首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The effectiveness of nitrogen (N)+ zinc (Zn) soil and foliar fertilizer applications on growth, yield, and quality of apple (Malus domestic Borkh ‘Golden Delicious’) fruit was studied in the Zanjan province, Iran. There were eight treatments 1) control (no fertilizer), 2) soil applied N, 3) soil applied Zn, 4) soil applied N+Zn, 5) foliar applied N, 6) foliar applied Zn, 7) foliar applied N+Zn and 8) combined soil and foliar applied N+Zn. The N source was urea [CO(NH2)2, 46% N] applied at 276 N tree? 1 yr?1 and the Zn source was zinc sulfate (ZnSO4,7H20, 23% Zn) applied at 110 g Zn tree? 1 yr? 1. The soil treatments of N and Zn, were applied every two weeks during June through August (total of 6 times/year) in a 1 m radius around the tree trunk (drip line of trees). The foliar solutions of N (10 g l? 1 urea) and Zn [8 g l? 1 zinc sulfate (ZnSO4)] were sprayed at the rate of 10 L tree? 1 every two weeks at the same times as described for soil applications. The highest yield (49 kg tree? 1), and the heaviest fruits (202 g) were obtained in the soil and foliar combination of N+Zn treatment. The lowest yield (35 kg tree? 1), and the smallest fruits (175 g) were recorded in the control. Nitrogen, and to a lesser extent Zn, foliar application resulted in decreasing fruit quality (caused russeting, and lower soluble solid), but increasing N leaf and fruit concentrations (2.4% DW and 563 mg kg? 1, respectively). There were significant differences among yield and leaf mineral nutrient concentration in different treatments. But there was no significant difference between fruit mineral nutrient concentration (except N). Ratio of N/calcium (Ca), potassium (K)/Ca, and [magnesium (Mg)+K]/Ca in fruits were found suitable for fruit quality prediction. Combining the zinc sulfate with urea in the foliar applications increased the concentration of Zn from 0.7 to 1.5 mg per kg of apple tissue. Leaf N concentration varied during growth season. Foliar applied nutrient can be more efficient than soil applied, but a combination of soil and foliar applications is recommended for apple tree nutrient management.  相似文献   

2.
An experiment was conducted to assess the zinc (Zn) availability to wheat in alkaline soils during Rabi 2009–2010. Wheat seedlings in pots having 2 kg alkaline sandy soil per pot were treated with 5, 10 and 15 kg Zn ha?1 as soil and with 0.5 and 1.0% zinc sulfate (ZnSO4) as foliar application. Results showed that Zn increasing levels in soil helped in phosphorus uptake up to boot stage but its conversion to grain portion lacked in Zn treated plants. Potassium (K) uptake also increased up to 6.24% in boot stage with treatment of 10 kg Zn ha?1 + 1.0% ZnSO4 foliar spray. Zinc (Zn) concentration increased in plant tissues with the increasing level of Zn application but this disturbed the phosphorus (P)-Zn interaction and, thus, both of the nutrients were found in lesser quantities in grains compared to the control. Despite of the apparent sufficient Zn level in soil (1.95 mg kg?1), improvement in growth and yield parameters with Zn application indicate that the soil was Zn deplete in terms of plant available Zn. The above findings suggest that the figure Zn sufficiency in alkaline soil (1.0 mg kg?1) should be revised in accordance to the nature and type of soils. Furthermore, foliar application of Zn up to 1.0% progressively increased yield but not significantly; and it was recommended that higher concentrations might be used to confirm foliar application of Zn as a successful strategy for increasing plant zinc levels.  相似文献   

3.
A field experiment with 60 groundnut cultivars, in a calcareous soil having 1.20 mg kg?1 available zinc (Zn), foliar application of 0.2% aqueous solution of zinc sulphate thrice at 40, 55 and 70 days at 500, 500 and 1000 L ha?1, respectively, increased the number of pods, pod yield, shelling and 100 seed mass and seed zinc (Zn) content, significantly. The seeds Zn content in groundnut cultivars ranged 38–70 mg kg?1 with an average of 48 mg kg?1 without Zn and 58 mg kg?1 with Zn. Foliar Zn application increased 22% Zn in seed. This increase was more than 10% in 48 out of 60 cultivars. The cultivars GG 7, GG 20, Tirupati 4, DH 8, JSP 19, TKG 19 A, CSMG 884 and S 206 showed > 50 mg kg?1 Zn, > 10% increase in seed Zn with Zn application and > 250 g m?2 pod yield.  相似文献   

4.
Foliar application of fertilizers can guarantee the availability of nutrients to rice for obtaining higher yield. Rice responds favorably to macro- and micronutrients and the tolerance to salinity hazards improves by decreasing the N/S ratio. In this study, results showed that nutrient concentrations (g L?1) for rice are: nitrogen (N) 108.0, phosphorous (P2O5) 6, potassium (K2O) 81.0, calcium (CaO) 15.0, and magnesium (MgO) 6 g L?1; and for iron (Fe), manganese (Mn), zinc (Zn), cupper (Cu), boron (B), molybdenum (Mo) and silicon (Si) the recommended concentrations are 0.6, 0.45, 0.21, 0.06, 0.09, 0.0002 and 0.004 g L?1, respectively. A significant increase was recorded in number of panicles m?2, 1000 grain weight, biological yield and grain yield with foliar application of nutrients. Five foliar applications of nutrients resulted in maximum number of panicles m?2, grains panicle?1, 1000 grain weight and biological yield. It is concluded that five foliar applications of balanced amounts of fertilizers at the seedling stage (two sprays), tillering (single spray) and at panicle initiation and panicle differentiation (two sprays) helped in enhancing yield and yield components of rice. In this research, five foliar applications produced the smallest damaging effects of blast (Pyricularia oryzae) in rice.  相似文献   

5.
ABSTRACT

Zinc (Zn) and iron (Fe) deficiency-related health problems in humans may be solved by improving their concentration in edible grains. The study, conducted in 2015–16 and 2016–17, investigated the effects of soil and foliar application of Zn and foliar application of urea on grain Zn and Fe accumulation of chickpea grains. Soil application of ZnSO4 @ 25 kg ha?1 + foliar spray of ZnSO4 @ 0.5% at flowering and pod formation stages resulted in the highest Zn (45.06 & 44.69 mg Zn kg?1 grain in the first and second year of study) and Fe (59.74 & 62.88 mg Fe kg?1 grain) content. Urea application @ 2% at flowering and pod formation stages also resulted in the highest grain Zn (41.12 & 40.26 mg Zn kg?1 grain) and Fe (58.95 & 61.95 mg Fe kg?1 grain) content. Grain yield and protein content were significantly increased over control with these treatments. As compared to the sole application of Zn, the combined use of Zn and urea improved the grain Zn and Fe contents. Zinc and urea can be applied to improve Zn and Fe content in chickpea grains and, therefore, can help in ameliorating malnutrition in burgeoning human population.  相似文献   

6.
Deficiency of micronutrients increasing in field crops, including upland rice in recent years. The objective of this study was to determine requirement of zinc (Zn), copper (Cu) boron (B) and iron (Fe) for upland rice grown on a Brazilian Oxisol. The levels used were: Zn (0, 10, 20, 40, and 80 mg kg?1), Cu (0, 5, 10, 20 and 40 mg kg?1), B (0, 5, 10, 20 and 40 mg kg?1) and Fe (0, 250, 500, 1000, and 2000 mg kg?1). Plant height, straw yield, grain yield, panicle number and grain harvest index (GHI) were significantly improved with the addition of these micronutrients. Root growth was also improved with the application of micronutrients, except with the addition of B. Maximum grain yield was obtained with the addition of 51 mg Zn, 24 mg Cu, 5 mg B kg?1, and 283 mg Fe kg?1 soil. Similarly, maximum straw yield was obtained with the addition of 38 mg Zn, 17 mg Cu, 6 mg B kg?1, and 1500 mg Fe kg?1 soil. Maximum plant height was obtained with the addition of 54 mg Zn, 10 mg B kg?1, and 1197 mg Fe kg?1 soil. Copper did not affect plant height significantly. Maximum panicle number was obtained with the addition of 22 mg Cu kg?1, 3 mg B kg?1, and 1100 mg Fe kg?1 soil. Zinc did not affect panicle number significantly. Maximum GHI was obtained with the addition of 61 mg Zn kg?1, and 8 mg B kg?1. Zinc was had a linear increase in GHI in the range of 0 to 80 mg kg?1, and Fe showed a negative relationship with GHI.  相似文献   

7.
Foliar Cd and Zn concentrations in Salix, Populus and Zea mays grown on freshwater tidal marshes were assessed. Soil metal concentrations were elevated, averaging 9.7 mg Cd kg?1 dry soil, 1100 mg Zn kg?1 dry soil and 152 mg Cr kg?1 dry soil. Cd (1.1–13.7 mg kg?1) and Zn (192–1140 mg kg?1) concentrations in willows and poplars were markedly higher than in maize on impoldered tidal marshes (0.8–4.8 mg Cd kg?1 and 155–255 mg Zn kg?1). Foliar samples of maize were collected on 90 plots on alluvial and sediment‐derived soils with variable degree of soil pollution. For soil Cd concentrations exceeding 7 mg Cd kg?1 dry soil, there was a 50% probability that maize leaf concentrations exceeded public health standards for animal fodder. It was shown that analysis of foliar samples of maize taken in August can be used to predict foliar metal concentrations at harvest. These findings can therefore contribute to anticipating potential hazards arising from maize cultivation on soils with elevated metal contents.  相似文献   

8.
ABSTRACT

Salinity is one of the main problems in agricultural soils. In order to study zinc (Zn) application effects (0, 10, 20 mg Zn kg?1 soil and foliar application) on growth and nutrient uptake under salinity stress (3, 7, 10 dSm?1) in two rice cultivars (Tarom and Daylamani), the present work was conducted as a factorial arrangement based on a randomized complete design with three replications in greenhouse conditions. The results showed that Zn application under salinity stress promoted shoot and grain yield. The lowest and highest protein percent in every salinity and Zn levels belonged to Daylamani and Tarom cultivars, respectively. The results showed that the more Zn applied, the more Zn accumulated in the shoots and grain. Generally, based on the results Zn application in low and moderate salinity levels promotes the growth and yield of the rice and Daylamani cultivar showed more endurance to salinity than Tarom cultivar.  相似文献   

9.
ABSTRACT

A pot study was conducted on Gujranwala series (Udic Haplustalf) to compare zinc (Zn) requirement of maize hybrids (FHY- 456, FHY- 396, and FHY- 421) and indigenous varieties (EV-1089, Golden, and Soneri). Uniform rates of nitrogen:phosphorus:potassium (N:P:K) and four rates of Zn were applied in triplicate according to CRD. There was a significant (P < 0.05) main and interactive effect of maize genotypes and zinc application on shoot growth and Zn uptake. The three maize varieties uniformly produced maximum shoot dry weight at 3 mg Zn kg?1 soil. The maize hybrids produced maximum shoot dry weight at 9 mg Zn applied kg?1 soil. A 6.3 mg Zn kg?1 plant tissue was optimum for FHY-421 (hybrid) and 9.5 mg Zn kg?1 plant tissue was optimum for Soneri (variety). Hence, more pronounced response in maize hybrids than indigenous varieties require higher rates of Zn application. However, further verification of the results is warranted under field conditions.  相似文献   

10.
The application of zinc (Zn) fertilizer to lentil is an agronomic strategy that has the potential to improve yield and enhance grain Zn concentration. A pot study was conducted to determine if Zn fertilizer applied to three popular Saskatchewan lentil cultivars could increase yield and concentration of Zn in the grain. The effects of soil and foliar applied Zn forms, including ZnSO4, Zn chelated with EDTA, Zn lignosulphonate, and a control were evaluated. Forms of Zn were not found to significantly increase yield (P = 0.828) or grain Zn concentration (P = 0.708) in any of the lentil cultivars tested. Fertilization with soil applied ZnSO4 resulted in significantly (P < 0.0001) higher amounts of residual available Zn in the soil relative to other Zn treatments. Soil fertilized with ZnSO4 had 1.13 mg kg?1 diethylenetriaminepentaacetic acid (DTPA)-extractable Zn compared to 0.84 mg Zn kg?1 and 0.77 mg Zn kg?1 in the soil and foliar applied chelated Zn, respectively.  相似文献   

11.
A pot experiment was done to study the effect of zinc (Zn) application on the reproductive development and quality of wheat (Triticum aestivum L. cv. SP 343) seeds. The soil was low in diethylenetriaminepentaacetate (DTPA)–extractable Zn and was fortified with a mixture of nitrogen, phosphorus, and potassium (NPK) as basal fertilizers. Four treatments included a control (no Zn), 5 mg Zn, 10 mg Zn, and 10 mg Zn kg?1 soil with urea instead of ammonium nitrate. Zinc addition improved the pollen-producing capacity of anthers, pollen viability, and seed yield with an increase in seed Zn, phytate, and starch contents but decreased the phytate/zinc molar ratio at 5 mg Zn kg?1 and increased it at 10 mg Zn kg?1. Application of urea increased the seed protein content at 10 mg Zn kg?1 but was ineffective in lowering the phytate/Zn ratio, which was still less than the alarming level.  相似文献   

12.
ABSTRACT

Zinc (Zn) deficiency is a global nutritional problem in crops grown in calcareous soils. However, plant analysis criteria, a good tool for interpreting crop Zn requirement, is scarcely reported in literature for onion (Allium cepa L.). In a greenhouse experiment, Zn requirement, critical concentrations in diagnostic parts and genotypic variation were assessed using four onion cultivars (‘Swat-1’, ‘Phulkara,’ ‘Sariab Red,’ and ‘Chilton-89’) grown in a Zn-deficient (AB-DTPA extractable, 0.44 Zn mg kg?1), calcareous soil of Gujranwala series (Typic Hapludalf). Five rates of Zn, ranging from 0 to 16 mg Zn kg?1 soil, were applied as zinc sulphate (ZnSO4·7H2O) along with adequate basal fertilization of nitrogen (N), phosphorus (P), potassium (K), and boron (B). Four onion seedlings were transplanted in each pot. Whole shoots of two plants and recently matured leaves of other two plants were sampled. Zinc application significantly increased dry bulb yield and maximum yield was produced with 8 mg Zn kg?1. Application of higher rates did not improve yield further. The cultivars differed significantly in Zn efficiency and cv. ‘Swat-1’ was most Zn-efficient. Fertilizer requirement for near-maximum dry bulb yield was 2.5 mg Zn kg?1. Plant tissue critical Zn concentrations were 30 mg kg?1 in young whole shoots, 25 mg kg?1 in matured leaves, 16 mg kg?1 in tops and 14 mg Zn kg?1 in bulb. Zinc content in mature bulb also appeared to be a good indicator of soil Zn availability status.  相似文献   

13.
Response of lettuce and rhizosphere biota to successive addition of zinc (Zn) and cadmium (Cd) was assessed in a pot experiment using limed and unlimed tropical Entisol. Cadmium (2.5 mg kg?1 soil) and Zn (50 mg kg?1 soil) were spiked to soil 1 month after germination, and successive applications were superimposed as 5 and 10 times the first dose. Plants were analyzed for metal uptake and mycorrhizal colonization 1 week after each metal application. Rhizosphere soils were assessed for extractable Zn and Cd as well as populations of bacteria, fungi, and metal-tolerant fungi. The greatest metal doses resulted in 84–88 mg Zn and 8–10 mg Cd kg?1 soil and 5–7.5 mg Cd and 70–72 mg Zn kg?1 dry matter. Metal-tolerant fungi population increased from 9–13% to 26–63%, but mycorrhizal colonization and bacterial population were inhibited by 88% and 96%, respectively. Liming had relieved metal stress on rhizosphere biota but did not affect metal uptake.  相似文献   

14.
This experiment was conducted at Zahak Agricultural Research Station in the Sistan region in southeast Iran. A factorial design with three replications was used to determine the effects of zinc (Zn), iron (Fe), and manganese (Mn) applications on wheat yield, Zn, Fe, and Mn uptakes and concentrations in grains. Four levels of Zn [soil applications of 0, 40, and 80 kg ha?1 and foliar application of 0.5% zinc sulfate (ZnSO4) solution], two levels of iron sulfate (FeSO4; 0 and 1%) as foliar application, and two levels of Mn (0 and 0.5%) also as foliar application were used in this study. Results showed that the interactive effects of Zn and Mn were significant on the number of grains in each spike. The highest number of grains resulted from the application of 80 kg ZnSO4 ha?1 and foliar Mn. The interactive effects of Zn and Fe were significant on weight of 1000 grains. The highest weight of 1000 grains resulted from application of 80 kg Zn and foliar Fe. Application of 80 kg ZnSO4 ha?1 alone and 80 kg ZnSO4 ha?1 with foliar application of Mn significantly increased grain yield in 2003. The 2‐year results showed that foliar application of Zn increased Zn concentration and Fe concentration in grains 99% and 8%, respectively. Foliar application of Fe resulted in a 21% increase in Fe concentration and a 13% increase in Zn concentration in grains. The foliar application of Mn resulted in a 7% increased in Mn concentration in grains.  相似文献   

15.
A pot experiment was conducted to investigate the effects of different zinc (Zn) application methods (soil and foliar application) and concentrations (1 and 2 mg kg?1 in soil application and 1 and 3 g L?1 in foliar application) on the growth, some biochemical characteristics, and nutrient concentrations of costmary (Chrysanthemum balsamita L.). Growth parameters were increased by zinc application regardless of its concentration and application method. Protein and total phenol content, antioxidant capacity, and chlorophyll index were increased by zinc supply. In contrast, proline and soluble sugars content showed a decreasing pattern with zinc application. Zinc application, either through soil or foliar application, increased the zinc content of shoots. Manganese uptake potential of plants was increased by foliar zinc application method but not by soil application of zinc. Zinc application had no significant effect on potassium content of plants.  相似文献   

16.
This study evaluated how zinc (Zn) concentration of rice (Oryza sativa L.) seed may be increased and subsequent seedling growth improved by foliar Zn application. Eight foliar Zn treatments of 0.5% zinc sulfate (ZnSO4?·?7H2O) were applied to the rice plant at different growth stages. The resulting seeds were germinated to evaluate effects of seed Zn on seedling growth. Foliar Zn increased paddy Zn concentration only when applied after flowering, with larger increases when applications were repeated. The largest increases of up to ten-fold were in the husk, and smaller increases in brown rice Zn. In the first few days of germination, seedlings from seeds with 42 to 67?mg Zn?kg?1 had longer roots and coleoptiles than those from seeds with 18?mg Zn?kg?1, but this effect disappeared later. The benefit of high seed Zn in seedling growth is also indicated by a positive correlation between Zn concentration in germinating seeds and the combined roots and shoot dry weight (r?=?0.55, p?相似文献   

17.
Yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (L. angustifolius L.) are grown as grain legumes in rotation with spring wheat (Triticum aestivum L.) on acidic sandy soils of south-western Australia. Yellow lupin can accumulate significantly larger cadmium (Cd) concentrations in grain than narrow-leafed lupin. A glasshouse experiment was undertaken to test whether adding increasing zinc (Zn) levels to soil increased Zn uptake by yellow lupin reducing accumulation of Cd in yellow lupin grain. Two cultivars of yellow lupin (cv. ‘Motiv’ and ‘Teo’) and 1 cultivar of narrow-leafed lupin (cv. ‘Gungurru’) were used. The soil was Zn deficient for grain production of both yellow and narrow-leafed lupin, but had low levels of native soil Cd (total Cd <0.05 mg kg?1) so 1.6 mg Cd pot?1, as a solution of cadmium chloride (CdCl2·H2O), was added and mixed through the soil. Eight Zn levels (0–3.2 mg Zn pot?1), as solutions of zinc sulfate (ZnSO4·7H2O), were added and evenly mixed through the soil. Yellow lupin accumulated 0.16 mg Cd kg?1 in grain when no Zn was applied, which decreased as increasing Zn levels were applied to soil, with ~0.06 mg Cd kg?1 in grain when the largest level of Zn (3.2 mg Zn pot?1) was applied. Low Cd concentrations (<0.016 mg Cd kg?1) were measured in narrow-leafed lupin grain regardless of the Zn treatment. When no Zn was applied, yellow lupin produced ~2.3 times more grain than narrow-leafed lupin, indicating yellow lupin was better at acquiring and using indigenous Zn from soil for grain production. Yellow lupin required about half as much applied Zn as narrow-leafed lupin to produce 90% of the maximum grain yield, ~0.8 mg pot?1 Zn compared with ~1.5 mg Zn pot?1. Zn concentration in whole shoots of young plants (eight leaf growth stage) related to 90% of the maximum grain yield (critical prognostic concentration) was (mg Zn kg?1) 25 for both yellow lupin cultivars and 19 for the narrow-leafed lupin cultivar. Critical Zn concentration in grain related to 90% of maximum grain yield was (mg Zn kg?1) 24 for both yellow lupin cultivars compared with 20 for the narrow-leafed lupin cultivar.  相似文献   

18.
Poor zinc (Zn) nutrition of wheat is one of the main causes of poor human health in developing countries. A field experiment with no zinc and foliar zinc application (0.5% ZnSO4.7H2O) on bread wheat (8), durum wheat (3), and triticale (4) cultivars was conducted in a randomized block design with three replications in 2 years. The experimental soil texture was loamy sand with slightly alkalinity. The grain yields of bread wheat, triticale, and durum wheat cultivars increased from 43.6 to 56.4, 46.5 to 51.6, and 49.4 to 53.5 t ha?1, respectively, with foliar application of 0.5% ZnSO4.7H2O. The highest grain yield was recorded by PBW 550 (wheat), TL 2942 (triticale), and PDW 291 (durum), which was 5.22, 4.24, and 4.56% and significantly higher over no zinc. Foliar zinc application increased zinc in bread wheat, triticale, and durum wheat cultivars grains varying from 31.0 to 63.0, 29.3 to 61.8, and 30.2 to 62.4?mg kg?1, respectively. So, agronomic biofortification is the best way which enriching the wheat grains with zinc for human consumption.  相似文献   

19.
ABSTRACT

Effects of application of zinc (Zn) (0, 1, 5, 10 mg kg?1 soil) and phosphorus (P) (0, 10, 50, 100 mg kg?1 soil) on growth and cadmium (Cd) accumulations in shoots and roots of winter wheat (Triticum aestivum L.) seedlings were investigated in a pot experiment. All soils were supplied with a constant concentration of Cd (6 mg kg?1 soil). Phosphorus application resulted in a pronounced increase in shoot and root biomass. Effects of Zn on plant growth were not as marked as those of P. High Zn (10 mg kg?1) decreased the biomass of both shoots and roots; this result may be ascribed to Zn toxicity. Phosphorus and Zn showed complicated interactions in uptake by plants within the ranges of P and Zn levels used. Cadmium in shoots decreased significantly with increasing Zn (P < 0.001) except at P addition of 10 mg kg?1. In contrast, root Cd concentrations increased significantly except at Zn addition of 5 mg kg?1 (P < 0.001). These results indicated that Zn might inhibit Cd translocation from roots to shoots. Cadmium concentrations increased in shoots (P < 0.001) but decreased in roots (P < 0.001) with increasing P supply. The interactions between Zn and P had a significant effect on Cd accumulation in both shoots (p = 0.002) and roots (P < 0.001).  相似文献   

20.
This study was done to investigate the effects of foliar sprays of zinc (Zn) and copper (Cu) on fruit set, yield, yield components, vegetative growth, and leaf nutrient concentrations of pistachio trees (cv. Owhadi), over two consecutive seasons 2010 (ON) and 2011 (OFF). Tests were done at a commercial orchard in the region of Rafsanjan in Iran. Tests were designed as a 3 × 2 factorial experiment in a randomized complete block with four replications. Treatments tested in the study were three concentration levels of zinc sulfate (0, 1000, and 2000 mg L?1) and two concentration levels of copper sulfate (0 and 200 mg L?1). Results showed that Zn foliar application increased first fruit set, final fruit set, fresh yield, and dry yield. Nut weight was increased by Zn spray by 3 and 4% at the second and third levels of Zn, respectively, compared with the control. However, Cu application increased splitting and vegetative growth. Vegetative growth in the OFF year was greater than that of the ON year. Phosphorus, sodium, and Cu concentrations in leaf were greater in the ON year than in the OFF year, but concentrations of Zn and potassium in leaf were lower in the ON year than they were in the OFF year. These results show that Zn and Cu applications can affect growth and yield of pistachio, especially when the plant is grown in calcareous soils. However, the alternate bearing pattern had a significant effect on vegetative growth and some leaf nutrient concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号