首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dissipation behaviors of the two enantiomers of the organophosphorus pesticide malathion (MA) in environment samples were elucidated using a normal-phase high-performance liquid chromatography with a cellulose-tris(3,5-dimethylphenylcarbamate) (CDMPC) chiral column. A validated chiral residue analysis method in soil and water was established; the average recoveries for the two enantiomers were 88-102% in soil and 81-99% in water. Racemic and enantiopure R-(+)- and S-(-)-MA were incubated in five soil and water systems. The results of the degradation of racemate in all of the environment samples showed the inactive S-(-)-enantiomer degraded more rapidly than the active R-(+)-enantiomer, resulting in a relative enrichment of the R-form. Moreover, when the enantiopure S-(-)- and R-(+)-MA were incubated in three well-chosen soil and water samples, respectively, inversion from one enantiomer to another was found, indicating that using the optically pure enantiomer will not help to increase the bioactivity and reduce the environmental pollution.  相似文献   

2.
任路路  胡艳芳  颜冬云  徐绍辉  徐振 《土壤》2010,42(3):358-363
微生物降解是拟除虫菊酯类农药从土壤中消去的主要途径。本文介绍了拟除虫菊酯降解菌的分离鉴定、降解基因的克隆以及微生物降解机理研究的近期成果,综合介绍了拟除虫菊酯异构体选择降解的特征、原因以及可能产生的环境效应,重点分析了农药疏水性、土壤吸附、重金属、土壤养分及长期施肥、共存农药对土壤中拟除虫菊酯微生物降解的影响,最后对土壤微生物修复前景进行了展望。  相似文献   

3.
Separation of chiral enantiomers and the dissipation of rac-metolachlor and S-metolachlor in soil were evaluated using achiral high-performance liquid chromatography (HPLC) and chiral gas chromatography (GC) methods. Under the experimental conditions the possible metabolite was considered to be N-(2-ethyl-6-methyl-phenyl)-2-hydroxy-acetamide. Because of the presence of two chiral elements (asymmetrically substituted carbon and chiral axis), the baseline separation of metolachlor enantiomers was not achieved. S-metolachlor degraded faster in soil than rac-metolachlor. After a 42-day incubation, 73.4% of rac-metolachlor and 90.0% of S-metolachlor were degraded. However, due to the absence of biological processes the degradation process in sterilized soil showed no enantioselectivity. The results indicated that enantioselective degradations could greatly affect the environmental fate of metolachlor and should be considered when the environmental behavior of these compounds was assessed.  相似文献   

4.
The enantioselective degradation behavior of fenoxaprop-ethyl (FE) and its chiral metabolite fenoxaprop (FA) in three soils under native conditions was investigated. Two pairs of enantiomers were analyzed by high-performance liquid chromatography (HPLC) with an amylose tri-(3,5-dimethylphenylcarbamate) (ADMPC) chiral column. The degradation of racemic FE in three soils showed the herbicidally inactive S-(-)-enantiomer degraded faster than the active R-(+)-enantiomer. FE was configurationally stable in soils because no interconversion to the respective antipodes was observed during incubation of the enantiopure S-(-)- or R-(+)-FE. The main metabolites of FE were confirmed as FA and 6-chloro-2,3-dihydrobenzoxazol-2-one (CDHB), and the formation of the chiral metabolite FA showed enantioselectivity in soils. The degradation of rac-FA was also enantioselective with the S-(-)-FA preferentially degraded: the half-life (t(1/2)) of the S-form in the three soils ranged from 2.03 to 5.17 days, and that of R-form ranged from 2.42 to 20.39 days. The inversion of the S-(-)-enantiomer into the R-(+)-enantiomer occurred in two of the three soils when the enantiopure S-(-)- and R-(+)-FA were incubated. The data from sterilized control experiments indicated that the enantioselectivity of FE and FA was attributed to microbially mediated processes.  相似文献   

5.
Aryloxyphenoxypropanoates are a class of chiral herbicides. They have a pair of enantiomers, only the R(+) form of which is herbicidally active. Diclofop, the model compound of these herbicides, is commercialized as the racemate of the ester form, diclofop-methyl, consisting of a 1:1 mixture of the enantiomers. This study evaluated the enantioselectivity in aquatic toxicity and biodegradation of diclofop and diclofop-methyl. The herbicidally inactive S(-) enantiomers of both diclofop-methyl and diclofop were similar to or higher than the corresponding R(+) forms in toxicity to algae, depending on specific species. Although no enantiomeric conversion occurred for diclofop-methyl and diclofop, the difference in the enantioselective degradation of these herbicides observed in algae cultures suggested that their application forms were an important factor determining their enantioselective environmental behavior. The cell permeability and heat treatment of algae revealed that the enantioselective degradation of diclofop in algae cultures was governed primarily by the facilitated uptake by algae, whereas the enantioselective toxicity was primarily governed by the passive uptake. These results suggested that the acute toxicity test such as the 96 h EC 50 was insufficient to assess the ecological risk of chiral pesticides because of the differential degradation as well as possibly differential action sites of enantiomers. From this study, it was concluded that the enantioselective degradation and toxicity of chiral herbicides may result in their ecotoxicological effects being difficult to predict and that specific attention should thus be paid to currently used racemic pesticides as less active or inactive enantiomers may pose higher ecological risks.  相似文献   

6.
Chirality occurs widely in synthetic pyrethroids. Studies have shown significant differences in both aquatic toxicity and degradation rates between enantiomers from the same diastereomer of selected pyrethroids. To better understand chiral selectivity in biodegradation of pyrethroids, 14C-labeled permethrin was used to characterize enantiomeric differences in the formation of transformation intermediates in two soils and a sediment. Individual enantiomers of permethrin were spiked into soil and sediment samples, and transformation products were identified with known standards. Enantioselectivity was observed in most treatments when the dissipation of the parent enantiomers, the amount of intermediates and bound residues formed, and mineralization rates were compared between the enantiomers. The results show that all enantiomers of permethrin hydrolyzed rapidly and that the hydrolysis products were quickly further transformed. The direct hydrolysis products, cyclopropanic acid (Cl2CA), 3-phenoxybenzyl alcohol (PBalc), and 3-phenoxybenzoic acid (PBacid), were recovered at small percentages, ranging from 1 to 14% for Cl2CA and from 0.2 to 6% for PBalc and PBacid. The R-enantiomer of both cis- and trans-permethrin was mineralized more quickly than the S-enantiomer after hydrolysis. The degradation products from cis-permethrin were more persistent than those from trans-permethrin. As some transformation intermediates of permethrin may have greater acute and chronic toxicity than the parent compound, enantioselectivity in the formation of degradation intermediates may lead to different overall toxicities and merit further investigation. This study suggests that for chiral compounds, enantioselectivity may be reflected not only in the dissipation of the parent enantiomers but also in the kinetics of formation of intermediate transformation products.  相似文献   

7.
秦文秀  颜冬云  王春光  徐绍辉 《土壤》2011,43(5):703-709
拟除虫菊酯是一类高疏水性仿生杀虫剂,进入环境中易被颗粒物或油滴吸附,最终聚积在底泥沉积物中;同时它可以随水流或胶体等途径发生迁移,已被研究证实在使用及未使用拟除虫菊酯地区的河流、湖泊底泥中均检测到其残留。本文介绍了底泥中拟除虫菊酯的来源、归趋、生物效应,重点分析了拟除虫菊酯的吸附/解吸、降解作用及湿地生态系统对其归趋的影响;讨论了拟除虫菊酯的水生生物毒性、生物富集作用等生物效应,评述了其疏水性及生物可利用性对其毒性的影响,可为拟除虫菊酯水生生态系统风险评价等研究提供重要参考信息。  相似文献   

8.
Journal of Soils and Sediments - The demand of rice by the increase in population in many countries has intensified the application of pesticides and the use of poor quality water to irrigate...  相似文献   

9.
To investigate the enantioselective oxidative damage of the pesticide dichlorprop (DCPP) to maize, young seedlings were exposed to solutions of DCPP enantiomers and racemate at different concentrations. Early root development was more influenced by (R)-DCPP than racemic (rac)- and (S)-DCPP. Inhibition rates of seed germination, seedling biomass, and root and shoot elongation were all in the order of (R)-DCPP > (rac)-DCPP > (S)-DCPP treatments. The antioxidant enzyme activities of superoxide dismutase (SOD) and peroxidase (POD) were significantly upregulated by exposure to lower concentrations of (R)-DCPP than (rac)- and (S)-DCPP. Direct determination of the formation of hydroxyl radical (?OH) with electron paramagnetic resonance (EPR) spectroscopy indicated that the ?OH level in maize roots followed the order of (R)-DCPP > (rac)-DCPP > (S)-DCPP treatments. All of these results provide solicited evidence of the significant enantioselective phytotoxicity of DCPP to maize with a higher toxicity of (R)-DCPP than (S)- and (rac)-DCPP.  相似文献   

10.
A sensitive and enantioselective method was developed and validated for the determination of myclobutanil enantiomers by chiral liquid chromatography coupled with tandem mass spectrometry. The separation and determination were performed using reversed-phase chromatography on a Chiralcel OD-RH column, with ACN-water (70/30, v/v) as the mobile phase under isocratic conditions at 0.5 mL/min flow rate. The matrix effect, linearity, precision, accuracy, and stability were evaluated. The proposed method then was successfully applied to the study of enantioselective degradation of rac-myclobutanil in cucumber and soil under different application modes. The results showed that the preferential degradation of (+)-myclobutanil resulted in an enrichment of the (-)-myclobutanil residue in plant and soil. Moreover, in cucumber, the stereoselective intensity of myclobutanil under root douche treatment was stronger than that under foliar spraying treatment, whereas in soil, the intensity was exactly opposite. The probable reasons underlying these enantioselective effects were also discussed. This study highlighted the importance of examining the fate of both enantiomers in the greenhouse system for the correct use of chiral pesticides.  相似文献   

11.
Ninety per cent of the sediment load of the Yellow River, the world's muddiest river, comes from the loess plateau region in the middle course of the river. Control of this sediment supply is essential to avoid the danger of flooding in the lower reaches on the South China Plain. Since 1971, sediment loads entering the lower reaches have decreased, by 20 per cent as a result of lower precipitation, and by 27 per cent through soil conservation works and reservoir construction. Reductions in erosion can be obtained by restraining the formation of overland flow through promotion of an effective vegetation cover and elimination of the soil surface cover to encourage infiltration. Reservoir operation is a key to control of sediment movement through tributaries and along the main river. Water demands often conflict with sediment control, and, as a consequence, reservoir operation systems have changed several times in the past decade. The possibility of a further reduction in the sediment load of the Yellow River exists, but much depends on how rapidly control of grazing and deforestation leads to the establishment of plant cover on the loess plateau.  相似文献   

12.
土壤侵蚀使水土资源流失,河道泥沙淤积,严重制约着区域生态、社会、经济的发展。伊朗地处干旱、半干旱气候带,土壤侵蚀严重,河流泥沙问题突出,已成为影响该国经济社会发展的主要环境问题之一。通过介绍伊朗土壤侵蚀和泥沙淤积的基本情况,并对该国有关土壤侵蚀及河流泥沙方面的研究和治理成果进行总结,提出未来研究的趋势和相关建议,以期为伊朗和我国的水土保持及泥沙治理提供参考。  相似文献   

13.
14.
Analysis of chlorothalonil and three degradates in sediment and soil   总被引:2,自引:0,他引:2  
A method has been developed for the simultaneous extraction of chlorothalonil and three of its degradates (4-hydroxy-2,5,6-trichloroisophthalonitrile, 1-carbamoyl-3-cyano-4-hydroxy-2,5,6-trichlorobenzene, and 1,3-dicarbamoyl-2,4,5,6-tetrachlorobenzene) from soils and sediments; the compounds were extracted using sonication with acetone and isolation of the parent compound and matrix interferences from the degradates by solid phase extraction (SPE). The chlorothalonil fraction underwent further coextracted matrix interference removal with Florisil. The degradates were derivatized with N, O-bis(trimethylsilyl) trifluoroacetamide (BSTFA) and chlorotrimethylsilane (TMCS). All compounds were analyzed by gas chromatography-mass spectrometry (GC-MS). Recoveries on a spiked (20 and 200 microg kg (-1)) sediment ranged from 80% to 91% with calculated limits of detection of 1-5 microg kg (-1) dry weight sediment. An additional 20 sediment samples were collected in watersheds from the Southeastern United States where chlorothalonil is used widely on peanuts and other crops. None of the target compounds were detected. Laboratory fortified recoveries of chlorothalonil and its degradates in these environmental sediment samples ranged from 75% to 89%.  相似文献   

15.
Summary One of the major factors affecting the production and stability of ethylene (C2H4) in soil is its water content. This study was conducted to determine the effect of unsaturated vs. saturated conditions on the production and stability of C2H4 in soil. L-Methionine and D-glucose were added alone and in combination at 1.0 and 5.0 g kg-1 soil, respectively. The addition of l-methionine significantly promoted C2H4 production at field capacity to a much greater extent than under waterlogged conditions. Glucose was equally effective under both moisture regimes, while the combined application of both amendments (l-methionine and d-glucose) led to the release of significantly higher amounts of C2H4 under saturated conditions. Antibiotic experiments revealed that under aerobic conditions, l-methionine may be more efficiently converted to C2H4 by soil fungi, while in glucose-amended soil, both bacteria and fungi are active in generating C2H4. C2H4 was more stable under saturated conditions. The magnitude of C2H4 removal from the headspace after 3 days of incubation under unsaturated conditions (25.7%) was comparable to that after 6 days under saturated conditions (24.1%). The loss of C2H4 was approximately 10-fold greater in non-sterilized soil than in sterilized (autoclaved) soil, both maintained at field capacity, indicating that a biotic component has a major influence on C2H4 stability. Kinetic analysis revealed that the C2H4 loss/degradation in nonautoclaved soil under aerobic conditions followed a firstorder reaction, with a rate constant (k) of 0.115 day-1 and a half-life (t 1/2) of 6.0 days.  相似文献   

16.
Streptomycin and cycloheximide were added (3 and 2 mg g-1 dry soil, respectively) single and in combination to a forest soil to follow their possible degradation and their effects on soil mineralization-immobilization processes. After 0, 1, 2, 4, 7, and 10 days of incubation at 25°C and 60% water-holding capacity, measurements were taken of microbial biomass C and N, the evolution of CO2, exchangeable NH inf4 sup+ , 0.5M K2SO4-extractable organic C, and total N in both unfumigated and CHCl3-fumigated soil. The results indicated that during the first 2 days of incubation, soil microorganisms were killed by the antibiotics and/or by CHCl3 and used subsequently as a substrate by the survivors. Thereafter, surviving microorganisms probably also started to use biocidal molecules as an energy and nutrient source. The ratios of biomass C to biomass N and of CO2 evolved to net NH inf4 sup+ produced indicated that both biocides had non-target effects for most of the incubation. Thus, streptomycin and cycloheximide are not suitable in determining the relative contribution from fungi and bacteria to mineralization-immobilization processes in soils.  相似文献   

17.
Factors influencing degradation of pesticides in soil   总被引:3,自引:0,他引:3  
Degradation and sorption of six acidic pesticides (2,4-D, dicamba, fluroxypyr, fluazifop-P, metsulfuron-methyl, and flupyrsulfuron-methyl) and four basic pesticides (metribuzin, terbutryn, pirimicarb, and fenpropimorph) were determined in nine temperate soils. Results were submitted to statistical analyses against a wide range of soil and pesticide properties to (i) identify any commonalities in factors influencing rate of degradation and (ii) determine whether there was any link between sorption and degradation processes for the compounds and soils studied. There were some marked differences between the soils in their ability to degrade the different pesticides. The parameters selected to explain variations in degradation rates depended on the soil-pesticide combination. The lack of consistent behavior renders a global approach to prediction of degradation unrealistic. The soil organic carbon content generally had a positive influence on degradation. The relationship between pH and degradation rates depended on the dominant mode of degradation for each pesticide. There were positive relationships between sorption and rate of degradation for metsulfuron-methyl, pirimicarb, and all acidic pesticides considered together (all P < 0.001) and for dicamba and all bases considered together (P < 0.05). No relationship between these processes was observed for the remaining seven individual pesticides.  相似文献   

18.
The effect of rice straw on parathion degradation in a flooded alluvial soil was investigated. In soils inoculated with an enrichment culture which exhibited an exceptionally high ability to hydrolyze parathion, rice straw amendments inhibited parathion hydrolysis to p-nitrophenol and diethyl thiophosphoric acid. On the other hand, in uninoculated soils, rice straw enhanced the degradation of parathion via nitro reduction. During the enhanced breakdown of parathion in uninoculated soils amended with rice straw, aminoparathion and an unidentified metabolite evidently possessing a PS bond were detected. Thus, the influence of organic matter on the persistence of parathion in flooded soil is governed by the metabolic pathway involved in the degradation.  相似文献   

19.
A total of 22 chiral toxaphene congeners were analyzed in organ tissues and eggs of laying hens after they had been fed with food spiked with technical toxaphene. For the analysis, multidimensional high-resolution gas chromatography using a chiral column coated with randomly silylated heptakis(O-tert-butyldimethylsilyl)-beta-cyclodextrin, electron capture detection, and valveless "live column switching" technique was applied. The analytical results were additionally confirmed with mass spectral data, recorded in electron-capture negative ionization mode with selected-ion monitoring mass spectrometry. During both the feeding period of the laying hens with toxaphene-contaminated food (38 weeks, accumulation phase) and the following subsiding period without toxaphenes (another 14 weeks, decontamination phase), organs (liver, kidney, skin/fat), blood, meat, and eggs of the hens served as model matrices for toxaphene uptake. The enantiomeric ratios (ERs) of congeners 26, 31, 32, 40, 41, 42(a+b), 44, 50, and 62--known as the most important components of technical toxaphene occurring in the environment--could be analytically determined. Significant differences were observed with respect to their initial racemic ratios. On the basis of their chemical structures, the metabolic pathways of some congeners could be explained. Astonishingly, some of the toxaphenes applied as racemates could merely be found as single enantiomers at the end of the feeding program, for example, congener 32 in blood and meat samples or congener 44, especially in organ tissues, which showed ERs of zero or infinity. The findings of this study impressively emphasize that it is essential to isolate and analyze individual toxaphene enantiomers in food and biota tissues to be capable of evaluating their toxicity and metabolization more specifically.  相似文献   

20.
《Soil biology & biochemistry》2001,33(4-5):671-678
Organic contaminants often disappear more quickly from planted than from non-planted soils. Five grass species (Sudan grass, ryegrass, tall fescue, crested wheatgrass and switch grass) were grown in soils without (Phase I) or with (Phase II) prior atrazine (ATR) and phenanthrene (PHE) amendment to study the degradation of these compounds by rhizosphere microorganisms. In suspensions of soil without prior chemical exposure, no significant loss of ATR was observed after 16 days incubation. The most probable number (MPN) of ATR-degrading bacteria in the soils was below detection. Phenanthrene degradation was observed in suspensions inoculated with all soils, but the rates of degradation were not significantly different among them. The number of PHE-degrading bacteria was similar in planted and non-planted soils (105 cells g−1 soil) except the number in tall fescue soil was significantly higher than in non-planted soil. In the Phase II study, both compounds were mineralized whether or not soils had been conditioned with ATR or PHE. Prior amendment with either ATR or PHE significantly reduced the acclimation period preceding the onset of mineralization. However, enumeration procedures detected ATR-degrading bacteria only in ATR-amended soils. Prior exposure to PHE did not alter the number of PHE-degrading bacteria significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号