首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过室外砂土和黏土的大型土柱栽培试验,研究了麦秸、铅对镉在水稻-土壤中迁移的影响。研究结果表明,在砂土和黏土中随着水稻的生长发育,水稻植株镉含量逐渐降低,添加铅和麦秸均促进了水稻对镉的吸收,增加了水稻植株镉的含量,且铅的促进效应大于麦秸处理。添加铅和麦秸有利于镉向籽粒的转运和提高水稻籽粒镉的富集系数,砂土中添加铅、麦秸的处理籽粒镉含量和富集系数比镉单一处理分别增加44.00%、36.00%和41.67%、50.00%;黏土中分别增加58.62%、43.00%和46.15%、61.54%。镉进入土壤后会随着水分流动向下迁移,在砂土中的迁移能力大于黏土。随着土壤深度的增加镉含量逐渐减少,黏土在40~60cm、砂土在60~80cm土层中镉含量与对照含量差异不显著。添加铅和麦秸可以降低镉在土壤中向下迁移的能力,降低幅度黏土大于砂土。  相似文献   

2.
铀尾矿库中重金属元素的生态迁移风险研究   总被引:2,自引:0,他引:2  
用ICP-AES方法检测了铀尾矿库内人工修复植被生境与自然修复植被生境覆土中重金属元素镉、铅、铜、锌、锰、铬、镍的含量,同时检测了自然修复植被生境中先锋植物加拿大蓬与鸡眼草茎叶、植食性昆虫蝗虫、蝽与捕食性节肢动物螳螂、蜘蛛体内的镉、铅、铜、锌、锰、铬、镍的含量.结果显示,人工栽植蜈蚣草覆土中镉、铜、锌、锰、铬的含量均显著高于对照土壤、人工栽植苍耳、商陆与自然修复植被覆土中的含量,其中锰、镉、锌与铬的含量分别是对照土壤中的7.6,2.8,1.4,1.8倍.自然修复植被生境覆土中铅的含量显著高于人工栽植苍耳、商陆生境、人工栽植蜈蚣草生境覆土与对照土壤,其锰含量约为对照土壤的2倍.人工栽植苍耳、商陆生境中覆土中锰,铬含量显著高于对照.加拿大蓬与鸡眼草茎、叶中均含有被检测的7种重金属,加拿大蓬茎与鸡眼草茎叶对Zn、鸡眼草叶对Mn具有明显富集作用.蝗虫对铜与铬有一定的富集作用,对镉、铅、锌、锰与镍未表现富集作用.蝽对镉、铅、铜、锌、锰、铬与镍均具有较强的生物放大作用,其中蝽体内Cr的含量是土壤含量的191.26倍.蜘蛛与螳螂体内的重金属含量很高,对7种被检测重金属均具有非常明显的生物放大作用.蜘蛛体内各种重金属的含量显著高于螳螂体内的含量,蜘蛛体内Cd含量是其环境土壤中含量的693.13倍.研究表明,被检测的7种重金属均能从尾矿沙向上层覆土中迁移.且均能沿着"土壤-生产者-初级消费者一次级消费者"生态链迁移.  相似文献   

3.
大豆和小麦对土壤中镉的吸收与富集研究   总被引:3,自引:1,他引:2  
在温室条件下,采用盆栽方法研究了大豆和小麦在全镉含量为0.211~2.011 mg/kg的土壤中生长状况以及对镉的吸收与富集特征。结果表明,试验所设土壤镉含量对两种作物的株高和单盆籽粒数没有影响。随土壤镉含量的增加,两者单盆产量呈先增加后降低的趋势。大豆籽粒在土壤全镉含量为0.211~0.811 mg/kg时,小麦籽粒在土壤全镉含量为1.411~2.011 mg/kg时更容易积累镉。添加镉能明显增加两种作物植株各部分镉含量。外源添加镉对大豆的转移系数影响不明显,但能增加小麦的转移系数。两种作物的富集系数基本表现为根>茎叶>籽粒。在土壤全镉含量低于0.511 mg/kg时,大豆根和茎的富集系数接近或大于1.0,对镉的吸收较强。在土壤全镉含量高于0.811 mg/kg时,小麦茎叶的富集系数接近或大于1.0,对镉的吸收较强。小麦根的富集系数均高于大豆,且大于1.0,前者具有更高的镉富集能力。  相似文献   

4.
秸秆还田是我国培肥地力和增加农田土壤碳固定的重要措施,但进入农田的秸秆存在着活化土壤重金属的风险。为了解不同来源的秸秆对污染水平不同农田土壤重金属活性的影响,采取相应措施防止因秸秆还田对农田土壤重金属的激活,开展了盆栽和田间小区试验研究秸秆还田配施石灰对水田土壤铜、锌、镉、铅活性的影响。盆栽和田间试验在轻度和重度污染2种土壤上同时进行。盆栽试验中施用秸秆包括重污染水稻秸秆、轻污染水稻秸秆和轻污染油菜秸秆3种,石灰用量设对照(0 kg·hm-2)和石灰处理(750 kg·hm-2)2个处理;田间小区试验设对照(不施秸秆和石灰)、秸秆还田及秸秆还田+石灰3个处理。动态观察了试验过程中土壤有效态重金属、重金属形态及水稻籽粒中重金属积累情况。结果表明,试验初期(前20 d)秸秆还田显著增加了水田土壤中水溶性有机碳与水溶性重金属的含量;与对照处理比较,水溶性重金属含量以重度污染土壤增幅较为明显。试验后期(60 d后)秸秆还田对土壤重金属的活性的影响逐渐变得不明显。油菜秸秆还田土壤中水溶性重金属含量低于水稻秸秆还田,重污染水稻秸秆还田土壤中水溶性重金属含量高于低污染水稻秸秆还田。盆栽试验和田间试验的结果都表明,重污染水稻秸秆还田可轻微增加水稻籽粒中镉的积累,但轻度污染水稻秸秆还田与油菜秸秆还田对水稻籽粒镉积累的影响较小;3种秸秆还田对水稻籽粒铅、铜、锌积累的影响不明显。配施石灰可显著降低土壤中水溶性重金属的含量,降低水稻籽粒中重金属的积累。研究认为,在污染农田管理上应控制重污染水稻秸秆还田,在秸秆还田的同时适量配施石灰。  相似文献   

5.
外源有害重金属是造成土壤-作物系统污染的重要渠道,采用田间试验方法,研究了不同施肥条件下土壤和作物中重金属镉、铬的含量状况,分析了土壤-植物系统中重金属镉、铬的富集特征。结果表明,施肥易造成表层土壤中重金属的累积,重金属镉富集效果明显。化肥处理下,土壤镉的生物有效性提高,显著增加白菜对镉的吸收富集,与对照相比,过量施肥(N1)、常规施肥(N2)、减量施肥(N3)处理下白菜中镉含量分别提高59.7%、41.1%和40.3%(P0.05),过量施肥(N1)处理下,白菜中镉含量接近食品安全国家标准的限量要求(0.2 mg·kg-1)。施用有机肥可以显著降低白菜对镉的吸收(P0.05),单施有机肥(N6)处理效果更为显著,镉含量比对照降低了36.3%(P0.05),比有机肥配施磷钾肥(N4)和有机-无机肥混施(N5)处理也显著降低了41.9%和38.8%(P0.05)。施肥同样造成表层土壤重金属铬的富集,随着化肥施用量的增加,白菜对铬的吸收富集也显著增加,同样,过量施肥(N1)处理下,白菜中铬含量接近食品安全国家标准的限量要求(0.5 mg·kg-1)。有机肥的施用可以调节土壤p H值,抑制白菜对重金属的吸收,对镉的抑制效果要好于铬。有机肥、化肥具有不同的供肥特征和理化性质,根据需求合理配施,方可达到合理供肥和保护环境的双重效益。  相似文献   

6.
Cr(Ⅲ)胁迫对大豆、小麦生长及铬吸收和转运的影响   总被引:2,自引:0,他引:2  
利用系统发育和根系形态不同的大豆与小麦,采用盆栽试验,研究了不同添加量铬对两种作物生长及铬吸收和转运的影响,并对两种作物铬耐受能力进行比较。结果表明,当土壤铬含量大于287.9 mg/kg(添加量为250 mg/kg)时,大豆植株生长变慢,无豆荚产生,且后期易枯萎死亡;大豆根系铬含量和富集系数超过小麦,而转移系数随铬添加量增加而逐渐降低,说明大豆对土壤中铬胁迫的耐性低于小麦;小麦籽粒铬含量超过规定的临界值。在土壤铬含量小于287.9 mg/kg时,小麦根系铬浓度和富集系数高于大豆,小麦根系比大豆具有更强的铬吸收能力;大豆茎叶富集系数高于小麦。  相似文献   

7.
对连云港市水稻主产区的土壤、灌溉水和稻米中重金属含量进行了测定。研究结果表明:(1)该地区水稻灌溉水所含重金属污染较轻,没有对稻米品质造成影响,完全符合无公害稻米生产要求。(2)土壤中砷、铅、镉的平均含量超过国家和江苏省背景值,砷、镉、铬、铅和汞的单项污染指数P<1,污染分担率排序为砷(42.56%)>镉(37.00%)>铬(7.78%)>铅(7.22%)>汞(5.54%),土壤主要以砷、镉污染为主;综合污染指数P综=0.59<0.7,属1级,为安全清洁水平,符合无公害农产品生产基地重金属环境质量要求。(3)稻米中4种重金属污染排序为铅>汞>镉>砷,以铅和汞污染为主;除铅外,稻米中重金属富集效应不明显,徐稻3号累积铅的能力较强,稻米中镉的含量与土壤中pH值存在着负相关关系。  相似文献   

8.
通过土壤追施镉、铜,研究了重金属在红富士苹果幼树体内的分布特性以及生物有机肥影响红富士苹果幼树根系吸收重金属的效应.结果表明,重金属镉、铜在苹果植株不同器官含量分布顺序为根系>二年生枝>一年生枝>叶片;根系富集铜的能力大于镉; 生物有机肥可以减少根系对铜的吸收.在低剂量处理下,施用生物肥处理的根系铜含量比不施用的降低15%,在中、高剂量处理下,根系铜含量降低幅度分别为30%和50%; 生物有机肥可以降低苹果根系对镉元素的吸收.在低、中、高剂量处理下,施用生物有机肥处理的苹果根系中镉含量比不施用生物肥处理分别降低了12%,15%,24%.随着土壤中镉浓度加大,生物肥处理的根系镉含量降低的效果越明显,在高剂量处理下,镉含量降低幅度最大.生物有机肥减少根系吸收铜的效果比镉更明显.  相似文献   

9.
再生水灌溉对作物重金属含量的影响,是再生水能否安全利用的重要基础问题。通过冬小麦的盆栽试验,研究了再生水灌溉对土壤和冬小麦植株铅、镉含量的影响。结果表明,再生水灌溉对土壤铅、镉含量没有明显的影响,而混灌和轮灌较再生水纯灌可以降低土壤铅含量,但对土壤镉含量没有明显的减低作用。再生水灌溉处理小麦各器官的镉含量分布是根〉叶〉茎〉籽粒,铅含量分布是叶〉根〉茎〉籽粒,叶片铅含量较其他器官高可能与大气铅污染有关。再生水灌溉后,小麦各器官镉含量较清水对照有一定的提高,但铅、镉含量和对照相比差异不显著。应用再生水灌溉,小麦籽粒中铅、镉含量均符合国家食用安全标准,但镉含量较清水灌溉有升高现象,在生产应用中要有所注意。  相似文献   

10.
颗粒态有机质(POM)属于活性较高的有机碳库,为了解在长期再生水灌溉条件下,灌区土壤POM是否会富集更多的重金属而对作物生长造成不利影响,研究比较6个不同灌溉年限(2,3,5,8,10,12年)的再生水灌溉区紫色水稻土中POM分布规律及重金属铜(Cu)、铅(Pb)和镉(Cd)的富集特征,以探明再生水灌溉条件下POM中重金属的动态变化过程及影响因素。结果表明,灌区紫色水稻土中1~0.05mm是POM的主要分布粒级,该粒级POM所占比例超过78%,>1mm的POM所占比例较低。灌区紫色水稻土中POM对重金属有较明显的富集作用,对Cu、Pb和Cd的平均富集系数分别为6.58,5.78和4.03,富集的Cu、Pb和Cd分别占土壤重金属总量的8.22%,7.27%和7.65%。随着再生水灌溉年限的增长,灌区紫色水稻土的重金属含量未超出土壤重金属环境质量二级标准,土壤有机质含量显著提高,而POM中重金属的富集系数呈下降趋势。POM中重金属的富集系数与灌溉时间的关系可用Elovich方程表示。  相似文献   

11.
Appropriate compost standards are being considered in Canada. Five aspects of compost safety and quality are being evaluated; probably the most controversial aspect is the standards for metals in compost. In order to assist in the development of appropriate standards, the authors began an extensive research project in October, 1993 to determine the bioavailability of metals from compost and compost-metal mixtures. Swiss chard was grown in compost-amended soils or compost in a growth room using five treatments of increasing percentages of compost in the media (0, 25 percent, 50 percent, 75 percent, 100 percent compost (v/v)). A Truro loamy sand and a race-track manure-biosolids compost (RTM-biosolids) supplemented with a high metal biosolids were used in a completely randomized design with five replicates. Dry matter yield, metal content in plant tissue, and total metal uptake were evaluated as well as the total and DTPA-extractable metal content in the compost-soil mixes. The results of this and five other experiments conducted by the authors will help determine whether the suggested limits for As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Se and Zn in composts are appropriate.  相似文献   

12.
Abstract

The phytotoxicity of five nonessential elements (Co, V, Ti, Ag, Cr) to higher plants was studied in solution culture experiments with bush beans (Phaseolus vulgaris L. C.V. Improved Tendergreen). All, but in varying degrees, tended to concentrate in roots with a decreasing gradient to stems and leaves. Cobalt was one of the more mobile of the five trace metals. Its toxicity was expressed as severe chlorosis; 43 (with 10‐5 M) and 142 (with 10‐4 M) μg Co/g dry weight in leaves resulted in severe chlorosis. Vanadium as 10‐4 M vanadate resulted in smaller plants but not in chlorosis. Leaf, stem, and root V, respectively, were 13, 8, and 881 μg/g dry weight. Titanium was somewhat mobile with considerable yield decrease at 10‐4 M; leaf, stem, and root Ti concentrations, respectively, were 202, 48, and 2420 μg/g. Symptoms were chlorosis, necrotic spots on leaves, and stunting. Silver was very lethal at 10‐4 M AgNO3; at 10‐5 M yields were greatly decreased, but plants were grown without symptoms. Leaf, stem, and root concentrations of Ag for this treatment, respectively, were 5.8, 5.1, and 1760 μg/g dry weight. Plants grown with 10‐5 N Cr2O7 were decreased in yield by about 25% with or without EDTA (ethylenediamine tetraacetic acid) while the same level of Cr2(SO4)3 was essentially without effect. For the two salts, the leaf, stem, root concentrations for Cr, respectively were 2.2 and 1.3, 0.7 and 0. 7, and 140 and 104 μg/g. Most of the trace metals studied here had interactions in the uptake and/or distribution of other elements.  相似文献   

13.
Abstract

The seasonal patterns of foliage nutrient concentrations and contents were monitored for two growing seasons in an 11‐year—old Pinus el1iottii stand. In the first growing season after needle initiation, N, P, K, Mg, and Zn concentrations decreased, but this was followed by an increase in the fall and winter months. Another drop in concentration of all elements, except P, occurred in the second growing season. Decreases in total contents indicated that this drop was a result of translocation to other tissues. In contrast to the mobile elements, the concentration and fascicle contents of Ca, Mn, and Al increased with aging of the needles.

Between‐tree variability was least for N, P, and Zn and the N, K, Mg, Mn, and Zn in the current foliage had consistently lower variation than that in the 1‐year‐old foliage. Between‐tree variation for K was lower in the winter than the spring.

For pine foliage, recommended sampling period for N, P, Mg, and Zn is mid to late summer and for the other elements it is late fall to late winter.

There are several sources of variation that influence the level of nutrients in tree foliage. The most important of these, apart from the tree nutrient status, are seasonal fluctuations, variation between trees, and age of needles . Smaller sources of variation are associated with position of the needles within the crown, diurnal changes, year to year variation, and analytical errors1,2. These variables must be studied in order to develop suitable sampling techniques and in Pinus this has been undertaken for P. banksiana 1, P. taeda 3, P. strobus 4, P. resinosa 4, P. sylvestris 5, and P. radiata 6,7. However, foliage sampling has not been studied in detail for slash pine (Pinus elliottii Englem var. elliottii) and earlier studies with other pines have been largely confined to temperate or cool climates.

This study reports the variation in elemental concentrations with season, age of foliage, and between slash pine trees growing in a subtropical climate in Florida.  相似文献   

14.
A general method is described for determining 16 mycotoxins in mixed feeds and other food products used in the manufacture of these feedstuffs. The mycotoxins are extracted and cleaned up by extracting with solvents of different pH. Thin layer chromatography is used to separate the toxins; toxins are then quantitated by the limit detection method. The minimum detectable concentration of mycotoxins in various products is: aflatoxin B1 or G1, 4--5 micrograms/kg; ochratoxin A or ethyl ester A 140--145 micrograms/kg; citrinin 600--750 micrograms/kg; zearalenone, 410--500 micrograms/kg; sterigmatocystin, 140--145 micrograms/kg; diacetoxyscirpenol, 2400--2600 micrograms/kg; T-2 toxin, 800--950 micrograms/kg; patulin, 750--800 micrograms/kg; penitrem A 14,000--14,500 micrograms/kg; penicillic acid 3400--3650 micrograms/kg.  相似文献   

15.
The importance of dietary sulforaphane in helping maintain good health continues to gain support within the health-care community and awareness among U.S. consumers. In addition to the traditional avenue for obtaining sulforaphane, namely, the consumption of appropriate cruciferous vegetables, other consumer products containing added glucoraphanin, the natural precursor to sulforaphane, are now appearing in the United States. Crucifer seeds are a likely source for obtaining glucoraphanin, owing to a higher concentration of glucoraphanin and the relative ease of processing seeds as compared to vegetative parts. Seeds of several commonly consumed crucifers were analyzed not only for glucoraphanin but also for components that might have negative health implications, such as certain indole-containing glucosinolates and erucic acid-containing lipids. Glucoraphanin, 4-hydroxyglucobrassicin, other glucosinolates, and lipid erucic acid were quantified in seeds of 33 commercially available cultivars of broccoli, 4 cultivars each of kohlrabi, radish, cauliflower, Brussels sprouts, kale, and cabbage, and 2 cultivars of raab.  相似文献   

16.
The effects of cooking, roasting, and fermentation on the composition and protein properties of grain legumes and the characteristics of dough and bread incorporated with legume flours were determined to identify an appropriate pretreatment. Oligosaccharide content of legumes was reduced by 76.2–96.9% by fermentation, 44.0–64.0% by roasting, and 28.4–70.1% by cooking. Cooking and roasting decreased protein solubility but improved in vitro protein digestibility. Mixograph absorption of wheat and legume flour blends increased from 50–52% for raw legumes to 68–76, 62–64, and 74–80% for cooked, roasted, and fermented ones, respectively. Bread dough with cooked or roasted legume flour was less sticky than that with raw or fermented legume flour. Loaf volume of bread baked from wheat and raw or roasted legume flour blends with or without gluten addition was consistently highest for chickpeas, less for peas and lentils, and lowest for soybeans. Roasted legume flour exhibited more appealing aroma and greater loaf volume of bread than cooked legume flour, and it appears to be the most appropriate preprocessing method for incorporation into bread.  相似文献   

17.
A new HPLC procedure based on hydrophilic interaction chromatography (HILIC) has been developed for the simultaneous determination of carnosine, anserine, balenine, creatine, and creatinine in meat. This is the first time that HILIC has been directly applied to the study of meat components, having the advantage of not requiring complex cleanup and/or sample derivatization procedures. The chromatographic separation has been developed using a silica column (4.6 x 150 mm, 3 microm), and the proposed methodology is simple, reliable, and fast (<13 min per sample). The method has been validated in terms of linearity, repeatability, reproducibility, and recovery and represents an interesting alternative to methods currently in use for determining the mentioned compounds and other polar substances. The detection limits are 5.64, 8.23, 3.66, 3.99, and 0.06 microg/mL for carnosine, anserine, balenine, creatine, and creatinine, respectively.  相似文献   

18.
The volatile and soil loss profiles of six agricultural pesticides were measured for 20 days following treatment to freshly tilled soil at the Beltsville Agricultural Research Center. The volatile fluxes were determined using the Theoretical Profile Shape (TPS) method. Polyurethane foam plugs were used to collect the gas-phase levels of the pesticides at the TPS-defined critical height above a treated field. Surface-soil (0-8 cm) samples were collected on each day of air sampling. The order of the volatile flux losses was trifluralin > alpha-endosulfan > chlorpyrifos > metolachlor > atrazine > beta-endosulfan. The magnitude of the losses ranged from 14.1% of nominal applied amounts of trifluralin to 2.5% of beta-endosulfan. The daily loss profiles were typical of those observed by others for volatile flux of pesticides from moist soil. Even though heavy rains occurred from the first to third day after treatment, the majority of the losses took place within 4 days of treatment, that is, 59% of the total applied atrazine and metolachlor and >78% of the other pesticides. Soil losses generally followed pseudo-first-order kinetics; however, leaching due to heavy rainfall caused significant errors in these results. The portion of soil losses that were accounted for by the volatile fluxes was ordered as follows: alpha-endosulfan, 34.5%; trifluralin, 26.5%; chlorpyrifos, 23.3%; beta-endosulfan, 14.5%; metolachlor, 12.4%; and atrazine, 7.5%.  相似文献   

19.
The literature on the fluxes of six heavy metals in temperate forest ecosystems is reviewed. Special attention is given to wet and dry deposition and internal flux, to metal budgets for ecosystems and soils, to concentrations in aqueous compartments of the ecosystem and to speciation in soil solutions. Metal fluxes are discussed in relation to pollution load, soil type, tree species and land use. The mobility of Cu and Pb is strongly dependent on the solubility of organic matter. These metals are commonly accumulated in forest soils. Zinc, Cd and Ni are greatly influenced by soil acidity and are often lost in considerable amounts from acidified soils. Chromium is often at balance in forest ecosystems. Implications for metal solubility and budgets in forest soils are discussed in connection with an increase in soil acidification.  相似文献   

20.
This study evaluates the toxic, genotoxic/mutagenic, and antimutagenic effects of propolis extract from Amaicha del Valle, Tucumán, Argentina. The cytotoxicity assays carried out with the lethality test of Artemia salina revealed that the LD50 was around 100 microg/mL. Propolis extracts showed no toxicity to Salmonella typhimurium TA98 and TA100 strains and Allium cepa at concentrations that have antibiotic and antioxidant activities. Otherwise, for the testing doses, neither genotoxicity nor mutagenicity was found in any sample. The propolis extracts were able to inhibit the mutagenesis of isoquinoline (IQ) and 4-nitro o-phenylenediamine (NPD) with ID50 values of 40 and 20 microg/plate, respectively. From this result, the studied propolis may be inferred to contain some chemical compounds capable of inhibiting the mutagenicity of direct-acting and indirect-acting mutagens. A compound isolated from Amaicha del Valle propolis, 2',4'-dihydroxychalcone, showed cytotoxic activity (LC50 values of 0.5 microg/mL) but was not genotoxic or mutagenic. Furthermore, this compound was able to inhibit the mutagenicity of IQ (ID50 values of 1 microg/plate) but was unable to inhibit the mutagenicity of NPD. Our results suggest a potential anticarcinogenic activity of Amaicha del Valle propolis and the chalcone isolated from it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号