首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The increased eutrophication phenomenon in Quebec lakes calls for an urgent phosphorus-reducing strategy to meet the Quebec water quality standard of 0.03 mg L?1 for phosphorus (P). The objective of this research was to evaluate the application of four lime-based products in reducing P losses through subsurface leachate and surface runoff and to determine their optimum application. Two sets of experiments were conducted: laboratory leaching study and runoff study with a rainfall simulator, using a clay loam soil collected from the Pike river watershed. The former followed a flow method with a full factorial design in three replicates. Soil columns were amended with different application dosages of lime ranging from 0 to 2% by soil weight. The results showed that all four lime-based products could be promising amendments in reducing P losses in the leachate. According to statistical analysis of ANOVA, high calcium hydrated lime and lime kiln dust #2 were found to be the most effective with an optimum application dosage of 1% while reducing total dissolved phosphorus concentrations in leachate from 0.057 to 0.009 and 0.023 mg L?1, respectively. For the runoff study, a rainfall simulator with a maximum rainfall intensity of 2 cm h?1 was built. High calcium hydrated lime and lime kiln dust #2 were able to reduce total dissolved phosphorus to 0.034 and 0.037 mg L?1, respectively. However, particulate phosphorus was significantly increased at the studied application rate. The results from this study can offer a promising measure in reducing total dissolved phosphorus in groundwater while providing a solution to the existing environment issue of eutrophication.  相似文献   

2.
降雨过程中红壤表土结构变化与侵蚀产沙关系   总被引:11,自引:1,他引:11  
通过人工模拟降雨和表土微形态观测,研究了发育于泥质页岩、第四纪红粘土和花岗岩3种母质的红壤在降雨侵蚀过程中表土土壤结构的变化及其对侵蚀的影响。结果表明:降雨过程中,泥质页岩红壤极易形成土壤结皮,增加径流,响应结皮的形成,径流速率和含沙量较高,且迅速达到最大值,随后径流稳定而含沙量持续下降。第四纪红粘土红壤团聚体稳定,较难形成结皮,且结皮易被破坏,导致侵蚀过程中产流产沙量较低,均随降雨时间的延长而呈缓慢上升趋势。花岗岩红壤基本上不能产生结皮,粗化现象严重,因此产流量和产沙量也较低;由于土壤团聚体稳定性差以及径流的选择性运移,泥质页岩红壤和花岗岩红壤侵蚀泥沙中细颗粒(<0.02mm)含量远高于土壤中该粒径颗粒。而第四纪红壤侵蚀泥沙中粗颗粒较多,以多级团聚体的团聚体为主。  相似文献   

3.
为探究海藻多糖抗蚀剂(SA-01)在控制坡面水土流失中的效果及作用机理,该研究以南方红壤区典型红壤为例,通过人工模拟降雨试验(雨强90 mm/h,坡度5°、10°、15°),设置不同施加浓度(0、0.25%、0.50%、0.75%、1.00%),分析SA-01施加浓度对红壤坡面产流产沙过程的影响,并结合土样斥水性试验、团聚体稳定性试验和电镜扫描分析SA-01影响坡面土壤侵蚀的作用机理。结果表明:与不施加SA-01的坡面相比,施加SA-01后坡面产流时间提前,稳定径流量增大。随施加浓度增大,坡面产流量增加比例也增大。施加SA-01后能显著降低坡面土壤侵蚀产沙量,这主要是由于土壤施加SA-01后,与土壤中的Ca~(2+)等阳离子发生螯合反应,在土壤颗粒表面生成有一定强度的保护层有关,保存层的存在使土壤斥水性增大,减少了土壤团聚体的遇水分散性,提高了各级粒径土壤团聚体的稳定性。0.25%的施加浓度即可将团聚体水稳性提升到70%以上,这为中国南方以排水保土为核心的水土保持工作提供了新思路。  相似文献   

4.
东北黑土区土壤团聚体迁移特征的模拟降雨试验研究   总被引:2,自引:0,他引:2  
坡面侵蚀过程中土壤团聚体迁移反映了团聚体的破碎程度以及雨滴打击和径流搬运之间的相互作用。基于模拟降雨试验,研究了黑土坡面不同粒级土壤团聚体的迁移特征。研究结果表明,同干筛处理相比,湿筛后≥0.25mm粒径的水稳性团聚体含量为52%,其较干筛处理减少24%。湿筛后土壤团聚体的粒级分布以<0.25mm团聚体居多;湿筛处理后>1mm粒级的团聚体含量较干筛处理减少了83.8%。在50和100mm/h两个降雨强度下,团聚体流失以<0.25mm的微团聚体为主,其流失量占团聚体流失总量的80%以上,且不同降雨强度下微团聚体流失量与含沙浓度存在显著正相关关系。50mm/h降雨强度下微团聚体流失量随降雨历时的增加呈先快速增加后递减,最后趋于相对稳定的变化趋势;而100mm/h降雨强度下,其变化趋势则表现为先快速增加后缓慢上升趋势。≥0.25mm各粒级团聚体的流失比例和流失团聚体的平均重量直径(MWD)均随降雨强度的增加而减小,反映了大雨强下雨滴打击对团聚体的分散作用。  相似文献   

5.
Amendments with the potential to reduce phosphorus (P) losses from agricultural grassland arising from the land application of dairy-soiled water (DSW) were investigated. Optimal application rates were studied, and associated costs and feasibility were estimated. First, batch tests were carried out to identify appropriate chemicals or phosphorus sorbing materials to control P in runoff from DSW. Then, the best four treatments were examined in an agitator test. In this test, soil??placed in a beaker??was loaded with DSW or amended DSW at a rate equivalent to 5 mm ha?1 (the maximum permissible application rate of DSW allowable in a 42-day period in Ireland). The soil was overlain with continuously stirred water to simulate runoff on land-applied DSW. Optimum application rates were selected based on percentage removal of dissolved reactive phosphorus in overlying water and the estimated cost of amendment. The costs of the amendments, per cubic metre of DSW, increased in the order: bottom ash (1.55 ?), alum (1.67 to 1.92 ?), FeCl2·4H2O (3.55 to 8.15 ?), and lime (20.31 to 88.65 ?). The feasibility of the amendments, taking into account their cost, potential adverse effects, public perception, and their performance, decreased in the order: alum?>?FeCl2·4H2O?>?bottom ash?>?lime. Amendments to DSW could be introduced in critical source areas??areas where high soil test P and direct migration pathways to a receptor overlap.  相似文献   

6.

Purpose

Heavy metals in runoff from contaminated land are becoming a major environmental problem. The presented paper considers the effects of mulching with rice straw on the migration and transportation of heavy metals from the soil into runoff under conditions of simulated rainfall.

Materials and methods

A simulated rainfall experiment was conducted to investigate the impact of rice straw mulching on emissions of sediment and heavy metals in runoff. The soil box was in 20-cm depth with a surface area of 1 m2 and the slope was set to 10°. The rainfall intensity was 90 mm h?1with a 60-min rainfall duration. The study involved samples with different treatments of rice straw mulching: bare soil (BS), low mulching (LM), and high mulching (HM), which had straw contents of 0, 200, and 500 g m?2, respectively.

Results and discussion

The results showed that compared with BS, the cumulative runoff volume declined by 31 and 50 % and cumulative sediment declined significantly by 93 and 97 % for the LM and HM treatments, respectively. Additionally, with an increase of straw mulching, the concentrations of total heavy metals in the LM and HM treatments declined by 79.90–82.84 and 81.90–90.07 %, and the cumulative total heavy metals decreased significantly by 86.5–87.0 and 90.3–94.6 %, respectively. Particulate-bound heavy metals decreased by 88.1–88.9 % for the LM and 94.5–97.1 % for the HM. Furthermore, Cd, Cu, Zn, and Ni migrated and transported mainly in particulate-bound form and had high enrichment in sediments.

Conclusions

Therefore, straw mulching on soil could reduce the sediment yields, and the loss of both particulate-bound heavy metals, especially for Cd and Ni, and cumulative total heavy metals in runoff. Accordingly, it can be used as an effective measure to control heavy-metal-contaminated soil posing pollution risk to environment through surface runoff.
  相似文献   

7.
This study investigated the use of waste amendments (green waste compost (GWC) and water treatment sludge (WTS) cake) in improving the nutrient and revegetation status of contaminated soil obtained from a former industrial site that has heavy metal and hydrocarbon contamination. The waste amendments were mixed with the contaminated soil at application rates equivalent to 90 and 180 t ha?1 (wet weight) and placed in plastic pots. The unamended soil serves as the control. Reed canary grass and white mustard were allowed to grow on the amended and unamended contaminated soil in the glass house. After a 30- day growth period, soil nutrient status was observed and was found to be higher in the amended contaminated soil than the control. In the amended soil, organic matter, total nitrogen, total potassium and soil nitrate were highest in contaminated soil amended with GWC at 180 t ha?1 and lowest in contaminated soil amended with WTS cake at 90 t ha?1. Above-ground dry mass of reed canary grass and white mustard grown on amended contaminated soil increased by 120–222% and 130–337%, respectively, as compared to the control, showing that improved fertility of contaminated soils thereafter, enhanced revegetation.  相似文献   

8.

Purpose

Severe soil erosion is caused by wind and water acting separately or in combination or sequentially and is an important factor affecting dryland ecosystems, especially in the severely eroded “water–wind erosion crisscross region” on the Loess Plateau. Thus, the aim of the study was to determine the magnitudes of wind and water erosion under simulative conditions and explore the mechanisms of their interactions.

Materials and methods

We analyzed the interaction between these two types of erosion by exposing a sandy loessial soil with an artificial rill to simulated wind at four speeds (0, 1, 8, and 15 m s?1) and then to simulated rainfall, measuring runoff, sediment yield, and characterizing changes in rill morphology. This simulated the transition period between the dry (windy) and wet seasons.

Results and discussion

The time to runoff initiation depended on both wind speed and rainfall intensity, but rainfall had a larger impact on runoff. At the 15 m s?1 wind speed, the total runoff significantly (P?<?0.05) increased by 33.3 kg when the rainfall intensity was increased to 120 from 60 mm h?1. Under the 120 mm h?1 rainfall intensity, the total sediment yields increased significantly (P?<?0.05) with increasing wind speed. Erosion sediment yields increased by 9.7, 16.3, and 70.4 % with increasing wind speed under all three rainfall intensities when compared with a no wind case. Changes in rill morphology caused by wind erosion were a factor that affected the erosion processes of subsequent rainstorms.

Conclusions

Our results provide a basis for hypothesizing trends of wind and water erosion, highlight the importance of wind and water erosion acting in conjunction in semi-arid ecosystems, and are conducive for developing a more integrated perspective of wind–water dynamics on the Loess Plateau.
  相似文献   

9.
The quantification of phosphorus(P) in bulk soil and P distribution in different size fractions of water-stable aggregates(WSAs)are important for assessing potential P loss through runoff. We evaluated available and total P distribution within WSAs of a sitty clay to clay soil in a long-term fertility experiment of a rice-wheat cropping system in India. Surface soil samples were collected from seven plots amended with NPK fertilizers in combination with or without organic amendments, farmyard manure(FYM), green manure(GM), and paddy straw(PS). The plot with no NPK fertilizers or organic amendments was set as a control. The soil samples were separated by wet sieving into four soil aggregate size fractions: large macroaggregates( 2.0 mm), small macroaggregates(0.25–2.0 mm), fine microaggregates(0.05–0.25 mm), and a silt + clay-sized fraction( 0.05 mm). Structural indices were higher in the soil receiving organic amendments than in the soil receiving inorganic fertilizer alone. Organically amended soil had a higher proportion of stable macroaggregates than the control and the soil receiving inorganic fertilizer alone, which were rich in microaggregates. Total and available P contents within WSAs were inversely related to the aggregate size, irrespective of treatment. The distribution of available and total P in the soil aggregate size fraction was as follows: silt + clay-size fraction small macroaggregates fine microaggregates large macroaggregates. Within a size class, aggregate-associated available and total P contents in the organically amended soil were in the following order: FYM PS ≥ GM. The available P content of the microaggregates( 0.25 mm) was 8-to 10-times higher than that of the macroaggregates( 0.25 mm), and the total P content of the microaggregates was 4-to 5-times higher than that of the macroaggregates. Cultivation without organic amendments resulted in more microaggregates that could be checked by the application of organic amendments such as FYM and GM, which increased the proportion of water-stable macroaggregates by consolidating microaggregates into macroaggregates.  相似文献   

10.
土壤结皮对黑土区坡面产流产沙的影响   总被引:1,自引:0,他引:1  
土壤结皮对坡面产流形成和侵蚀过程有重要的影响。基于室内人工模拟降雨试验,研究了土壤结皮对黑土区坡面产流产沙的影响。结果表明:土壤结皮促使坡面产流提前发生,但对坡面产流量的影响不甚明显;对坡面侵蚀产沙量却有明显的作用。试验条件下,5°坡面有土壤结皮处理的坡面侵蚀产沙量较无土壤结皮处理减少了54%。有土壤结皮处理的10°坡面,在降雨过程中结皮尚未破坏前,其坡面侵蚀产沙量较无土壤结皮处理的对照减少了40%;一旦土壤结皮被破坏,之后的坡面侵蚀产沙量较无土壤结皮处理的对照增加了46%;在整个降雨过程中,10°有土壤结皮处理的坡面侵蚀产沙量较无土壤结皮处理增加了16%。表明土壤结皮对坡面侵蚀的影响与地面坡度有密切关系。  相似文献   

11.

Purpose

In situ immobilization of heavy metal-contaminated soils with the repeated incorporation of amendments can effectively reduce the bioavailability of soil heavy metals. However, the long-term application of amendments would lead to the destruction of soil structure and accumulation of soil toxic elements, ultimately affecting food security and quality. Thus, the sustainability of the amendments in a heavy metal-contaminated soil was evaluated from 2010 to 2012.

Materials and methods

Batch field experiments were conducted in the soils, which were amended with apatite (22.3 t ha?1), lime (4.45 t ha?1), and charcoal (66.8 t ha?1), respectively. The amendments were applied only one time in 2009, and ryegrass was sown each year. Ryegrass and setaria glauca (a kind of weed) were harvested each year. Concentrations of copper (Cu) and cadmium (Cd) were determined by batch experiments. Five fractions of Cu and Cd were evaluated by a sequential extraction procedure.

Results and discussion

Ryegrass grew well in the amended soils in the first year, but it failed to grow in all the soils in the third year. However, setaria glauca could grow with higher biomass in all the amended soils. The treatment of apatite combined with plants was more effective than lime and charcoal treatments in removing Cu and Cd from the contaminated soils by taking biomass into account. Apatite had the best sustainable effect on alleviating soil acidification. The Cu and Cd concentrations of CaCl2-extractable and exchangeable fractions decreased with the application of amendments. Moreover, apatite and lime could effectively maintain the bioavailability of Cu and Cd low.

Conclusions

Apatite had a better sustainable effect on the remediation of heavy metal-contaminated soils than lime and charcoal. Although all the amendment treated soils did not reduce soil total concentrations of Cu and Cd, they could effectively reduce the environmental risk of the contaminated soils. The findings could be effectively used for in situ remediation of heavy metal-contaminated soils.
  相似文献   

12.
雨强和植被覆盖度对红壤坡面产流产沙的影响   总被引:5,自引:3,他引:2  
为探究雨强和植被覆盖度对花岗岩红壤坡面产流产沙的影响,通过室内人工模拟降雨试验,分析了不同雨强(0.5,1.0,1.5 mm/min)和植被覆盖度(0,20%,40%,60%)下坡面侵蚀的产流、产沙规律及相关关系。结果表明:(1)同一雨强下,初始产流时间随植被覆盖度增加而延迟,并随雨强增大而提前,雨强越大,产流时间提前越明显;(2)各坡面径流率、侵蚀率随植被覆盖度增加而减小,且植被覆盖度越高,径流率和侵蚀率波动范围越小,侵蚀过程越稳定;(3)有植被覆盖的坡面,产沙主要以0.25 mm的水稳性团聚体为主,侵蚀泥沙中0.25 mm水稳性团聚体比重随雨强增大而增加,且增加的幅度随覆盖度的提高而减小;(4)雨强、植被覆盖度均与产流时间、径流率、侵蚀率呈现极显著相关关系(P0.01),且坡面产流过程与雨强变化的相关性大于其与植被覆盖度变化的相关性,坡面产沙过程与植被覆盖度变化的相关性大于其与雨强变化的相关性,不同雨强下植被覆盖坡面累积径流量和累积产沙量关系符合幂函数模型(R~20.98)。研究结果可为南方红壤丘陵区水土流失治理与生态恢复提供科学参考。  相似文献   

13.
青贮玉米氮投入对坡耕地土壤侵蚀及水稳性团聚体的影响   总被引:2,自引:1,他引:1  
为探讨不同氮投入对红壤坡耕地水土流失及土壤水稳性团聚体的影响,在种植青贮玉米的坡耕地上设置4个不同氮投入处理(N1:300.00 kg/hm~2;N2:225.00 kg/hm~2;N3:150.00 kg/hm~2和N4:75.00 kg/hm~2),用湿筛法获得2,1~2,0.5~1,0.25~0.5,0.25 mm粒径的团聚体组分并计算出水稳性团聚体含量(WSA_(0.25))、平均重量直径(MWD)、几何平均直径(GMD)和分形维数(PD)的含量。结果表明:(1)不同氮投入处理的坡面产流产沙特征与降雨强度关系密切,在低强度、中强度和高强度降雨条件下,N1和N2处理的径流量和产沙量均显著小于N3和N4处理(P0.05),N2与N1处理径流量及产沙量差异均未达到显著水平(P0.05),但在极高强度降雨下,各处理径流量和产沙量的差异均不显著(P0.05)。(2)N2处理的WSA_(0.25)、MWD和GMD比其他3个处理大,而PD却比较小,此外,WSA_(0.25)、MWD和GMD三者之间相互存在极显著正相关性(P0.01),而与PD、径流量和产沙量均呈现出极显著负相关关系(P0.01)。(3)N1和N2处理土壤容重显著低于N3和N4处理的容重(P0.05),但其孔隙度和田间持水量显著高于N3和N4处理(P0.05)。因此,在当地常规施肥水平上减少25%氮投入量不会加剧土壤侵蚀,还可通过改善土壤物理性质以维持红壤坡耕地的生产能力。  相似文献   

14.
Naturally occurring wetting‐and‐drying cycles often enhance aggregation and give rise to a stable soil structure. In comparatively dry regions, such as large areas of Australia, organic‐matter (OM) contents in topsoils of arable land are usually small. Therefore, the effects of wetting and drying are almost solely reliant on the clay content. To investigate the relations between wetting‐and‐drying cycles, aggregation, clay content, and OM in the Australian environment, an experiment was set up to determine the relative influence of both clay content (23%, 31%, 34%, and 38%) and OM amendments of barley straw (equivalent to 3.1 t ha–1, 6.2 t ha–1, and 12.4 t ha–1) on the development of water‐stable aggregates in agricultural soil. The aggregate stability of each of the sixteen composite soils was determined after one, three, and six wet/dry cycles and subsequent fast and slow prewetting and was then compared to the aggregate stabilities of all other composite soils. While a single wet/dry cycle initiated soil structural evolution in all composite soils, enhancing macroaggregation, the incorporation of barley straw was most effective for the development of water‐stable aggregates in those soils with 34% and 38% clay. Repeated wetting‐and‐drying events revealed that soil aggregation is primarily based on the clay content of the soil, but that large straw additions also tend to enhance soil aggregation. Relative to untreated soil, straw additions equivalent to 3.1 t ha–1 and 12.4 t ha–1 increased soil aggregation by about 100% and 250%, respectively, after three wet/dry cycles and fast prewetting, but were of less influence with subsequent wet/dry cycles. Straw additions were even more effective in aggregating soil when combined with slow prewetting; after three wet/dry cycles, the mean weight diameters of aggregates were increased by 70% and 140% with the same OM additions and by 160% and 290% after six wet/dry cycles, compared to samples without organic amendments. We suggest that in arable soils poor in OM and with a field texture grade of clay loam or finer, the addition of straw, which is often available from preceding crops, may be useful for improving aggregation. For a satisfactory degree of aggregate stability and an improved soil structural form, we found that straw additions of at least 6.2 t ha–1 were required. However, rapid wetting of straw‐amended soil will disrupt newly formed aggregates, and straw has only a limited ability to sustain structural improvement.  相似文献   

15.
Addition of organic amendments can alleviate the level of aluminum (Al) phytotoxicity in acid soils by affecting the nature and quantity of Al species. This study evaluated the transformation of Al in an acidic sandy Alaquod soil amended with composts (10 and 50 g kg?1 soil of yard waste, yard + municipal waste, GreenEdge®, and synthetic humic acid) based on soil Al fractionation by single and sequential extractions. Though the organic compost amendments increased total Al in soil, they alleviated Al potential toxicity in acidic soil by increasing soil pH and converting exchangeable Al to organically bound and other noncrystalline fractions, stressing the benefits of amending composts to improve acid soil fertility. The single‐extraction method appears to be more reliable for exchangeable Al than sequential extraction because of the use of nonbuffered pH extract solution.  相似文献   

16.
研究紫色土区坡耕地玉米全生育期细沟侵蚀阶段水土及氮素流失规律,以期为研究区氮素流失有效防控提供科学依据。采用人工模拟降雨与野外径流小区相结合的方法,开展降雨强度为1.5mm/min条件下玉米全生育期细沟侵蚀阶段地表径流、壤中流和侵蚀泥沙中氮素流失特征的研究。结果表明:细沟侵蚀阶段,玉米各生育期地表径流量、壤中流量和侵蚀产沙量总体表现为随降雨时间延长呈先增加后平稳的变化趋势。地表径流中总氮、可溶性总氮、硝态氮和侵蚀泥沙中总氮流失量总体呈现先增加后平稳的趋势,而地表径流中铵态氮流失量变化趋势在降雨前期呈现波动性变化,降雨后期逐渐平稳。壤中流中总氮、可溶性总氮、硝态氮、铵态氮流失量则随着降雨时间延长呈现平稳的变化趋势。细沟侵蚀阶段地表径流中氮素流失总量在玉米苗期最大,为628.77mg/m2;壤中流中氮素流失总量在拔节期和抽雄期最大;侵蚀泥沙中氮素流失总量在苗期最大,为144.95mg/m2。壤中流为氮素流失主要途径,硝态氮为氮素流失主要形态。  相似文献   

17.
为揭示不同耕作措施对岩溶地区坡耕地产流产沙的影响,采用独立设计土槽、室内人工模拟降雨的方法,通过设定一定雨强下研究不同耕作措施对西南岩溶区裸坡耕地径流与土壤流失特征。结果表明:雨强为63mm/h,坡度小于10°时,翻耕措施能够加快地下孔隙的产流时间,而免耕能够滞缓其产流,翻耕的产沙量为免耕的66%;当坡度大于10°时,翻耕措施能够延缓地下孔隙的产流时间,而免耕则加速其产流,翻耕的产沙量分别为免耕的16%和6%。雨强为100mm/h,坡度小于10°时,随着坡度的增大,翻耕措施会加速地下孔隙流的汇流过程,免耕的产沙量是翻耕的41%;坡度大于10°时,翻耕措施能延缓地表径流的汇流过程,且翻耕的产沙量为免耕的68%和0.9%。同一坡度和雨强下,翻耕措施较免耕措施可减少土壤随径流流失。  相似文献   

18.
Three arid soils (clay loam (CL), sandy clay (SC), and sandy loam (SL)) were amended with pecan waste products (ground pecan shells (PSHs), ground pecan husks (PHUs), and ground pecan shell biochar (PSB)), at a rate of 45 Mg/ha, packed inside cylindrical rings and kept in a humid chamber for 4 weeks. Measurements taken included volumetric moisture content as the soil dried out for 7 days, wet aggregate stability (WAS), permanganate oxidizable carbon (POXC), nitrate-nitrogen, extractable phosphorus (Olsen-P), and water-extractable potassium (K). Significant effects of soil texture, soil amendment, and their interaction were observed for all measurements. Generally, the amendments led to significant improvement in Olsen-P, K, POXC, and WAS, while amendments’ impacts on soils of different textures varied. Short-term moisture retention was dependent on soil texture, with PHU and PSB treatments having higher soil moisture retention in SL and CL soils but not in SC soil.  相似文献   

19.
Hardsetting and crusting are forms of soil structure degradation associated with the collapse of macroaggregates during wetting and are responsible for poor seedling emergence, crop establishment and yields of food crops especially in semi-arid environments. This study investigated the effects of applying of 3.0 t ha−1 phosphogypsum, 1.0 t ha−1 polymer gel, 3.0 t ha−1 grass mulch and 5.0 t ha−1 cattle manure to the topsoil (0–15 cm) of a soil with hardsetting and crusting behavior and observed changes on aggregation under field conditions for two consecutive seasons. There were significant improvements in soil aggregate properties in the amended soil over the control. Both aggregate size distribution and wet aggregate stability showed significant differences between the amendments in the two seasons. The mean weight diameters of aggregates were 4.23 mm (mulch), 3.31 mm (manure), 2.17 mm (polymer gel), 2.23 mm (phosphogypsum) and 1.36 mm (control). The aggregates (2–4 mm) from amended soil were consistently more stable than the control and were in the order polymer gel = manure > mulch > gypsum > control. Tensile strength and bulk density of aggregates, on the other hand, were significantly higher (P < 0.05) in the unamended than amended soil.The application of soil amendments, especially mulch, significantly increased the soil water content over the two seasons and this was associated with lower soil penetration resistance in the latter. The reduced soil strength in the amended soils contributed to higher pegging, podding and grain yields of bambara groundnut (Vigna subterranean). This was confirmed by significantly higher correlations between soil aggregate characteristics, soil water, penetrometer resistance and growth and yield of bambara groundnut. The study concluded that significant improvements in soil aggregation can be obtained over a relatively short period and this can improve the yield of food crops.  相似文献   

20.
Soil erosion is widespread in agricultural lands of the US Corn Belt. The objective of this study was to examine the impact of antecedent erosion on loss of soil under laboratory simulated rainfall. The soil was obtained from the surface layer of eroded (ER) and uneroded (UN) sites within a conservation agro‐ecosystem in central Ohio, USA. Air‐dried soil was subjected to a rainfall simulation for 60 min (dry run), and to another simulation (wet run) 24 h after the dry run. In the dry run, the cumulative water runoff, sediment yield, and soil organic carbon loss were higher in ER (12.3 L/m2, 169.3 g/m2, and 5.6 g/m2, respectively) than in the UN (7.3 L/m2, 22.6 g/m2, and 0.9 g/m2 respectively). An opposite trend was observed for the cumulative water infiltration (0.9 and 3.9 L/m2, respectively). In the wet run, despite a similar cumulative water runoff from the two erosional phases (20.1 and 19.6 L/m2 in ER and UN respectively), sediment yield and soil organic carbon loss were higher in ER (484.4 g/m2, and 16.3 g/m2 respectively) than in the UN (146.6 g/m2, and 5.3 g/m2 respectively). Also for the wet run, an opposite trend was observed for the cumulative infiltration (0.8 and 5.8 L/m2 respectively). This study suggests that past erosional processes increase the susceptibility of remaining soil to accelerated erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号