首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In utilizing municipal solid waste (MSW) as fuel for energy production, about 10 percent remains as a noncombustible small size fraction byproduct called refuse derived fuel unders (RDFU). We assessed the feasibility of using RDFU to produce compost for land applications, in the context of acceptable limits for metals. Periodic random samples from two batches of RDFU obtained during composting were analyzed for the heavy metals Cd, Cu, Pb, and Zn, and for the plant nutrients N, P, and K. The heavy metal content (mg/kg, dry weight) in all samples ranged from 1.7-12.7 (Cd), 201-3217 (Cu), 267-5002 (Pb), 344-2079 (Zn). The total variability of these elements within a batch of RDFU compost was high, with relative standard deviations (RSD) ranging from 20-107 percent. Estimates of the number of samples needed to obtain a 10 percent uncertainty in the averages ranged from 5-138, depending on the analyte and the compost batch. Leachability tests showed little leaching of metals in the RDFU compost. The high variability in heavy metal content and the excessive Pb concentrations in this RDFU may limit its use for composting.  相似文献   

2.
Heavy metal contents in the culture substrate and in the mushroom, Agaricus bisporus, grown in composts mixed with municipal waste and sewage The addition of increasing quantities of municipal waste compost to conventional horse manure compost resulted in a proportional increase in the heavy metal content of the mixture. The increases ranged between 250% (zinc) and 900% (mercury). Ninety-four to ninety-nine percent of the heavy metals in municipal waste compost are bound in compounds from which they can not be extracted using CaCl2 solution. The amounts extractable from horse manure compost with CaCl22 solution are from 1.5 (zinc)- to 33 (mercury)-times higher. The influences of the increasing quantities of heavy metals in municipal waste — horse manure composts are demonstrable in the content of these metals in harvested mushroom. This, in turn, corresponds to the availability of the metals. The relative enrichment is greatest with mercury, and least with cadmium. The quantities found in mushrooms, with the exception of mercury, fall within the normal range detected in vegetable crops.  相似文献   

3.
The composting of wood fiber waste from the manufacture of newsprint is described, with a mixture of wood fiber waste:sewage sludge at a ratio of 1:1 giving best results in a trial of shoot growth of Pinus radiata. An alternative chemical nutrient amendment (initial C:N ratio of 60:1) gave a plant response which was not significantly different to that of sewage sludge. Over a five month period volume reductions of up to 39 percent were observed in the composts, providing potential savings in subsequent transport operations. Use of uncomposted materials or addition of fly- or screen-ash compost amendment (12.5 percent or 25 percent v /v) was inhibitory to plant growth. Concentrations of some heavy metals in Hobart city sewage (particularly of chromium) were high, precluding its long-term use as a soil nutrient supplement. In view of the high heavy metal content of sewage sludge and its high volume to nutrient ratio, it was concluded that composting with chemical amendment was the preferred option for future investigation. Such composts would require ash amendment (or lime equivalent) at concentrations lower than those used in this study to counter acidity produced during composting.  相似文献   

4.
Compost standards usually contain maximum permissible levels of heavy metals. These almost always refer to “total” concentrations. However, more relevant to environmental impact due to compost usage are “leachable” concentrations. This study utilized a sequential extraction technique to evaluate availability of heavy metals present in an MSW-derived compost. Five fractions (A-E) were obtained, the result of progressively stronger leaching solutions. Profiles of fraction distributions varied drastically from metal to metal. Manganese and zinc had very significant amounts in fractions B and C, whereas copper and chromium were present almost entirely in fractions D and E, respectively. Comparisons with other leachate methods are offered.  相似文献   

5.
国内外堆肥标准分析及其对中国的借鉴启示   总被引:11,自引:2,他引:9  
中国农业废弃物产量巨大,堆肥是农业废弃物资源化利用的主要方式之一,也是养分和有机质回收到土壤中的方法。结合国内外堆肥标准制定情况,通过分析对比无害化指标、有机质、总养分、重金属、含水率等指标,指出中国存在就农业废弃物处理缺乏专业化堆肥及有机肥标准推进委员会、对堆肥产品中氮磷钾和有机质含量的最低限值较高及未建立堆肥标准体系等问题。建议国家组建堆肥标准制定专家委员会或堆肥协会,进一步规范有机肥生产运行管理,进一步修订有机肥、生物有机肥、沼肥等标准,建立完善的堆肥标准体系。  相似文献   

6.
Abstract

The purpose of this study was to examine the long‐term effect of compost application on the heavy metal content in soil, leaves, and fruit of grape (Vitis vinifera). Two types of compost were tested in a vineyard. One was compost with a low heavy metal content, which was derived from sewage sludge and bark (SB compost). The other type was compost with a higher concentration of metals, which was derived from municipal solid waste (MSW compost). For 6 years, the levels of zinc (Zn), copper (Cu), nickel (Ni), lead (Pb), cadmium (Cd), and chromium (Cr) in their total (aqua regia digestion), EDTA‐extractable, and DTPA‐extractable forms were monitored in soil, leaves, musts, and wines. The resulting data clearly demonstrate that SB compost did not cause any significant increase in heavy metal levels in the soil and the plants. Thus, this type of compost can be used for soil fertilization with no danger either to the environment or to crops. In contrast, the use of MSW compost caused a significant accumulation of Ni, Pb, Cd, and Cr in the soil, in vegetation, and in musts. Skin‐contact fermentation dramatically decreased the heavy metal content of the wines. The concentration of heavy metals in plant tissues was found to be positively correlated with the DTPA‐extractable form of the metals in the soil, but not correlated with the total or the EDTA‐extractable forms.  相似文献   

7.
How composting affects heavy metal content is largely unknown. Accordingly, we investigate the total content of six heavy metals, Cd/Zn ratio and the Zn-equiv, the relative availability and fractionation study to assess the suitability of compost derived out of those for environmental concerns. During composting, total metal content increased but their RA decreased. As a result of composting bioavailable form of metals also decreased. High significant correlations between different forms of heavy metals content and degree of humification were found for all the elements. Composting increases humic acid content than fulvic acid. This transformation is mainly responsible to serve as binding agent for metal thereby moderating the rapid metal mobilization.  相似文献   

8.
Compost may improve the soil quality and contribute to C sequestration. The short-term effects of compost application on soil properties of soil cropped with maize are reported here. Soil plots to which mature compost was added (at 50 Mg ha?1 and 85 Mg ha?1) were analyzed for total organic carbon (TOC), nutrients, heavy metals and other soil properties. In addition, maize plants were weighed at the end of the trial and analyzed for carbon (C), nitrogen (N), phosphorus (P) and heavy metals. The results demonstrate that soil amended with compost has an increased TOC content. The increase was proportional to the amount of compost used. At the highest dose used, compost also increased soil N and P content and the pH. Moreover, after compost application, the total heavy metal contents in soils did not increase. There was no difference between the maize yield from compost treated plots and the control plots. However, maize grains were found to be C, N and P enriched due to the increased nutrient status of the amended soil. In conclusion, the addition of mature compost improves soil properties by increasing the soil TOC content and this depends on the characteristics and the amount of compost used.  相似文献   

9.
In the past decade, the increasing environmental concerns regarding the use of non-renewable resources, such as peat, for growing media production has led to a search for alternative materials as substrate components. Until now, compost represents the most investigated one. Despite the critical aspects related to compost use (i.e., its high pH, salinity, and potential content of toxic elements), partial peat substitution with this material represents an achievable objective. In this study, green compost was evaluated as a component of peat substrates for organic sweet pepper (Capsicum annuum L.) seedling production. Three compost rates (CR) were compared: 0 (peat without compost), 30, and 60% of compost v/v. Two pepper cultivars, one derived from a local (medium-Adriatic) germplasm (L) and a commercial hybrid (H), were tested. Furthermore, organic fertilizers based on hydrolyzed proteins, of animal (A) and vegetal (V) origin, were compared. Substrates were analyzed for characterization (pH, EC, nutrient contents, heavy metals). Seedling performances were evaluated in terms of size, biomass, nutrient uptake, and toxic element contents. Indices able to assess seedling resistance to transplant stress were also calculated. Results showed that CR60 treatment was able to produce seedlings with the same biomass of control. CR30, instead, assured the same chance to resist the transplanting stress of CR0. The performances of fertilizer A were significantly higher than those of fertilizer V. Local germplasm (L) showed the highest resistance to transplant stress, while H was more performing in nitrogen uptake. The risk of seedling contamination by toxic elements resulted negligible.  相似文献   

10.
Abstract

Two composts were tested in eleven different Malus domestica orchards: one was a sewage sludge and bark compost with a low heavy metal content, the other was a municipal solid waste compost with a higher concentration of metals. For six years the zinc (Zn), copper (Cu), nickel (Ni), lead (Pb), cadmium (Cd), and chromium (Cr) content were monitored in the soil, both in ‘total’ and EDTA extractable form, and in leaves and fruits. The resulting data demonstrate clearly that the sewage sludge and bark compost did not cause any significant increase of heavy metal levels in soil and plants; this compost can thus be used to fertilize the soil with no danger either to the environment or to crops. In contrast, the municipal solid waste compost led to a notable accumulation of all the metals examined in the soil and, above all in the case of Pb and Cd, also in the vegetation and the fruits.  相似文献   

11.
Seeds of sour orange (Citrus aurantium L.) and Cleopatra mandarin (C. reticulata Blanco) were sown in Speedling trays filled with mixtures (v:v) of 0, 25, 50, 75 or 100 percent sugarcane filtercake compost (a natural waste by-product of sugarcane processing mills; bagasse) and a peat-lite medium. Seeds sown in 100 percent compost resulted in lower total percent germination, but similar mean days to emergence (MDE), seedling heights, and shoot weights and lower root weights than the control (100 percent peat-lite medium). Media amended with 25, 50 or 75 percent compost resulted in similar total percent emergence, (MDE) and root weights, but taller seedlings with heavier shoots than the control. SPAD-502 chlorophyll meter readings, and leaf N, Ca and Zn contents were higher for seedlings produced in compost amended media than in 100 percent peat-lite medium. The results suggest that compost derived from sugarcane filtercake can be successfully utilized as an amended medium for citrus seedling rootstock production.  相似文献   

12.
Background, Aim and Scope   Most studies of sewage sludge disposal effects on plants have focused on high metal loadings. Less attention has been paid to plant responses to trace metal loadings below the recommended limit values. Materials and Methods: Here, a lysimetric experiment was conducted to assess the uptake, distribution and binding of trace metals by metal-induced, sulfhydryl-rich peptides (phytochelatins) in colza (Brassica napus, v. Jaguar) grown on a clayey, silty soil amended with a sewage sludge compost containing trace metal contents far below the recommended limit values established by French legislation. Chemical fractionation of unamended and sludge-amended soils was performed using a sequential extraction technique. Results: Copper concentrations in plant tissues were not affected by compost disposal. Its application at a single rate equivalent to 30 t/ha stimulated the growth of plants. Lead was not detectable in the plant material (< 1 mg g-1 dry wt.). Plants grown on the amended soil accumulated significantly more zinc than control plants. These phytochelatin complexes detected in leaves had a lower molecular weight than those extracted from roots. Those extracted from roots were composed of one type of phytochelatins (PCs) such as in leaves or a mixture of glutathione, PC2 and PC4. In comparison with control plants, sewage sludge compost application caused the synthesis of longer chain PCs in roots and in leaves. Furthermore, in comparison with control roots, glutathione and phytochelatin mixtures of higher molecular weight were detected in roots produced on the amended soil, whereas no significant increase in \total\ Cu and Zn content was observed in these organs after sludge application. Discussion: Compost application induces a significant increase in the proportion of the most labile forms of zinc and especially its pH 4.7 acid-soluble forms and, as a consequence, a higher accumulation of zinc in plants. Effects of copper are limited due to its strong affinity for humic substances and lead does not seem to be transported in any organ of plants. The presence of phytochelatins, even in plants grown on the unamended soil, proved the ability of colza to synthesize them in the presence of zinc and copper. Conclusions: These primary results seem to prove, on one hand, ability of colza (Brassica napus, v. Jaguar) to synthesize phytochelatins as well as in roots, in leaves and, on the other hand, the sensitivity of the PC induction as suggested by their identification in plants grown on the control soil. Synthesis of longer chain PCs in roots and in leaves, and formation of glutathione and phytochelatin mixtures in roots, are plant responses to sewage sludge compost application. Recommendations and Perspectives: Phytochelatin analysis is thus supposedly able to be one of the bioindicators that may be used as an ecotoxicological risk assessment of wastes. Due to its ability to synthesize phytochelatins, colza could be chosen as a plant test. Phytochelatin analysis could also be limited to roots (more sensitive than leaves). However, further experiments are needed. Quantitative analysis of phytochelatins had not been carried out due to insufficient amounts of pure phytochelatin standards, that had allow us to better study relationships between trace metal amounts to vegetal response.  相似文献   

13.
Bonemeal, coir, compost, green waste compost, peat and wood bark all potentially could be used as amendments to remediate heavy metal contamination in soils. Their ability to sorb Pb, Cu and Zn was evaluated in the laboratory, using metal solutions ranging from 0 to 5 mmol/L as contaminants. The effects on sorption of metal concentration, background salt concentration and metal competition were evaluated. Single metal sorption by the six amendments was significantly different at metal concentrations of 1.5–5 mmol/L, with green waste compost, coir, compost and wood bark having the highest capacities to adsorb Pb, Cu and Zn. Langmuir sorption maxima were approximately 87 mg Pb/g (coir and green waste compost), 30 mg Cu/g (compost and green waste compost) and 13 mg Zn/g (compost and green waste compost) (equivalent to approx. 0.5 mmol/g of Pb and Cu, and 0.2 mmol/g Zn), all in a background solution of 0.001 M Ca(NO3)2. A higher background salt concentration and a combination of all three metals led to significant reduction in the amounts of Pb, Cu and Zn sorbed by all the amendments tested. Competing heavy metal cations in solution decreased Pb sorption to about 50–60% of that from a solution containing Pb alone; Cu sorption was reduced to about 30–40%; the effect of competition on Zn sorption was variable. Overall, in both single metal and competitive sorption, the order of strength of binding was Pb>Cu>>Zn.  相似文献   

14.
Managing municipal solid waste (MSW) compost for agricultural use requires an understanding of waste stream components and how they affect the value of the finished product. We evaluated the influence of disposable diaper content in MSW compost because of the recent concern of the environmental impact of this product. To determine the potential effect of disposable diapers on MSW compost, the ‘normal’ concentration of soiled, disposable diapers in a waste stream was raised from 2 percent to 8 percent. Previous observations indicated that the diapers disassociated during in-vessel digestion and most of the components could not be distinguished from the primary compost. The objective of this study was to examine the effect of additional diapers on the agricultural value of mature MSW compost. Loamy sand and silt loam soils were amended with MSW compost at a rate of 20 percent. Comparisons between the two composts and their interactions with soil type were made on the basis of water retention characteristics; germination and emergence of corn, soybean, radish and lettuce; and yield and element uptake by corn and lettuce at two moisture regimes. Differences between the compost amended soils suggested that the primary benefits of additional diapers were increased nutrient availability and soil water retention, and the foremost concerns were excess total soluble salts and boron.  相似文献   

15.
Stabilisation/solidification (S/S) of heavy metals and a parallel biodegradation of an organic contaminant using magnesium phosphate cements (MPC) was investigated under laboratory conditions. The study was aimed at improving the robustness of S/S technology by encouraging biodegradation in order to bring about some form of contaminant attenuation over time. A silty sand soil, amended with compost was spiked with an organic contaminant, 2-chlorobenzoic acid (2CBA), and two heavy metal compounds, lead nitrate and zinc chloride. Two formulations of the MPC grouts based on different proportions of the cement constituents, with paste pH of approximately 6.5 and 10, were utilised for S/S treatment. The study involved treating the organic contaminant present in the soil with and without the heavy metals by employing the low and high pH MPC grout mixes, and using 10% and 25% compost content. Microbial activity was monitored using dehydrogenase assay, whilst the tests pertaining to the performance criteria such as contaminant concentration, unconfined compressive strength, elastic stiffness, permeability and batch leaching tests were evaluated at set periods. Contaminant recovery analysis after 140 days indicated a similar reduction in 2CBA concentration to approximately 56% in the different grout mixes. The cement constituents exhibited stimulatory and inhibitory effects on soil dehydrogenase activity. Heavy metal leachability as well as the engineering behaviour of the treated soils conformed to acceptable standards. The results of the investigations show considerable promise for the application of MPC in contaminated land remediation.  相似文献   

16.
? In The Netherlands, 760,000 metric tons of Spent Mushroom Substrate (sold under the name Champost) were produced in 1993. The annual production is still rising. Analytical data concerning fertilizer elements like N, P, K, Ca and Mg, show that the composition of SMS has been fairly constant since the mid sixties. However, the last few years, dry matter, ash and phosphate content are decreasing due to reduced composting time and cropping cycle. Heavy metals and arsenic were not analyzed until 1983. In connection with manure surpluses in The Netherlands, a ‘Decree Use of Animal Manure’ was laid down as part of the Soil Protection Act, which dates from 1986. The Decree regulates the maximum quantity of manure that may be used, based on its phosphate content. The rules will be accentuated in the next few years. Since 1993, SMS falls under another item of the Soil Protection Act, the ‘Decree Use and Quality of Other Organic Fertilizers,’ controlling sewage sludge and all kinds of composts. The quantity that may be used depends on phosphate and heavy metal content. The total load of heavy metals, supplied per hectare, is controlled by limiting the amount of dry matter. Each year, 6 metric tons of dry matter may be used per hectare, provided that the compost is ‘clean’. To check phosphate and heavy metals, samples have to be analyzed regularly. In 1993, 620 samples have been analyzed. All compost fell within the category ‘clean’ and 17% was even characterized as ‘very clean.’ Production of vegetable, fruit and garden waste, a type of compost very competitive to SMS, is strongly increasing. Alternative ways of disposal of SMS will be discussed briefly.  相似文献   

17.
Compost amendment to agricultural soils has been reported to reduce disease incidence, conserve soil moisture, control weeds, or improve soil fertility. Application rate and placement of compost largely depends on the proposed beneficial effects and the rate may vary from 25 to 250 Mg ha?1 (N content up to 4 percent). Application of high rates of compost with high N or P levels may result in excessive leaching of nitrate, ammonium, and phosphate into the groundwater. Leaching could be a serious concern on the east coast of Florida with its inherent high annual rainfall, sandy soils and shallow water table. In this study, five composts (sugarcane filtercake, biosolids, and mixtures of municipal solid wastes and biosolids) were applied on the surface of an Oldsmar sand soil (in 7.5 cm diameter leaching columns) at 100 Mg ha?1 rate and leached with deionized water (300 ml day?1, for five days; equivalent to 34 cm rainfall). The concentrations of NO3-N, NH4-N, and PO4-P in leachate reached as high as 246, 29, and 7 mg L?1, respectively. The amount of N and P leached accounted for 3.3-15.8 percent of total N and 0.2-2.8 percent of total P in the compost. The leaching peaks of NO3-N occurred following the application of only 300-400 ml water (equivalent to 6.8-9.1 cm rainfall).  相似文献   

18.
The effects of different types of organic fertilizers on the chemical and enzymatic properties of an Oxisol were studied after being fertilized for four consecutive years (26 crops) in a greenhouse under intensive cultivation of vegetables. Seven treatments, consisting of five types of organic fertilizer treatments, one "sequential application" (SA) treatment, and a chemical fertilizer treated plot were compared. The organic fertilizers used were dairy cattle dung compost (DCDC), hog dung compost (HDC), chicken dung compost (CDC), pea residue compost (PRC) and soybean meal (SBM). After 4 years of cultivation, the soils were analyzed for their chemical properties and enzymatic activities. The microbial carbon (C) and nitrogen (N), basal respiration and nitrification rate were also measured. The results showed that the SBM significantly lowered the soil pH, and that the HDC and DCDC raised the soil pH. The SBM and CDC resulted in the lowest soil electrical conductivity. The SBM had no significant effect on soil organic C and total N contents when compared with the CF plot. However, the DCDC resulted in the highest contents of soil organic C and total N. The organic fertilizers applied did not significantly affect the soil available copper, zinc, cadmium, lead and nickel. The effects of the different organic fertilizers on soil enzymatic activities depended on the types of organic fertilizers applied. The SBM and CDC often resulted in a lower microbial C (or N) and respiration rate, while in contrast DCDC and PRC resulted in high measurements. Most of the measured soil enzymatic activities in the SBM treatment, except for acid phosphatase, were the lowest. Differing contents of different heavy metals in the organic fertilizers resulted in different Mehlich III extractable heavy metal contents in the soils. From the point of view of the soil chemical and enzymatic properties, SBM is not an appropriate organic fertilizer for continuous application to an Oxisol.  相似文献   

19.
Experiments were started in May 1998 at two sites to measure various crop responses to a mixed municipal solid waste-biosolids cocompost (named Nutri Plus) and examine the fate of certain metals associated with Nutri Plus compost. There were six treatments: Check, 50, 100, and 200 T compost/ha, NPKS (75 kg nitrogen (N) /ha, 20 kg phosphorus (P)/ha, 45 kg potassium (K) and 18 kg sulphur (S)/ha), PK (20 kg P, 45 kg K/ha), and three crops: canola (Brassica rapa cv. ‘Hysyn 110’), wheat (Triticum aestivum L. cv. ‘Roblin’) and barley (Hordeum vulgare L. cv. ‘Lacombe’). Each treatment was replicated four times and was in a complete randomized block design. In the compost treatments, 20 kg P and 45 kg K were applied due to low concentration of these two nutrients in the compost. Soil and plant samples were analyzed for nutrient content such as N, P and K. In addition, plant samples and soil samples after the compost application were also analyzed for elemental content of As, B, Cr, Co, Cu, Zn Se, Mo, Cd, Hg and Pb. The research results show that the compost slightly increased heavy metal concentrations in the soil but did not cause any phytoxicity to crops. Yield from 100 and 200 T/ha application was higher with the compost than with NPKS treatment. However, the yield of the 50 T/ha application was similar to that of NPKS treatment. Comparing the two sites, the compost apparently was more beneficial at Site 1 than at Site 2 in the year of application. This is likely due to the lower indigenous soil fertility and poor soil physical properties at Site 1. The N content in cereal grains was similar among the compost treatments but lower than the Check and NPKS treatments due to the diluting effect of higher yield. The oil content in canola seed was similar among all treatments. The results suggest that Nutri Plus compost applications generated positive yield responses in all three crops. Crop yield increased as the application rate increased. Heavy metal loading was not an immediate problem with the compost application, although it will limit total compost application over time to the same soil  相似文献   

20.
Abstract. The chemical extractability of heavy metals introduced into the soil during 7 years application of sewage sludge, composted municipal solid waste and sheep manure, and their availability to citrus plants were studied. The total content of metals in the soil (0-20 cm)was increased by the use of sludges and compost, but only the Ni content in the saturation extracts of soil was significantly increased. Total Cd, Cr, Cu, Ni, Pb, and Zn were sequentially fractionated into water-soluble plus exchangeable, organically bound, carbonate-associated, and residual fractions. Most of the heavy metals were present in carbonate and residual fractions, although substantial amounts of water-soluble plus exchangeable Cd, and organically bound Cu and Ni were found. No significant increases in the metal contents in leaves and orange fruits were observed, with the exception of Pb in leaves. Several statistically significant correlations between metal content in plants, metal content in soil fractions, and chemical characteristics of soil were also found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号