首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enantioselective degradation behavior of fenoxaprop-ethyl (FE) and its chiral metabolite fenoxaprop (FA) in three soils under native conditions was investigated. Two pairs of enantiomers were analyzed by high-performance liquid chromatography (HPLC) with an amylose tri-(3,5-dimethylphenylcarbamate) (ADMPC) chiral column. The degradation of racemic FE in three soils showed the herbicidally inactive S-(-)-enantiomer degraded faster than the active R-(+)-enantiomer. FE was configurationally stable in soils because no interconversion to the respective antipodes was observed during incubation of the enantiopure S-(-)- or R-(+)-FE. The main metabolites of FE were confirmed as FA and 6-chloro-2,3-dihydrobenzoxazol-2-one (CDHB), and the formation of the chiral metabolite FA showed enantioselectivity in soils. The degradation of rac-FA was also enantioselective with the S-(-)-FA preferentially degraded: the half-life (t(1/2)) of the S-form in the three soils ranged from 2.03 to 5.17 days, and that of R-form ranged from 2.42 to 20.39 days. The inversion of the S-(-)-enantiomer into the R-(+)-enantiomer occurred in two of the three soils when the enantiopure S-(-)- and R-(+)-FA were incubated. The data from sterilized control experiments indicated that the enantioselectivity of FE and FA was attributed to microbially mediated processes.  相似文献   

2.
Despite the fact that the biological processes of chiral pesticides are enantioselective, the biotoxicity of methamidophos with respect to enantioselectivity has so far received limited research. In this study, the enantiomeric separation and biotoxicity of the two enantiomers of methamidophos were investigated. Successful enantioseparation of methamidophos using high-performance liquid chromatography on a Chiralcel OD column was achieved. As indicated by the optical rotation and circular dichroism detection, (+)-methamidophos was eluted prior to (-)-methamidophos. The t test at the 95% level of confidence indicated significant differences between the enantiomers in their in vitro inhibition toward acetylcholinesterases of bovine erythrocytes and Electrophorus electricus and in vivo acute aquatic toxicity to Daphnia magna. The in vitro assays showed that (-)-methamidophos was about 8.0-12.4 times more potent to the enzymes than its (+)-form. In contrast, the (+)-enantiomer was 7.0 times more toxic to D. magna in 48 h tests. The toxicity of racemic methamidophos was intermediate in both in vitro and in vivo bioassays. These results suggest that the biotoxicity of chiral OPs to nontargeted organisms is enantioselective and therefore should be reevaluated with their pure enantiomers.  相似文献   

3.
A sensitive and enantioselective method was developed and validated for the determination of myclobutanil enantiomers by chiral liquid chromatography coupled with tandem mass spectrometry. The separation and determination were performed using reversed-phase chromatography on a Chiralcel OD-RH column, with ACN-water (70/30, v/v) as the mobile phase under isocratic conditions at 0.5 mL/min flow rate. The matrix effect, linearity, precision, accuracy, and stability were evaluated. The proposed method then was successfully applied to the study of enantioselective degradation of rac-myclobutanil in cucumber and soil under different application modes. The results showed that the preferential degradation of (+)-myclobutanil resulted in an enrichment of the (-)-myclobutanil residue in plant and soil. Moreover, in cucumber, the stereoselective intensity of myclobutanil under root douche treatment was stronger than that under foliar spraying treatment, whereas in soil, the intensity was exactly opposite. The probable reasons underlying these enantioselective effects were also discussed. This study highlighted the importance of examining the fate of both enantiomers in the greenhouse system for the correct use of chiral pesticides.  相似文献   

4.
Despite the fact that the biological processes of chiral pesticides are enantioselective, knowledge of the toxicities of pyraclofos due to enantiospecificity is scarce. In this study, the optical isomers of pyraclofos were separated and their toxicities to butyrylcholinesterase (BChE) and Daphnia magna were assessed. Baseline resolution of the enantiomers was obtained on both Chiralcel OD and Chiralpak AD columns. The effect of the mobile phase composition and column temperature were then discussed. The resolved enantiomers were characterized by their optical rotation and circular dichroism signs. The anti-BChE tests demonstrated that (-)-pyraclofos was about 15 times more potent than its (+)-form. However, acute aquatic assays suggested that (+)-pyraclofos was about 6 times more toxic than its antipode. Moreover, the joint toxicity of pyraclofos enantiomers to D. magna was found to be an additive effect. These results demonstrated that the overall toxicity of pyraclofos should be assessed using the individual enantiomers.  相似文献   

5.
Simple one- and two-dimensional high-performance liquid chromatography (HPLC) methods for the simultaneous enantiomeric determination of alkyloxyphenoxypropionic acid herbicides is presented. Compounds studied were ( R, S)-2-[4-(2,4-dichlorophenoxy)phenoxy]propionic acid (diclofop-acid) and ( R, S)-2-[4-(2,4-dichlorophenoxy)]methyl propionate (diclofop-methyl). Mobile phases necessary to separate their enantiomers on an alpha1-acid glycoprotein chiral stationary phase are different; therefore, the simultaneous separation by an isocratic mode is not possible. The chiral separation method proposed involves a one-step gradient allowing for the simultaneous determination of both racemic enantiomers. Detection limits of the method were 0.03 mg/L for both diclofop-acid enantiomers and 0.14 and 0.15 mg/L for diclofop-methyl enantiomers, respectively. The two-dimensional method involves the use of two chromatographs in one achiral-chiral coupling. The LC-LC method is more suitable for complex samples because it involves an online cleanup effect. Detection limits were 1.25 and 1.87 mg/L for diclofop-acid and 2.70 and 3.02 mg/L for diclofop-methyl enantiomers, respectively. Accuracy, repeatability, and reproducibility have been studied in standard samples and a technical product.  相似文献   

6.
The increasing application of chiral pesticides has enhanced interest in their enantioselectivity. However, little relevant information is currently available for enantioselective activity of chiral plant growth regulators. In an attempt to screen active enantiomers of uniconazole, this work investigated enantiomeric separation and the enantioselective effect of uniconazole on the growth of rice seedlings and cyanobacteria. Baseline resolution of uniconazole enantiomers was achieved on a Chiralpak AD column by chiral high-performance liquid chromatography (HPLC). The relationship among circular dichroism (CD), optical rotation (OR), and absolute configuration was successfully established by coupling of CD and OR detection. The t test at the 95% level of confidence indicated significant differences between the enantiomers in their retardant activity toward growth of rice seedlings and stimulation effect on growth of cyanobacteria, the natural biofertilizers in rice paddy fields. The S-(+)-enantiomer was more active than the R-(-)-enantiomer in retarding growth of rice seedlings and stimulating growth of Microcystis aeruginosa . This special enantiomeric selectivity was further elucidated by probing the binding mode of enantiomers to gibberellin (GA) 20-oxidase by molecular docking. The S-(+)-enantiomer was found to bind tightly with GA 20-oxidase. The results suggested that the S-(+)-enantiomer instead of a racemate of uniconazole should be used to improve rice seedling quality.  相似文献   

7.
The environmental significance of enantioselectivity in chiral insecticides and herbicides has been widely studied. However, little information is currently available on the enantioselective behavior of chiral plant growth regulators. In this study, paclobutrazol enantiomers were resolved and prepared by chiral high-performance liquid chromatography with a Sino-chiral OJ column. The relationship among absolute configuration, optical activity and circular dichroism of paclobutrazol enantiomers was established. The enantioselective behavior of paclobutrazol, including enantioselective effect of paclobutrazol on the growth of rice seedlings and cyanobacteria and enantioselective loss of paclobutrazol in rice seedling growth media, in rice culture system was studied. The (2S,3S)-(-)-enantiomer was almost 3.1 times more active than the (2R,3R)-(+)-enantiomer toward shoot growth as measured by 7 day EC50 values. Enantioselectivity could not be determined with respect to root growth of rice seedlings because a typical dosage response was not observed in the range of the concentrations studied. The dissipation of paclobutrazol in rice growth medium is not enantioselective. Enantiomers and diastereoisomer of paclobutrazol all facilitated the growth of cyanobacteria, which increase the effectiveness of rice biofertilizers. The (2S,3S)-(-)-enantiomer showed stronger stimulatory activity on Microcystis aeruginosa cyanobacteria than the (2R,3R)-(+)-enantiomer, whereas the latter was a more potent stimulator of Anabaena sp. growth. These observations indicate that application of the (2S,3S)-(-)-enantiomer of paclobutrazol and Microcystis aeruginosa in rice cultivation is a good strategy for improving rice seedling performance.  相似文献   

8.
This study investigated the enantioselective degradation behavior of pyraclofos in three soils (NC, HZ, and ZZ) under native and sterilized conditions. The absolute configuration of pyraclofos enantiomers has been determined by the combination of experimental and calculated electronic circular dichroism spectra. S-(+)- and R-(-)-Pyraclofos were separated and determined on a cellulose tri-(4-chloro-3-methylphenylcarbamate) (Lux Cellulose-4) chiral column by reversed-phase high-performance liquid chromatography-tandem mass spectrometry. Pyraclofos enantiomers were configurationally stable in three soils and no interconversion was observed during the incubation of enantiopure S-(+)- or R-(-)-pyraclofos under native conditions. The enantioselective degradation behavior of chiral pyraclofos was dramatically different in three soils under native conditions, with half-lives (t(1/2)) of pyraclofos in NC, HZ, and ZZ soils of 2.6, 13.4, and 7.8 days for S-(+)-pyraclofos and 9.2, 9.3, and 8.2 days for R-(-)-pyraclofos. Compared to the half-lives (t(1/2)) of rac-pyraclofos of 21.5, 55.9, and 14.4 days in sterilized NC, HZ and ZZ soils, the degradation velocity was greatly improved in native soils, indicating that degradation was greatly attributed to microbially mediated processes in agricultural cultivating soils.  相似文献   

9.
Although enantioselectivity in the toxicity of chiral pesticides has received considerable attention over recent years, how coexisting enantiomers interact with each other during their toxic action remains unknown. In this study, we attempted to resolve the enantiomers of a chiral organophosphate insecticide, isocarbophos, and investigated the acute toxicity of individual enantiomers and various enantiomer mixtures. Baseline enantiomeric separation of isocarbophos was achieved on a Chiralcel OD column with the mobile phase of n-hexane/isopropanol (90/10, v/v) at a flow rate of 0.8 mL/min. The resolved enantiomers were differentiated by their responses on a circular dichroism detector. The median lethal concentrations (LC 50) of racemate, (+)-enantiomer, and (-)-enantiomer of isocarbophos toward Daphnia magna were 13.9, 7.08, and 353 microg/L, respectively, after 48 h of static exposure, displaying a 50-fold difference between the enantiomers. Toxic unit (TU) analysis was employed to evaluate the joint toxicity of isocarbophos enantiomer mixtures. The calculated TU mix for the acute toxicity (48 h test) of various binary mixtures ranged from 0.83 to 1.04, suggesting a mode of additive effect. Further evaluation of available literature data for chiral organophosphorus insecticides showed that the joint toxicity of enantiomers may be additive, synergistic, and antagonistic. Therefore, when significant enantioselectivity exists for a chiral pesticide, it is important to also evaluate the interaction of enantiomers in the joint toxicity effect when enantiomers are present in a mixture.  相似文献   

10.
Successful enantiomeric separation of 10 chiral pesticides by high-performance liquid chromatography (HPLC) using cellulose-tris(3,5-dimethylphenylcarbamate) (CDMPC) chiral stationary phase (CSP) was performed. The mobile phase was n-hexane modified by ethanol, propanol, 2-propanol (IPA), butanol, or isobutanol. The effects of mobile phase composition and column temperature on the separation were investigated. Baseline separation was obtained with ethofumesate, fluroxypyr-meptyl, malathion, benalaxyl, diclofop-methyl, methamidophos, vinclozolin, and lactofen, whereas near baseline separation was obtained with profenofos and acetochlor. Butanol was the best modifier for benalaxyl; isobutanol was the best modifier for lactofen, malathion, diclofop-methyl, and ethofumesate; and IPA was the best modifier for the other five. Better separations were not always at low temperature. The elution orders of the eluting enantiomers were determined by a circular dichroism (CD) detector. The quantitative analysis methods for the enantiomers of ethofumesate, benalaxyl, and diclofop-methyl were established. Validation parameters include linearity, precision, and limit of detection (LOD). The enantiomeric residual analysis procedures in soil and water samples were also developed using acetone extraction and C(18) solid phase extraction. The methods were reliable for residual analysis of the enantiomers.  相似文献   

11.
Synthetic pyrethroids contain two or three chiral centers, making them a family of chiral pesticides with a large number of stereoisomers. Recent studies showed significant differences in aquatic toxicity between enantiomers from the same diastereomers of pyrethroids. To better understand the ecotoxicological effect and fate of pyrethroid insecticides, chirality in biodegradation must also be considered. In this study, we examined enantiomer compositions of selected pyrethroids in field sediment samples taken from various locations in southern California. Enantioselective degradation was frequently observed for cis-bifenthrin, permethrin, and cyfluthrin under field conditions. We further conducted long incubation experiments under laboratory-controlled conditions using single enantiomers of cis-bifenthrin, cis-permethrin, and cypermethrin. The half-lives for individual enantiomers were calculated to be 277-770 days for cis-bifenthrin enantiomers, 99-141 days for cis-permethrin enantiomers, and 52-135 days for cypermethrin enantiomers, respectively. The direction and degree of enantioselectivity in degradation were found to closely depend on the specific compound as well as experimental conditions. Because no significant difference in degradation was observed after samples were sterilized, the observed enantioselectivity may be attributed to preferential biological transformations.  相似文献   

12.
Up to 25% of the current pesticides are chiral, the molecules have chiral centers, but most of them are used as racemates. In most cases, enantiomers of chiral pesticides have different fates in the environment. Knowledge of the function of amino acids of enzymes involved in enantioselective behaviors contributes to the understanding of the enantioselectivity of chiral pesticides. In this work, Aspergillus niger lipase (ANL, EC3.1.1.3) was chemically modified using bromoacetic acid (BrAc), 2,3-butanedione (BD), N-bromosuccinimide (NBS), and methanal. The enantioselectivity of the enzymatic hydrolysis of 2,4-dichlorprop-methyl (DCPPM) was investigated by chiral GC. The results have suggested that histidine, arginine, and tryptophan are essential for lipase activity and might be involved in the catalytic site of ANL. In addition, histidine and lysine play an important role in determining the observed enantioselective hydrolysis of chiral herbicide dichlorprop methyl. The molecular modeling study revealed that the essential hydrogen bonds formed between DCPPM and catalytic residues of ANL might be responsible for the enantioselectivity of DCPPM. The loss of enantioselectivity can also arise from the fact that the modification of the amino acids may cause changes in both the nature of the ANL enzyme conformation and the binding pattern of DCPPM. Our study provides basic information for the exploration of the enantioselective interaction mechanism of enzymes with chiral pesticides.  相似文献   

13.
In this study, the enantioselective dissipation behavior of hexaconazole was investigated in cucumber fruit, head cabbage, and two different types of agricultural soils. The dissipation kinetics was determined by reverse-phase liquid chromatography-tandem mass spectrometry on a cellulose tris (3-chloro-4-methylphenylcarbamate) chiral column. Dissipation rates of hexaconazole enantiomers followed first-order kinetics; the residues of (+)-enantiomer decreased more rapidly than (-)-enantiomer in cucumber and head cabbage, resulting in relative enrichment of the (-)-form, while the two enantiomers showed similar degradation rates in the tested soils. These results indicate substantial enantioselectivity in the residue dissipation of hexaconazole enantiomers in cucumber and head cabbage; however, nonenantioselective dissipation was observed in the tested soils.  相似文献   

14.
The enantiomers of five chiral pesticides of environmental interest, metalaxyl, imazaquin, fonofos (dyfonate), ruelene (cruformate), and dichlorprop, were separated analytically using capillary electrophoresis (CE) with cyclodextrin chiral selectors. For metalaxyl, imazaquin, and fonofos, aqueous slurries of soil samples from two sites in Georgia and one in Ohio were spiked with the racemate of each pesticide at 50-60 mg/L of aqueous phase of the slurry, and CE analyses were performed at various time intervals to determine enantiomer fractions (EF). Metalaxyl underwent enantioselective transformation; in one soil, the half-life of the target active R-(+)-enantiomer was 17 days while that for the S-(-)-enantiomer was 69 days. Transformation occurred more slowly in the other two soils but was still selective for the R-(+)-enantiomer. Imazaquin and fonofos exhibited nonselective enantiomer loss over their 3 months of incubation time; this could have been due to abiotic or nonselective microbial reactions. Ruelene and dichlorprop were transformed selectively in a variety of soils in a previously reported study (7) that showed the influence of environmental changes on the transformation of chiral pollutants in soils; analytical methods used in that study are reported here to further illustrate the application of CE. CE is shown to be a simple, efficient, and inexpensive way to follow the transformation of chiral pesticides in laboratory microcosms where concentrations can be made high enough (25-50 mg/L initial racemate concentration) for detection of residual parent enantiomers during most of the process.  相似文献   

15.
Isomer selectivity in aquatic toxicity and biodegradation of cypermethrin   总被引:10,自引:0,他引:10  
Synthetic pyrethroids (SPs) are widely used in both agricultural and urban regions for insect control. Unlike many other pesticides, SPs are chiral compounds consisting of stereoisomers. However, occurrence of isomer selectivity in environmental processes is poorly understood for SPs. We evaluated isomer selectivity in toxicity of cypermethrin (CP) to Ceriodaphnia dubia and in its biodegradation by microbial isolates and in sediment. Among the eight enantiomers, two enantiomers (1R-cis-alphaS and 1R-trans-alphaS) were found to be toxic to C. dubia. Bacteria strains isolated from sediment selectively degraded CP diastereomers and enantiomers. The trans diastereomers were preferentially degraded over the cis diastereomers. Of the two active enantiomers, 1R-cis-alphaS was degraded slower, whereas 1R-trans-alphaS was degraded faster than the other stereoisomers. Similar isomer selectivity was observed during CP degradation in whole sediment. Since ecotoxicity is likely caused only by the biologically active enantiomers, knowledge on isomer selectivity may improve our understanding of the ecological risks of CP and analogous SPs.  相似文献   

16.
The dissipation behaviors of the two enantiomers of the organophosphorus pesticide malathion (MA) in environment samples were elucidated using a normal-phase high-performance liquid chromatography with a cellulose-tris(3,5-dimethylphenylcarbamate) (CDMPC) chiral column. A validated chiral residue analysis method in soil and water was established; the average recoveries for the two enantiomers were 88-102% in soil and 81-99% in water. Racemic and enantiopure R-(+)- and S-(-)-MA were incubated in five soil and water systems. The results of the degradation of racemate in all of the environment samples showed the inactive S-(-)-enantiomer degraded more rapidly than the active R-(+)-enantiomer, resulting in a relative enrichment of the R-form. Moreover, when the enantiopure S-(-)- and R-(+)-MA were incubated in three well-chosen soil and water samples, respectively, inversion from one enantiomer to another was found, indicating that using the optically pure enantiomer will not help to increase the bioactivity and reduce the environmental pollution.  相似文献   

17.
A simple and sensitive enantioselective method for the determination of fenbuconazole and myclobutanil in strawberry was developed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Fenbuconazole and myclobutanil residues in strawberry were extracted with acetonitrile containing 1% acetic acid, and an aliquot was cleaned up with PSA (primary and secondary amine) and C(18) sorbent. The direct resolution of fenbuconazole and myclobutanil enantiomers was performed on a cellulose tris (3,5-dimethylphenylcarbamate) column using acetonitrile-0.1% formic acid solution (60:40, v/v) as the mobile phase. Quantification was achieved using matrix-matched standard calibration curves, and the limits of quantification for fenbuconazole and myclobutanil enantiomers in strawberry were both 2 μg/kg. The method was successfully utilized to investigate the probable enantioselective degradation of fenbuconazole and myclobutanil in strawberry. The results showed that the degradation of the fenbuconazole and myclobutanil enantiomers in strawberry followed pseudofirst-order kinetics (R(2) > 0.97). The results from this study revealed that the degradation of fenbuconazole in strawberry was not enantioselective, while the degradation of myclobutanil was enantioselective, and the (+)-myclobutanil showed a faster degradation than (-)-myclobutanil in strawberry, resulting in the relative enrichment of (-)-myclobutanil in residue. The results could provide a reference to fully evaluate the risks of these two fungicides.  相似文献   

18.
Separation of chiral enantiomers and the dissipation of rac-metolachlor and S-metolachlor in soil were evaluated using achiral high-performance liquid chromatography (HPLC) and chiral gas chromatography (GC) methods. Under the experimental conditions the possible metabolite was considered to be N-(2-ethyl-6-methyl-phenyl)-2-hydroxy-acetamide. Because of the presence of two chiral elements (asymmetrically substituted carbon and chiral axis), the baseline separation of metolachlor enantiomers was not achieved. S-metolachlor degraded faster in soil than rac-metolachlor. After a 42-day incubation, 73.4% of rac-metolachlor and 90.0% of S-metolachlor were degraded. However, due to the absence of biological processes the degradation process in sterilized soil showed no enantioselectivity. The results indicated that enantioselective degradations could greatly affect the environmental fate of metolachlor and should be considered when the environmental behavior of these compounds was assessed.  相似文献   

19.
Solid phase microextraction (SPME) is an ideal sample preparation technique because of its speed and solvent-free features. Sampling by SPME is selective and only the dissolved concentration is measured, which allows measurement of the bioavailable fraction of a contaminant in aqueous media. One potential application of SPME is for analysis of enantiomers of chiral contaminants in environmental samples. In this study, a method was developed for determining enantiomers of (Z)-cis-bifenthrin and cis-permethrin in water using coupled SPME and enantioselective gas chromatography (GC). Following SPME sampling, enantiomers of (Z)-cis-bifenthrin and cis-permethrin were separated at the baseline on a beta-cyclodextrin-based enantioselective column, and analyte enrichment onto the SPME fiber was not enantioselective. The GC response increased as sampling time was increased from 0 to 240 min, and as sampling temperature was increased from 20 to 40 degrees C. Organic solvents such as methanol, acetone, and acetonitrile enhanced, while soil extracts slightly decreased, the GC response. The integrated SPME-enantioselective GC method was used to analyze surface runoff samples. The analysis showed preferential degradation of the 1S-3S enantiomer over the 1R-3R enantiomer for both (Z)-cis-bifenthrin and cis-permethrin. The concentrations detected by SPME-GC were substantially smaller than those determined following solvent extraction, suggesting that SPME-enantioselective GC analysis selectively measured the dissolved fraction.  相似文献   

20.
Chirality occurs widely in synthetic pyrethroids. Studies have shown significant differences in both aquatic toxicity and degradation rates between enantiomers from the same diastereomer of selected pyrethroids. To better understand chiral selectivity in biodegradation of pyrethroids, 14C-labeled permethrin was used to characterize enantiomeric differences in the formation of transformation intermediates in two soils and a sediment. Individual enantiomers of permethrin were spiked into soil and sediment samples, and transformation products were identified with known standards. Enantioselectivity was observed in most treatments when the dissipation of the parent enantiomers, the amount of intermediates and bound residues formed, and mineralization rates were compared between the enantiomers. The results show that all enantiomers of permethrin hydrolyzed rapidly and that the hydrolysis products were quickly further transformed. The direct hydrolysis products, cyclopropanic acid (Cl2CA), 3-phenoxybenzyl alcohol (PBalc), and 3-phenoxybenzoic acid (PBacid), were recovered at small percentages, ranging from 1 to 14% for Cl2CA and from 0.2 to 6% for PBalc and PBacid. The R-enantiomer of both cis- and trans-permethrin was mineralized more quickly than the S-enantiomer after hydrolysis. The degradation products from cis-permethrin were more persistent than those from trans-permethrin. As some transformation intermediates of permethrin may have greater acute and chronic toxicity than the parent compound, enantioselectivity in the formation of degradation intermediates may lead to different overall toxicities and merit further investigation. This study suggests that for chiral compounds, enantioselectivity may be reflected not only in the dissipation of the parent enantiomers but also in the kinetics of formation of intermediate transformation products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号