首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3429篇
  免费   226篇
林业   116篇
农学   80篇
基础科学   11篇
  433篇
综合类   626篇
农作物   79篇
水产渔业   169篇
畜牧兽医   1921篇
园艺   70篇
植物保护   150篇
  2023年   36篇
  2022年   29篇
  2021年   83篇
  2020年   80篇
  2019年   96篇
  2018年   80篇
  2017年   79篇
  2016年   59篇
  2015年   71篇
  2014年   93篇
  2013年   146篇
  2012年   177篇
  2011年   238篇
  2010年   106篇
  2009年   99篇
  2008年   168篇
  2007年   131篇
  2006年   158篇
  2005年   113篇
  2004年   124篇
  2003年   109篇
  2002年   75篇
  2001年   54篇
  2000年   68篇
  1999年   49篇
  1998年   21篇
  1997年   24篇
  1994年   36篇
  1993年   55篇
  1992年   51篇
  1991年   58篇
  1990年   58篇
  1989年   56篇
  1988年   48篇
  1987年   39篇
  1986年   54篇
  1985年   42篇
  1984年   29篇
  1983年   28篇
  1982年   21篇
  1981年   30篇
  1979年   39篇
  1978年   23篇
  1977年   20篇
  1975年   25篇
  1973年   27篇
  1972年   29篇
  1971年   37篇
  1970年   26篇
  1969年   30篇
排序方式: 共有3655条查询结果,搜索用时 15 毫秒
1.
There are few reliable data sets to inspire confidence in policymakers that soil organic carbon (SOC) can be measured on farms. We worked with farmers in the Tamar Valley region of southwest England to select sampling sites under similar conditions (soil type, aspect and slope) and management types. Topsoils (2–15 cm) were sampled in autumn 2015, and percentage soil organic matter (%SOM) was determined by loss on ignition and used to calculate %SOC. We also used the stability of macroaggregates in cold water (WSA) (‘soil slaking’) as a measure of ‘soil health’ and investigated its relationship with SOC in the clay‐rich soils. %SOM was significantly different between management types in the order woodland (11.1%) = permanent pasture (9.5%) > ley‐arable rotation (7.7%) = arable (7.3%). This related directly to SOC stocks that were larger in fields under permanent pasture and woodland compared with those under arable or ley‐arable rotation whether corrected for clay content (F = 8.500, p < .0001) or not (F = 8.516, p < .0001). WSA scores were strongly correlated with SOC content whether corrected for clay content (SOCadj R2 = .571, p < .0001) or not (SOCunadj R2 = 0.490, p = .002). Time since tillage controlled SOC stocks and WSA scores, accounting for 75.5% and 51.3% of the total variation, respectively. We conclude that (1) SOC can be reliably measured in farmed soils using accepted protocols and related to land management and (2) WSA scores can be rapidly measured in clay soils and related to SOC stocks and soil management.  相似文献   
2.
Volitional dispersal is a ubiquitous strategy characteristic of species across major faunal groups. Dispersal during the juvenile life stage is of interest because early performance can be critical for determining future success (survival/reproduction). For salmonids, dispersal can influence local density, competition, individual growth and survival, though drivers of dispersal at meso-scales are rarely quantified. Here, we evaluate dispersal of tagged juvenile steelhead (Oncorhynchus mykiss) through habitat units in extended stream reaches (500 m) at sites across a watershed from July to October 2017. Our aim was to quantify the frequency and spatial extent of dispersal, identify links to biotic and abiotic factors, evaluate the implications for individual growth and test for associations between dispersal and migration initiation. Dispersal rates varied between sites, but were consistently higher for age 1+ than for age 0 steelhead (avg. 21% vs. 6% respectively). Age 1+ dispersal probability was positively correlated with time between recapture events and body mass, and negatively correlated with growth rate, maximum temperature experienced and age 1+ density. At sites where there appeared to be growth benefits to remaining sedentary compared to moving, proportionally fewer fish performed dispersal. We found no links between dispersal and timing or probability of migration initiation the following spring. Our results support the hypothesis that although dispersal over intermediate scales (10–1,000 m) might be rare, it could be an important strategy that permits fish to seek out better opportunities (foraging, shelter or otherwise) in underutilised areas.  相似文献   
3.
A close relationship between adult abundance and stock productivity may not exist for many marine fish stocks, resulting in concern that the management goal of maximum sustainable yield is either inefficient or risky. Although reproductive success is tightly coupled with adult abundance and fecundity in many terrestrial animals, in exploited marine fish where and when fish spawn and consequent dispersal dynamics may have a greater impact. Here, we propose an eco‐evolutionary perspective, reproductive resilience, to understand connectivity and productivity in marine fish. Reproductive resilience is the capacity of a population to maintain the reproductive success needed to result in long‐term population stability despite disturbances. A stock's reproductive resilience is driven by the underlying traits in its spawner‐recruit system, selected for over evolutionary timescales, and the ecological context within which it is operating. Spawner‐recruit systems are species specific, have both density‐dependent and fitness feedback loops and are made up of fixed, behavioural and ecologically variable traits. They operate over multiple temporal, spatial and biological scales, with trait diversity affecting reproductive resilience at both the population and individual (i.e. portfolio) scales. Models of spawner‐recruit systems fall within three categories: (i) two‐dimensional models (i.e. spawner and recruit); (ii) process‐based biophysical dispersal models which integrate physical and environmental processes into understanding recruitment; and (iii) complex spatially explicit integrated life cycle models. We review these models and their underlying assumptions about reproductive success vs. our emerging mechanistic understanding. We conclude with practical guidelines for integrating reproductive resilience into assessments of population connectivity and stock productivity.  相似文献   
4.
5.
6.
Reconciling food security, economic development and biodiversity conservation is a key challenge, especially in the face of the demographic transition characterizing many countries in the world. Fisheries and marine ecosystems constitute a difficult application of this bio‐economic challenge. Many experts and scientists advocate an ecosystem approach to manage marine socio‐ecosystems for their sustainability and resilience. However, the ways by which to operationalize ecosystem‐based fisheries management (EBFM) remain poorly specified. We propose a specific methodological framework—viability modelling—to do so. We show how viability modelling can be applied using four contrasted case‐studies: two small‐scale fisheries in South America and Pacific and two larger‐scale fisheries in Europe and Australia. The four fisheries are analysed using the same modelling framework, structured around a set of common methods, indicators and scenarios. The calibrated models are dynamic, multispecies and multifleet and account for various sources of uncertainty. A multicriteria evaluation is used to assess the scenarios’ outcomes over a long time horizon with different constraints based on ecological, social and economic reference points. Results show to what extent the bio‐economic and ecosystem risks associated with the adoption of status quo strategies are relatively high and challenge the implementation of EBFM. In contrast, strategies called ecoviability or co‐viability strategies, that aim at satisfying the viability constraints, reduce significantly these ecological and economic risks and promote EBFM. The gains associated with those ecoviability strategies, however, decrease with the intensity of regulations imposed on these fisheries.  相似文献   
7.
Endenburg  Sarah  Mitchell  Greg W.  Kirby  Patrick  Fahrig  Lenore  Pasher  Jon  Wilson  Scott 《Landscape Ecology》2019,34(10):2385-2399
Landscape Ecology - Agricultural expansion is a principal driver of biodiversity loss, but the impacts on community assembly in agro-ecosystems are less clear, especially across regional scales at...  相似文献   
8.
Journal of Soils and Sediments - After the greatest environmental disaster in the history of Brazil and the deposition of the iron ore tailings in alluvial regions, the process of revegetation for...  相似文献   
9.
Landscape Ecology - It remains unclear how agricultural landscapes can best serve multiple purposes such as simultaneously maintaining agricultural productivity and conserving biodiversity. Our...  相似文献   
10.
Sustainability indices are proliferating, both to help synthesize scientific understanding and inform policy. However, it remains poorly understood how such indices are affected by underlying assumptions of the data and modelling approaches used to compute indicator values. Here, we focus on one such indicator, the fisheries goal within the Ocean Health Index (OHI), which evaluates the sustainable provision of food from wild fisheries. We quantify uncertainty in the fisheries goal status arising from the (a) approach for estimating missing data (i.e., fish stocks with no status) and (b) reliance on a data‐limited method (catch‐MSY) to estimate stock status (i.e., B/BMSY). We also compare several other models to estimate B/BMSY, including an ensemble approach, to determine whether alternative models might reduce uncertainty and bias. We find that the current OHI fisheries goal model results in overly optimistic fisheries goal statuses. Uncertainty and bias can be reduced by (a) using a mean (vs. median) gap‐filling approach to estimate missing stock scores and (b) estimating fisheries status using the central tendency from a simulated distribution of status scores generated by a bootstrap approach that incorporates error in B/BMSY. This multitiered approach to measure and describe uncertainty improves the transparency and interpretation of the indicator and allows us to better understand uncertainty around our OHI fisheries model and outputs for country‐level interpretation and use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号