首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
林业   2篇
农学   3篇
  2篇
农作物   1篇
畜牧兽医   5篇
植物保护   8篇
  2021年   1篇
  2017年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2007年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1997年   2篇
  1992年   1篇
  1986年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
2.
Verticillium wilt (VW), caused by Verticillium dahliae Kleb., is one of the most important diseases in cotton. The objective of this study was to map quantitative trait loci (QTLs) conferring VW resistance using resistance gene analog (RGA)-targeted amplified fragment length polymorphism (RGA-AFLP) markers in an interspecific backcross inbred line mapping population, consisting of 146 lines from a susceptible Sure-Grow 747 (Gossypium hirsutum L.) × resistant Pima S-7 (G. barbadense L.) cross. VW resistance was evaluated in replicated tests based on disease incidence in the field, and disease incidence and severity in the greenhouse. Of 160 polymorphic RGA-AFLP markers, 42 were significantly correlated with one or more VW traits and 41 were placed on a linkage map which covered 1,226 cM of the cotton genome and contained 251 other molecular markers. Three QTLs for VW resistance were detected, each of which explained 12.0–18.6 % of the phenotypic variation. Two of these QTLs for disease incidence and severity detected in the greenhouse inoculation tests using root wounding are located on chromosome c4. Both are closely linked to four RGA-AFLP markers and therefore considered as the same QTL for VW resistance. The other QTL detected in the field test was located on c19 and flanked by several RGA-AFLP markers. The desirable QTL allele on c4 for VW resistance detected in the greenhouse was from the VW susceptible Upland parent and absent from the resistant Pima parent which was more VW susceptible due to the disarmament of the first line of defense mechanism due to root wounding during inoculation. The other desirable VW resistance QTL allele, on c19, was from the resistant parent Pima S-7, consistent with the fact that Pima cotton was more resistant to VW when naturally infected in the field. The results should facilitate the development of more sequence specific markers and the transfer of VW resistance from Pima to Upland cotton through marker-assisted selection.  相似文献   
3.
4.
5.
Sanogo S 《Phytopathology》2007,97(1):37-43
ABSTRACT Phytophthora capsici and Verticillium dahliae are two mycelial microorganisms associated with wilt symptoms on chile pepper (Capsicum annuum). Both pathogens occur in the same field and can infect a single plant. This study examined the nature of the co-occurrence of P. capsici and V. dahliae. Chile pepper plants were inoculated with each pathogen separately or with both pathogens concomitantly or sequentially. In concomitant inoculations, plants were inoculated with a mixture of zoospores of P. capsici and conidia of V. dahliae. In sequential inoculations, plants were inoculated with zoospores of P. capsici 4 days prior to inoculation with conidia of V. dahliae, or plants were inoculated with conidia of V. dahliae 4 days prior to inoculation with zoospores of P. capsici. Stem necrosis and leaf wilting were visible 3 to 4 days earlier in plants inoculated with both P. capsici and V. dahliae than in plants inoculated with P. capsici alone. Stem necrosis and generalized plant wilting were observed in plants inoculated with P. capsici alone, and stem necrosis, generalized plant wilting, and vascular discoloration were observed in plants inoculated with both P. capsici and V. dahliae by 21 days after inoculation. These symptoms were not observed in control plants or plants inoculated with V. dahliae alone. The frequency of recovery of V. dahliae from stems was approximately 85 to 140% higher across inoculum levels when plants were inoculated with both P. capsici and V. dahliae than when plants were inoculated by V. dahliae alone. Similarly, the frequency of recovery of V. dahliae from roots was approximately 13 to 40% higher across inoculum levels when plants were inoculated with both P. capsici and V. dahliae than when plants were inoculated by V. dahliae alone. There was no apparent antagonism between the two pathogens when they were paired on growth media. In general, when P. capsici and V. dahliae were paired on growth media, mycelial growth of each pathogen grown alone was not significantly different from mycelial growth when the pathogens were paired. Results suggest that wilt development is hastened by the presence of both P. capsici and V. dahliae in the same plants. The presence of P. capsici and V. dahliae in the same inoculum court enhanced infection and colonization of chile pepper by V. dahliae.  相似文献   
6.
ABSTRACT Growth characteristics of the fungus Trichoderma stromaticum, a mycoparasite on the mycelium and fruiting bodies of Crinipellis perniciosa, the causal agent of witches'-broom disease of cacao, were evaluated under controlled environmental conditions. The ability of T. stromaticum to produce conidia and germinate on dry brooms was evaluated at three constant temperatures (20, 25, and 30 degrees C) and two constant relative humidities (75 and 100%). T. stromaticum produced abundant conidia on brooms at 100% relative humidity and incubation temperatures of 20 and 25 degrees C, but none at 30 degrees C. Sporulation of T. stromaticum was not observed at 75% relative humidity at any temperature. At 100% relative humidity and either at 20 or 25 degrees C, treatment of brooms with T. stromaticum suppressed C. perniciosa within 7 days. In contrast, at 30 degrees C, treatment with T. stromaticum had no effect on the pathogen in brooms maintained at either 75 or 100% relative humidity. Mycelium of C. perniciosa grew from brooms at all temperatures at 100% relative humidity. Conidial germination on broom tissue approximated 80% at temperatures from 20 to 30 degrees C. Results suggest that applying T. stromaticum under high-moisture conditions when the air temperature is below 30 degrees C may enhance the establishment of this mycoparasite in cacao plantations.  相似文献   
7.
Aylor DE  Sanogo S 《Phytopathology》1997,87(6):628-633
ABSTRACT Detached conidia of Venturia inaequalis were exposed simultaneously outdoors to direct sunlight or in an adjacent ventilated enclosure in darkness for periods ranging from 0.5 to 16.5 h. In addition, conidia were either exposed or not exposed to UV light (254 nm) from 1 to 64 min in the laboratory. After exposure, conidia were placed on water agar in closed petri dishes and allowed 24 h to germinate. Germinability of conidia in the laboratory was reduced up to 95% by doses of UV(254) of 8.1 to 10.8 kJ m(-2).Germinability of conidia in the field was reduced up to 95% by doses of UV-B of about 44 kJ m(-2). A significant percentage of conidia survived radiation doses equivalent to 12 h in full sunlight.  相似文献   
8.
ABSTRACT Sudden death syndrome of soybean, caused by Fusarium solani f. sp. glycines, is a disease of increasing economic importance in the United States. Although the ecology of sudden death syndrome has been extensively studied in relation to crop management practices such as tillage, irrigation, and cultivar selection, there is no information on the effects of herbicides on this disease. Three herbicides (lactofen, glyphosate, and imazethapyr) commonly used in soybean were evaluated for their effects on the phenology of F. solani f. sp. glycines and the development of sudden death syndrome in four soybean cultivars varying in resistance to the disease and in tolerance to glyphosate. Conidial germination, mycelial growth, and sporulation in vitro were reduced by glyphosate and lactofen. In growth-chamber and greenhouse experiments, there was a significant increase in disease severity and frequency of isolation of F. solani f. sp. glycines from roots of all cultivars after application of imazethapyr or glyphosate compared with the control treatment (no herbicide applied). Conversely, disease severity and isolation frequency of F. solani f. sp. glycines decreased after application of lactofen. Across all herbicide treatments, severity of sudden death syndrome and isolation frequency were lower in disease-resistant than in susceptible cultivars. Results suggest that glyphosate-tolerant and -nontolerant cultivars respond similarly to infection by F. solani f. sp. glycines after herbicide application.  相似文献   
9.
This work aims at contributing to the knowledge of trypanosomiasis epidemiology in calves of trypanotolerant breeds and at defining an appropriate treatment to improve the survival of such calves in a tsetse infested area. The first study was a parasitological survey of 100 calves from the day of birth to the age of one year. According to the results of this survey, the period from birth to three months is a "critical" moment in the life of the calves, due to a high infection rate and mortality related to trypanosomiasis. The purpose of the second study was to investigate the possible interference of early trypanocidal treatments with the further expression of trypanotolerance. For this purpose three groups of over one-year old animals were established. The groups had different trypanosomiasis history due to the different treatments they had undergone during their first year of life. All the animals had been exposed to trypanosomiasis without treatment and followed up parasitologically and clinically during the second year. The results showed no interference of early trypanocidal treatments (including preventive ones) with the expression of resistance in potentially trypanotolerant animals.  相似文献   
10.
Sanogo S 《Phytopathology》2007,97(7):873-878
ABSTRACT Formation of sporangia and zoospores in species of Phytophthora is known to be influenced by soil microbial and chemical composition. In Phytophthora capsici, the study of the relationship of soil chemical composition to production of sporangia and zoospores has been limited. P. capsici is a soilborne pathogen of a wide array of vegetable crops, including chile pepper (Capsicum annuum) in New Mexico. Production of sporangia and zoospores by P. capsici was evaluated in extracts of soils from three different environments in New Mexico: (i) agricultural environments with a long history of chile pepper cropping and occurrence of P. capsici (CP), (ii) agricultural environments with no history of chile pepper cropping and no occurrence of P. capsici (Non-CP), and (iii) nonagricultural environments consisting of forests and rangelands (Non-Ag). There was a significant difference in production of P. capsici asexual propagules, expressed as natural log (number of sporangia x number of zoospores), among the three environments (P = 0.0298). Production of propagules was 9 to 13% greater in Non-Ag than in CP or Non-CP environments. Stepwise multiple discriminant analysis and canonical discriminant analysis identified the edaphic variables Na, pH, P, organic matter content, and asexual propagule production as contributing the most to the separation of the three environments. Two significant (P < 0.0001) canonical discriminant functions were derived with the first function, accounting for approximately 75% of the explained variance. Based on the two discriminant functions, approximately 93, 86, and 89% of observations in CP, Non-CP, and Non-Ag environments, respectively, were classified correctly. Soils from agricultural and nonagricultural environments differentially influence production of sporangia and zoospores in P. capsici, and soil samples could be effectively classified into agricultural and nonagricultural environments based on soil chemical properties and the production of asexual propagules by P. capsici in soil extracts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号