less affected. As a consequence, the data obtained with this methodology should be used taking into consideration these limitations, as shown in the analysis of four monovarietal Bairrada white wines (Arinto, Bical, Cerceal, and Maria Gomes).  相似文献   

6.
Synthetic pyrethroid (SP) insecticides are of environmental significance because of their high aquatic toxicity. Due to their chirality, SP compounds contain multiple diastereomers and enantiomers. However, due to great structural similarities and lack of isomer standards, gas chromatographic (GC) analysis of SP diastereomers or enantiomers is poorly developed. In this study, we used a HP-5 column to separate the diastereomers and a beta-cyclodextrin-based enantioselective column (BGB-172) to separate the enantiomers of cypermethrin (CP) and cyfluthrin (CF). Resolved peaks were identified by comparing chromatograms of isomer-enriched CP products. Diastereomers of both CP and CF were separated on the HP-5 column. On the BGB-172 column, enantiomers of all cis diastereomers were separated, while those of trans diastereomers were not separated. The elution order appears to be regulated by configuration, a finding which may allow peak identification in the absence of isomer standards. When coupled with electron capture detection, the developed methods had low detection limits and may be used for analysis of SP diastereomers and enantiomers in environmental samples.  相似文献   

7.
《Biosystems Engineering》2003,84(2):239-246
Non-invasive sampling and chemical analysis of breath gases could provide valuable information related to health and well-being. Breath gases are indicators of metabolic end products. The objective of this research was to design, assemble and test a new facemask-like device for on-site bovine breath sample collection with solid-phase microextraction (SPME). The new device consists of a cylindrical container, a sealing membrane for enclosure of nostrils and mouth of cattle, a system of filters and one-way valves, and sampling ports sealed with septa facilitating insertion of air sampling probes inside the device. An experiment was conducted to examine the feasibility of detecting volatile organic compounds (VOCs) exhaled by calves using this device. Solid-phase microextraction was used to collect rapid on-site breath samples. Divinylbenzene/Carboxen/polydimethylsiloxane (DVB/Carboxen/PDMS) 50/30 μm and PDMS 100 μm SPME fibres and sampling times ranging from 5 to 15 min were used. The SPME-based samples were sealed and transported to the laboratory and analysed with chromatography–mass spectrometry (GC–MS). Acetone, methyl ethyl ketone, toluene, tetradecane, pentadecane, nonanal and decanal were identified in cattle breath. A simple sampling system, combined with SPME-based sampling and analysis with GC–MS was very useful for fast collection and detection of bovine breath gases. The DVB/Carboxen/PDMS 50/30 μm fibre coating, sealing caps, and refrigeration worked well for retaining compounds found in breath samples. Solid-phase microextraction was also valuable for detection of residual VOCs in the breath sampling device that resulted in optimisation of cleaning procedures. The device can be easily adapted for other animals by adjusting the size of the cylindrical container and/or by replacing the sealing membrane with more suitable opening.  相似文献   

8.
A dynamic solid-phase microextraction (SPME) method to sample fresh headspace volatile compounds released during the grinding of roasted coffee beans was described and the analytical results using gas chromatography/mass spectrometry (GC/MS) and GC/olfactometry (GC/O) were compared to those of the conventional static SPME sampling methods using ground coffee. Volatile compounds released during the grinding of roasted coffee beans (150 g) were obtained by exposing the SPME fiber (poly(dimethylsiloxane)/divinylbenzene, PDMS/ DVB) for 8 min to nitrogen gas (600 mL/min) discharged from a glass vessel in which the electronic coffee grinder was enclosed. Identification and characterization of volatile compounds thus obtained were achieved by GC/MS and GC/O. Peak areas of 47 typical coffee volatile compounds, separated on total ion chromatogram (TIC), obtained by the dynamic SPME method, showed coefficients of variation less than 5% (n = 3) and the gas chromatographic profile of volatile compounds thus obtained was similar to that of the solvent extract of ground coffee, except for highly volatile compounds such as 4-hydroxy-2,5-dimethyl-3(2H)-furanone and 4-ethenyl-2-methoxyphenol. Also, SPME dilution analysis of volatile compounds released during the grinding of roasted coffee beans showed linear plots of peak area versus exposed fiber length (R (2) > 0.89). Compared with those of the headspace volatile compounds of ground coffee using GC/MS and GC/O, the volatile compounds generated during the grinding of roasted coffee beans were rich in nutty- and smoke-roast aromas.  相似文献   

9.
Optimum conditions of solid phase microextraction (SPME) analysis of the headspace volatile compounds of Parmesan cheese in airtightly sealed 100-mL bottles were developed. The coefficient of variation of SPME analysis on the headspace volatile compounds of Parmesan cheese was 2%. The reproducibility of SPME was improved by a combination of sampling at -10 degrees C, controlling the sample temperature, and uniform magnetic stirring of samples during equilibrium and isolation steps. The sensitivity of SPME increased by 125% in total peak areas by a combination of 40 min of sonication and 25% (w/v) sodium phosphate solution, compared with that of samples containing deionized water only (P < 0.05). The addition of salt solution or sonication treatment in samples increased the headspace volatile compounds of cheese quantitatively without producing any new volatile compounds.  相似文献   

10.
The dissipation behaviors of the two enantiomers of the organophosphorus pesticide malathion (MA) in environment samples were elucidated using a normal-phase high-performance liquid chromatography with a cellulose-tris(3,5-dimethylphenylcarbamate) (CDMPC) chiral column. A validated chiral residue analysis method in soil and water was established; the average recoveries for the two enantiomers were 88-102% in soil and 81-99% in water. Racemic and enantiopure R-(+)- and S-(-)-MA were incubated in five soil and water systems. The results of the degradation of racemate in all of the environment samples showed the inactive S-(-)-enantiomer degraded more rapidly than the active R-(+)-enantiomer, resulting in a relative enrichment of the R-form. Moreover, when the enantiopure S-(-)- and R-(+)-MA were incubated in three well-chosen soil and water samples, respectively, inversion from one enantiomer to another was found, indicating that using the optically pure enantiomer will not help to increase the bioactivity and reduce the environmental pollution.  相似文献   

11.
The development and application of a solid-phase microextraction (SPME) method in the analysis of vanilla extracts and vanilla flavorings was studied. The SPME method was developed to be used in conjunction with gas chromatography mass spectrometry (GC-MS). The optimized SPME sampling parameters for the determination of the volatile components included a poly(acrylate) fiber, a 40-min sampling time at room temperature, and a 2-min desorption time. The reproducibility of the method was good, with a percent relative standard deviation between 2.5 and 6.4% for the target compounds. The data suggest that the origin of natural extracts can be readily determined from the GC profile and that differences exist between nature-identical and synthetic flavorings and the natural extracts. The method also has potential for identifying the type of vanilla extract/flavoring used to flavor food.  相似文献   

12.
The enantiomers of five chiral pesticides of environmental interest, metalaxyl, imazaquin, fonofos (dyfonate), ruelene (cruformate), and dichlorprop, were separated analytically using capillary electrophoresis (CE) with cyclodextrin chiral selectors. For metalaxyl, imazaquin, and fonofos, aqueous slurries of soil samples from two sites in Georgia and one in Ohio were spiked with the racemate of each pesticide at 50-60 mg/L of aqueous phase of the slurry, and CE analyses were performed at various time intervals to determine enantiomer fractions (EF). Metalaxyl underwent enantioselective transformation; in one soil, the half-life of the target active R-(+)-enantiomer was 17 days while that for the S-(-)-enantiomer was 69 days. Transformation occurred more slowly in the other two soils but was still selective for the R-(+)-enantiomer. Imazaquin and fonofos exhibited nonselective enantiomer loss over their 3 months of incubation time; this could have been due to abiotic or nonselective microbial reactions. Ruelene and dichlorprop were transformed selectively in a variety of soils in a previously reported study (7) that showed the influence of environmental changes on the transformation of chiral pollutants in soils; analytical methods used in that study are reported here to further illustrate the application of CE. CE is shown to be a simple, efficient, and inexpensive way to follow the transformation of chiral pesticides in laboratory microcosms where concentrations can be made high enough (25-50 mg/L initial racemate concentration) for detection of residual parent enantiomers during most of the process.  相似文献   

13.
A novel enantioselective synthesis of nerol oxide (3, 6-dihydro-4-methyl-2-(2-methyl-1-propenyl)-2H-pyran) was used for the determination of the absolute configuration at C-2. The order of elution of the enantiomers on octakis-(2, 3-di-O-butyryl-6-O-tert-butyldimethylsilyl)-gamma-cyclodextrin in OV 1701-vi as the chiral stationary phase in enantioselective GC was determined as (2R) before (2S). Enantioselective multidimensional GC/MS (enantio-MDGC/MS) was used for the determination of the enantiomeric ratios of nerol oxide in different geranium oils. As a result, in all investigated oils nerol oxide occurs as a racemate. The biogenesis of nerol oxide in Pelargonium species was investigated by feeding experiments using deuterium-labeled neryl glucoside as the precursor. The Pelargonium plants were able to convert the fed precursor into racemic nerol oxide, which has to be considered as a "natural racemate".  相似文献   

14.
Headspace solid-phase microextraction (HS-SPME) was used to isolate the volatile compounds, which are formed during peroxidation of fatty acids in vegetable oils. Isolated compounds were characterized by GC-MS and quantified using GC with FID detection. Four fibers for HS-SPME method development were tested, and the divinylbenzene/carboxene/PDMS fiber was selected as providing the best detection of analyzed compounds. Extraction curves, limits of detection, repeatability, and linearity were investigated for 14 aldehydes, ketones, hydrocarbons, and alcohols being products of fatty acids autoxidation. Limits of detection for 11 of these were below 1 microg/L. For quantitative purposes, to minimize the influence of temperature on hydroperoxide formation and the changes in the volatiles profile of the extracts, sampling was performed at 20 degrees C. For compound characterization by GC-MS, sampling temperature of 50 degrees C was applied. The developed method was applied to the analysis of refined and cold-pressed rapeseed oil stored at 60 degrees C for 10 days, and for 10 different vegetable oils of various degree of peroxidation. All samples were subjected to sensory analysis. The results of PCA sensory analysis were related to the amount of volatile compounds isolated by SPME method. In cases where the amount of compounds was highest, the samples were perceived as the worst, whereas those with low levels of volatile compounds were the most desired ones according to sensory evaluation. The relation was observed for both total volatiles, quantified C5-C9 aldehydes, and 14 compounds selected in method development. SPME revealed to be a rapid and sensitive method for the extraction and quantitation of trace volatile compounds from plant oils even at ambient temperature.  相似文献   

15.
Solid phase microextraction (SPME) is used to collect and concentrate the compounds in the headspace of rice. This research describes optimization parameters of temperature, moisture, and sampling time. Optimization was based upon the recovered levels of 2-acetyl-1-pyrroline (2-AP), the popcorn aroma in aromatic rice. The method uses a sampling temperature of 80 degrees C and adds 100 microL of water to a 0.75 g sample of rice. The rice was preheated for 25 min, a carboxen/DVB/PDMS SPME fiber was exposed to the headspace for 15 min, and a subsequent GC-MS analysis took 35 min. Samples of rice can be analyzed as the flour, milled kernels, or brown rice. Twenty-one experimental rice varieties were analyzed by the SPME method and compared to a wet technique. Recoveries of several nanograms of 2-AP from 0.75 g samples of aromatic rice were observed, whereas only trace amounts of 2-AP were recovered from nonaromatic rice. Recovery from a single SPME headspace analysis is calculated to be 0.3% of the total 2-AP in the sample.  相似文献   

16.
Separation of chiral enantiomers and the dissipation of rac-metolachlor and S-metolachlor in soil were evaluated using achiral high-performance liquid chromatography (HPLC) and chiral gas chromatography (GC) methods. Under the experimental conditions the possible metabolite was considered to be N-(2-ethyl-6-methyl-phenyl)-2-hydroxy-acetamide. Because of the presence of two chiral elements (asymmetrically substituted carbon and chiral axis), the baseline separation of metolachlor enantiomers was not achieved. S-metolachlor degraded faster in soil than rac-metolachlor. After a 42-day incubation, 73.4% of rac-metolachlor and 90.0% of S-metolachlor were degraded. However, due to the absence of biological processes the degradation process in sterilized soil showed no enantioselectivity. The results indicated that enantioselective degradations could greatly affect the environmental fate of metolachlor and should be considered when the environmental behavior of these compounds was assessed.  相似文献   

17.
Although enantioselectivity in the toxicity of chiral pesticides has received considerable attention over recent years, how coexisting enantiomers interact with each other during their toxic action remains unknown. In this study, we attempted to resolve the enantiomers of a chiral organophosphate insecticide, isocarbophos, and investigated the acute toxicity of individual enantiomers and various enantiomer mixtures. Baseline enantiomeric separation of isocarbophos was achieved on a Chiralcel OD column with the mobile phase of n-hexane/isopropanol (90/10, v/v) at a flow rate of 0.8 mL/min. The resolved enantiomers were differentiated by their responses on a circular dichroism detector. The median lethal concentrations (LC 50) of racemate, (+)-enantiomer, and (-)-enantiomer of isocarbophos toward Daphnia magna were 13.9, 7.08, and 353 microg/L, respectively, after 48 h of static exposure, displaying a 50-fold difference between the enantiomers. Toxic unit (TU) analysis was employed to evaluate the joint toxicity of isocarbophos enantiomer mixtures. The calculated TU mix for the acute toxicity (48 h test) of various binary mixtures ranged from 0.83 to 1.04, suggesting a mode of additive effect. Further evaluation of available literature data for chiral organophosphorus insecticides showed that the joint toxicity of enantiomers may be additive, synergistic, and antagonistic. Therefore, when significant enantioselectivity exists for a chiral pesticide, it is important to also evaluate the interaction of enantiomers in the joint toxicity effect when enantiomers are present in a mixture.  相似文献   

18.
A method for quantitative analysis of acrylamide has been developed for use with headspace solid-phase microextraction (SPME). In the method, acrylamide undergoes silylation with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) to form the volatile N,O-bis(trimethylsilyl)acrylamide (BTMSA). Once formed, BTMSA is readily extracted from the headspace over the silylation reaction using a 100 microm poly(dimethylsiloxane) SPME fiber. A series of experiments was undertaken to optimize the amount of BSTFA, the silylation reaction temperature, the silylation reaction duration, and SPME sampling duration to maximize the analytical sensitivity for BTMSA. Acrylamide levels were quantified relative to a [13C3]-acrylamide internal standard using gas chromatography/ion-trap mass spectrometry (GC/MS) in the single ion monitoring mode. An analytical working curve was constructed and found to be linear over the 4 to 6700 ppb acrylamide range investigated with a limit of detection of 0.9 ppb. The native acrylamide levels of three commercial cereals were measured using the optimized analytical method. Quantitative standard additions of acrylamide to the cereal matrixes demonstrated complete recovery of the spiked acrylamide.  相似文献   

19.
Aryloxyphenoxypropanoates are a class of chiral herbicides. They have a pair of enantiomers, only the R(+) form of which is herbicidally active. Diclofop, the model compound of these herbicides, is commercialized as the racemate of the ester form, diclofop-methyl, consisting of a 1:1 mixture of the enantiomers. This study evaluated the enantioselectivity in aquatic toxicity and biodegradation of diclofop and diclofop-methyl. The herbicidally inactive S(-) enantiomers of both diclofop-methyl and diclofop were similar to or higher than the corresponding R(+) forms in toxicity to algae, depending on specific species. Although no enantiomeric conversion occurred for diclofop-methyl and diclofop, the difference in the enantioselective degradation of these herbicides observed in algae cultures suggested that their application forms were an important factor determining their enantioselective environmental behavior. The cell permeability and heat treatment of algae revealed that the enantioselective degradation of diclofop in algae cultures was governed primarily by the facilitated uptake by algae, whereas the enantioselective toxicity was primarily governed by the passive uptake. These results suggested that the acute toxicity test such as the 96 h EC 50 was insufficient to assess the ecological risk of chiral pesticides because of the differential degradation as well as possibly differential action sites of enantiomers. From this study, it was concluded that the enantioselective degradation and toxicity of chiral herbicides may result in their ecotoxicological effects being difficult to predict and that specific attention should thus be paid to currently used racemic pesticides as less active or inactive enantiomers may pose higher ecological risks.  相似文献   

20.
Volatiles from stored Kuerle fragrant pears (Pyrus serotina Reld) were studied using high-resolution gas chromatography and the solid-phase microextraction (SPME) method of gas chromatography/mass spectrometry (GC/MS). The dominant components were hexanal, ethyl hexanoate, ethyl butanoate, ethyl acetate, hexyl acetate, ethanol, alpha-farnesene, butyl acetate, and ethyl (E,Z)-2,4-decadienoate. By using GC-olfactometry, it demonstrated that the volatile compounds from SPME were responsible for the aroma of the Kuerle fragrant pear. The levels of sugars, organic acids, and phenolic acids in Kuerle fragrant pears were investigated using high-performance liquid chromatography (HPLC). Fructose was the dominant sugar, followed by glucose and sucrose. With increasing storage time, sucrose levels decreased; however, changes in fructose and glucose levels were not remarkable. There was a slight decrease in flesh firmness during storage. The general soluble solids concentration (SSC) declined slightly after 5 months storage. Some aroma-related volatile components increased during storage, while others decreased, especially the esters. The organic acids and phenolic acids also changed. The flavor of the Kuerle fragrant pears was affected by the change of volatile compounds and changes in chemical and physical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号