首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
黄土高原旱地不同施肥对土壤肥力与产量的影响   总被引:11,自引:0,他引:11  
Long-term fertility experiments have become an important tool for investigating the sustainability of cropping systems. Therefore, a long-term (18-year) fertilization experiment was conducted in Changwu County, Shaanxi Province, China, to ascertain the effect of the long-term application of chemical fertilizers and manure on wheat yield and soil fertility in the Loess Plateau, so as to provide a scientific basis for sustainable land management. The experiment consisted of nine fertilizer treatments with three replicates arranged in a completely randomized design: 1) CK (no fertilizer); 2) N (N 120 kg ha-1); 3) P (P 26.2 kg ha-1); 4) NP (N 120, P 26.2 kg ha-1-2); 5) M (manure 75 t ha-1); 6) NM (N 120 kg ha-1, manure 75 t ha-1); 7) PM (P 26.2 kg ha-1, manure 75 t ha-1); 8) NPM (N 120 , P 26.2 kg ha-1, manure 75 t ha-1); and 9) fallow (no fertilizer, no crop). N fertilizer was applied in the form of urea and P was applied as calcium super phosphate. The results showed that precipitation had a large effect on the response of wheat yield to fertilization. Manure (M), NP, PM, NM, and NPM treatments significantly increased (P < 0.05) average yield. In the NP, PM, NM and NPM treatments, the percentage increases in yield due to fertilization were highest in normal years, and lowest in the drought years. Long-term P application enhanced soil available P markedly, and manure applications contributed more to soil fertility than chemical fertilizers alone. Chemical fertilizers applied together with manure distinctly improved soil fertility. The results also showed that the soil nutrient concentration changed mainly in the 0--60 cm layers and fertilization and planting only slightly affected soil nutrients below the 100 cm layers.  相似文献   

2.
长期施肥对盐渍化土壤肥力的影响   总被引:3,自引:0,他引:3  
The long-term effects of annual fertilizer applications on the fertility of salt-affected soils under the rotation system of wheat (Triticum aestivum L.) and maize (Zea mays L.) are not well documented. In 1984, research plots were established to test the effects of annual applications of different rates of nitrogen (N) and phosphorus (P) fertilizers on the fertility of a salt-affected soil (Typic Ustochrept) at the Quzhou Experimental Station, Quzhou County, Hebei Province, China. In October 2001, composite soil samples (0-20 and 20 40 cm) were collected from each plot and analyzed for soil fertility indices. Seventeen years of N and P fertilizer applications increased the soil organic matter (SOM) in the surface layer. With combined N, 270 (N1) and 540 (N2) kg N ha^-1 year^-1, and P, 67.5 (P1) and 135 (P2) kg P205 ha^-1 year^-1, fertilizer applications, total soil N mostly significantly decreased (P〈0.05). Soil total P in the 0-20 cm layer of the P2 treatment significantly (P (0.05) increased as compared to those of the other treatments. Rapidly available P (RP) in the 0-20 cm layer of the N1P2 treatment was significantly higher than those in the other treatments except the P2 treatment; and RP in the 0-20 cm layer of the P2 treatment significantly increased as compared to those of the other treatments except the P1 and N1P2 treatments. RP in the subsurface soil layer (20-40 cm) of the P2 treatment (4.2 mg P kg^-1) was significantly (P〈0.05) higher than those in the other treatments. Nevertheless, long-term N fertilization did not significantly increase the alkali-hydrolyzable N in the soil. However, in the salt-affected surface soils the application of combined N and P fertilizers over 17 years significantly (P〈0.05) decreased rapidly available potassium (K). The results suggested that while under long-term fertilizer applications some soil fertility parameters could be maintained or enhanced, careful monitoring of soil fertility was necessary as other nutrients such as K could become depleted.  相似文献   

3.
种植制度和施肥对半干旱区土壤中锰形态及有效性的影响   总被引:2,自引:0,他引:2  
Manganese(Mn) deficiencies are common in soils on the Loess Plateau of China. This research provided essential information on improving Mn availability in semiarid soils through agricultural practices. Twelve cropping system and fertilization treatments were designed in a 28-year experiment. The cropping systems included long-term fallow, continuous winter wheat cropping, pea(1 year)-winter wheat(2 years)-millet(1 year) rotation(crop-legume rotation) cropping, and continuous alfalfa cropping. The fertilizer treatments under the cropping systems included no-fertilizer control(CK), application of P fertilizer(P), application of N and P fertilizers(NP), and application of N and P fertilizers and manure(NPM), but the NP treatment was excluded in the continuous alfalfa cropping system. Available Mn and Mn fractions of soil samples(0–20 and 20–40 cm depths) were measured and further analyzed quantitatively using path analyses. Results showed that the crop-legume rotation and continuous alfalfa cropping systems significantly increased available Mn compared with the fallow soil. Compared with the no-fertilizer control, manure application increased available Mn in soil of the continuous wheat cropping system. Across all treatments, the averaged content of mineral-, oxide-, carbonateand organic matter-bound and exchangeable Mn accounted for 42.08%, 38.59%, 10.05%, 4.59%, and 0.09% of the total Mn in soil,respectively. Cropping significantly increased exchangeable Mn in soil and the highest increase was 185.7% in the continuous wheat cropping system at 0–20 cm depth, compared with the fallow soil. Fertilization generally increased exchangeable and carbonate-bound Mn in soil. Carbonate-bound Mn was the main and direct source of available Mn in soil, followed by exchangeable and organic matterbound Mn. These results indicated that crop-legume rotation cropping, continuous alfalfa cropping and application of manure, have the potential to promote Mn availability in soils of rainfed farmlands.  相似文献   

4.
Agronomic practices affect soil phosphorus(P) availability, P uptake by plants, and subsequently the efficiency of P use. A field experiment was carried out to investigate the effects of various agronomic practices(straw incorporation, paddy water management, nitrogen(N) fertilizer dose, manure application,and biochar addition) on soil P availability(e.g., soil total P(STP), soil available P(SAP), soil microbial biomass P(SMBP), and rice P uptake as well as P use efficiency(PUE)) over four cropping seasons in a rice-rice cropping system, in subtropical central China. Compared to the non-straw treatment(control,using full dose of chemical N fertilizer), straw incorporation increased SAP and SMBP by 9.3%–18.5% and 15.5%–35.4%, respectively;substituting half the chemical N fertilizer dose with pig manure and the biochar application increased STP, SAP, and SMBP by 10.5%–48.3%, 30.2%–236.0%, and 19.8%–72.4%,respectively, mainly owing to increased soil P and organic carbon inputs;adding a half dose of N and no N input(reduced N treatments) increased STP and SAP by 2.6%–7.5% and 19.8%–33.7%, respectively, due to decreased soil P outputs. Thus, soil P availability was greatly affected by soil P input and use. The continuous flooding water regime without straw addition significantly decreased SMBP by 11.4% compared to corresponding treatments under a mid-season drainage water regime. Total P uptake by rice grains and straws at the harvest stage increased under straw incorporation and under pig manure application, but decreased under the reduced N treatments and under biochar application at a rate of 48 t ha-1, compared to the control. Rice P uptake was significantly positively correlated with rice biomass, and both were positively correlated with N fertilizer application rates, SAP, SMBP, and STP. Phosphorus use efficiency generally increased under straw incorporation but decreased under the reduced N treatments and under the manure application(with excessive P input), compared to the control. These results showed that straw incorporation can be used to increase soil P availability and PUE while decreasing the use of chemical P fertilizers. When substituting chemical fertilizers with pig manure, excess P inputs should be avoided in order to reduce P accumulation in the soil as well as the environmental risks from non-point source pollution.  相似文献   

5.
The effects of fertilization on the distributions of organic carbon (OC) and nitrogen (N) in soil aggregates and whether these effects vary with cropping system have not been well addressed.Such information is important for understanding the sequestration of OC and N in agricultural soils.In this study,the distributions of OC and N associated with soil aggregates were analyzed in different fertilization treatments in a continuous winter wheat cropping system and a legume-grain rotation system in a 27-year field experiment,to understand the effects of long-term fertilization on the distributions of OC and N in aggregates and to examine the recovery of soil OC and N in a highland agroecosystem.Manure fertilizer significantly decreased soil bulk density but increased the amount of coarse fractions and their associated OC and N stocks in the soils of both systems.Fertilizers N + phosphorus (P) and manure had similar effects on total soil OC and N stocks in both systems,but had larger effects on the OC and N stocks in > 2 mm aggregates in the legume-grain rotation system than in the continuous winter wheat system.The application of P increased the OC and N stocks in > 2 mm aggregates and decreased the loss of N from chemical fertilizers in the legume-grain rotation system.The results from this study suggested that P fertilizer should be applied for legume-included cropping systems and that manure with or without chemical fertilizers should be applied for semiarid cropping systems in order to enhance OC and N accumulation in soils.  相似文献   

6.
小麦生长期间施肥后土壤微生物生物量C和P的变化   总被引:1,自引:0,他引:1  
A pot experiment was carried out with a clay loam in a green house.The results showed that soil microbial biomass C increased with the application of organic manure at the beginning of the experiment and then gradually decreased with declining of the temperature .The soil biomass C increased at the tillering stage when the temperature gradually increased,and rose to the highest value at the anthesis stage,being about 554.9-794.4mg C kg^-1,The applicatio of organic manure resulted in the highest increase in biomass C among the fertiliztion treatments while that of ammonium sulphate gave the lowest At the harvest time the soil biomass C decreased to the presowing level. Like the soil biomass C the amount of biomass P was increased by the incorporation of organic manure and was the highest among the treatments,with the values of the check and ammonium sulphate treatments being the lowest ,Meanwhile,the changing patterns of the C/P ratio of soil microbial biomass at stages of wheat growth are also described.  相似文献   

7.
The effects of fertilization on activity and composition of soil microbial community depend on nutrient and water availability;however,the combination of these factors on the response of microorganisms was seldom studied.This study investigated the responses of soil microbial community and enzyme activities to changes in moisture along a gradient of soil fertility formed within a long-term(24 years)field experiment.Soils(0–20 cm)were sampled from the plots under four fertilizer treatments:i)unfertilized control(CK),ii)organic manure(M),iii)nitrogen,phosphorus,and potassium fertilizers(NPK),and iv)NPK plus M(NPK+M).The soils were incubated at three moisture levels:constant submergence,five submerging-draining cycles(S-D cycles),and constant moisture content at 40%water-holding capacity(low moisture).Compared with CK,fertilization increased soil organic carbon(SOC) by 30.1%–36.3%,total N by 27.3%–38.4%,available N by 35.9%–56.4%,available P by 61.4%–440.9%,and total P by 28.6%–102.9%.Soil fertility buffered the negative effects of moisture on enzyme activities and microbial community composition.Enzyme activities decreased in response to submergence and S-D cycles versus low moisture.Compared with low moisture,S-D cycles increased total phospholipid fatty acids(PLFAs)and actinomycete,fungal,and bacterial PLFAs.The increased level of PLFAs in the unfertilized soil after five S-D cycles was greater than that in the fertilized soil.Variations in soil microbial properties responding to moisture separated CK from the long-term fertilization treatments.The coefficients of variation of microbial properties were negatively correlated with SOC,total P,and available N.Soils with higher fertility maintained the original microbial properties more stable in response to changes in moisture compared to low-fertility soil.  相似文献   

8.
A long-term experiment set up in 1980 compared the effects of applying manures and chemical fertilizers on a paddy soil in the Taihu Lake region,China.Of the fourteen randomly distributed treatments consisting of different combinations of organic manure,inorganic nitrogen (N),phosphorus (P),and potassium (K),and rice straw,eight were selected for the present study in 2007.Application of organic manure plus straw significantly increased soil organic carbon (SOC) content of the topsoil (0-10 cm) compared to that of chemical fertilizers alone.The content of SOC was relatively stable in the 10-30 cm layer in the chemical fertilizer treatments and in the 20-40 cm layer in the manure treatments.The stable carbon isotope ratio (δ 13 C) ranged from 24‰ to 28‰ and increased gradually with depth.The content of SOC was significantly (P < 0.05) negatively correlated with δ 13 C.In the 0-20 cm layer,the δ 13 C value significantly decreased in the treatments of manure alone (M),manure and chemical N and P fertilizers (MNP),manure and chemical N,P,and K fertilizers (MNPK),manure,rice straw,and chemical N fertilizer (MRN),and chemical N fertilizer and rice straw (CNR),as compared with the no-fertilizer control.In the 30-50 cm layer,however,the ratio significantly increased in all the treatments except Treatment CNR.Mineralization of organic C peaked in the first 2-4 d of incubation and gradually leveled off thereafter over the first 3 weeks,being faster in the manure treatments than the chemical fertilizer treatments.The average rate of mineralization varied from 55.36 to 75.46 mL CO 2 kg-1 d-1 and that of stable mineralization from 10 to 20 mL CO 2 kg-1 d-1.In eight weeks of incubation,cumulative mineralization was always higher in the manure treatments than the chemical fertilizer treatments,being the highest in Treatment MRN.Combined humus in the soil was mainly (over 50%) composed of tightly combined fraction.The loosely combined humus and its ratio of humic acid (HA) to fulvic acid (FA) significantly increased with long-term application of organic manure and chemical fertilizers.It could be concluded that the cycle of organic C in the paddy soil ecosystem studied was stable over the long-term application of fertilizers and continued cultivation.  相似文献   

9.
重金属和有机污染物在修饰土中的吸附   总被引:13,自引:0,他引:13  
Sorption characteristics of both an organic pollutant (phenol) and a heavy metal (cadmium ion) on the clay layer of a Lou soil (Eum-orthic Anthrosol in Chinese Soil Taxonomy) along with the sorption mechanism were investigated using three soil treatments: modification with a cationic surfactant cetyltrimethylammonium bromide added at an amount equivalent to 50% and 100% of the soil CEC (50? and 100?), modification with an amphoteric surface-modifying agent dodecyldimethylbetaine (commercially known as BS-12) added at an amount equivalent to 50% and 100% of the soil CEC (50% BS and 100%BS), and an unmodified control (CK). Results showed that the BS soil treatments increased sorption of both the heavy metal Cd^2+ and the organic pollutant phenol. The equilibrium sorption amount of Cd^2+ decreased in the order: 50%BS 〉 100%BS 〉 CK 〉 50? 〉 100?, with the BS soil treatments being about 1.3 to 1.8 times higher and the CB soil treatments about 23% to 41% lower than CK. Both the single-site and two-site Langmuir models could be applied to describe the sorption of Cd^2+ in each soil treatment. The equilibrium sorption amount of phenol on the soil samples decreased in the order: 100? 〉 50? 〉 100%BS 〉 50%BS 〉 CK, with the CB soil treatments being 41.0 to 79.6 times higher and the BS soil treatments 4.0 to 8.3 times higher than CK. The Freundlich equation could also be used to describe the sorption characteristics of phenol. In the BS soil treatments, both an organophobic long carbon chain and hydrophilic charged groups resulted in a relatively strong sorption ability for both heavy metals and organic pollutants. In addition, the sorption ratio K, the ratio of phenol sorption amount of the modified soil to that of CK, increased initially and decreased later with the amount of phenol added, and the critical sorption ratio Kc, the peak value of the sorption ratio curve plotted against the added phenol concentration, was a good index for evaluating the sorption ability of phenol in the soil.  相似文献   

10.
长期施肥对中国亚热带水稻土土壤稳定性和机械属性的影响   总被引:12,自引:0,他引:12  
LI Jiang-Tao  ZHANG Bin 《土壤圈》2007,17(5):568-579
Wet stability, penetration resistance (PR), and tensile strength (TS) of paddy soils under a fertilization experiment for 22 years were determined to elucidate the function of soil organic matter in paddy soil stabilization. The treatments included no fertilization (CK), normal chemical fertilization (NPK), double the NPK application rates (2NPK), and NPK mixed with organic manure (NPK+OM). Compared with CK, Fertilization increased soil organic carbon (SOC) and soil porosity. The results of soil aggregate fragmentation degree (SAFD) showed that fast wetting by water was the key fragmentation mechanism. Among the treatments, the NPK+OM treatment had the largest size of water-stable aggregates and greatest normal mean weight diameter (NMWD) (P ≤ 0.05), but the lowest PR and TS in both cultivated horizon (Ap) and plow pan. The CK and 2NPK treatments were measured with PR 〉 2.0 MPa and friability index 〈 0.20, respectively, in the Ap horizon, suggesting that the soils was mechanically unfavourable to root growth and tillage. In the plow pan, the fertilization treatments had greater TS and PR than in CK. TS and PR of the tested soil aggregates were negatively correlated to SOC content and soil porosity. This study suggested that chemical fertilization could cause deterioration of mechanical properties while application of organic manure could improve soil stability and mechanical properties.  相似文献   

11.
在黄土旱塬区长期试验(1985-1997年)中,选取对照(不施肥,CK)、磷肥(P2O5.60.kg/hm2,P)、氮肥(N.120kg/hm2,N)、氮磷(N,120.kg/hm2,P2O5,60.kg/hm2,NP)、氮磷有机肥(N.120.kg/hm2,P2O560.kg/hm2,有机肥75.t/hm2,NPM),种植方式为冬小麦连作的5种有代表性的施肥处理,研究了石灰性土壤磷素吸附特性的演变及其与土壤磷素形态、土壤有机碳(SOC)含量的关系。结果表明,P素的最大吸附量(Qm),1997年对照(CK)、N处理比1985年分别提高了18%和14%;而P、NP和NPM处理分别降低了26%、13%和24%。吸附能常数(k值)随时间延长,对照和N处理相对稳定,P和NP处理呈升高趋势,而NPM处理有降低趋势。土壤磷素吸附饱和度(DPS)和零净吸附磷浓度(EPC0)对照和N处理随时间延长呈降低趋势,P、NP和NPM处理呈升高趋势。Qm与Ca8-P、Al-P存在极显著相关关系(P0.001),与Ca2-P、Pe-P存在显著相关关系(P0.05)。Ca2-P、有机磷含量变化与土壤DPS的相关性达到显著水平(P0.05)。EPC0只与有机磷间存在显著的相关关系(P0.05)。Qm、DPS和EPC0变化与SOC存在显著或极显著的线性相关关系(P0.001)。  相似文献   

12.
长期轮作与施肥对农田土壤磷素形态和吸持特性的影响   总被引:10,自引:0,他引:10  
通过对黄土旱塬地区长期定位施肥(26a)条件下的不同轮作系统的土壤磷素形态和吸持参数的测定,研究了轮作和施肥对土壤磷素吸持特性和磷素形态的影响,以及土壤磷素吸持参数与磷素形态之间的关系。结果表明,长期轮作与施肥都可以减低土壤磷素的最大吸附量(Qm),相对于其它轮作和连作,在氮磷(NP)施肥下,小麦-玉米-豌豆轮作可以减低土壤的Qm,在氮磷有机肥(NPM)施肥下,小麦-玉米轮作可以减低土壤的Qm。在施肥相同的条件下,小麦-玉米轮作和小麦-豌豆轮作可以显著增加土壤中各形态无机磷的含量,长期轮作比连作可以增加土壤中的有效磷养分,尤其对Ca2-P的提高效果更为显著。相关分析表明,Qm和磷吸持指数(PSI)与全磷(T-P)、Olsen-P、CaCl2-P、Ca2-P、Ca8-P、Fe-P、Ca10-P和有机磷呈极显著负相关(p<0.01),与闭蓄态磷(O-P)呈显著负相关(p<0.05),与Al-P关系不显著。土壤有机质(SOM)与Qm、PSI和磷最大缓冲能力(MBC)之间存在极显著负相关关系,与磷吸持饱和度(DPSS)存在显著正相关。通径系数和逐步回归分析表明,在石灰性黑垆土土壤的无机磷形态中,Ca2-P对Olsen-P的贡献最大。  相似文献   

13.
不同土地利用下黑土磷素肥力特征的研究   总被引:4,自引:0,他引:4  
宋春  韩晓增 《土壤通报》2007,38(5):928-933
通过对海伦农田生态系统国家野外科学观测研究站内3种土地利用下共5个处理(裸地、草地、无肥耕地、施化肥耕地、施化肥和有机肥耕地)的典型黑土中的磷素进行了测定,结果表明经过20年长期定位试验后,3种土地利用方式下的土壤中草地全磷含量比裸地高17.5%,速效磷含量比裸地高22.9%;无肥耕地土壤全磷含量比裸地高7.9%,速效磷含量比裸地高80.1%。施化肥耕地全磷含量比无肥耕地高17.1%,速效磷含量是无肥耕地的3.3倍;施化肥和有机肥耕地全磷含量比施化肥耕地高46.3%,速效磷含量是施化肥耕地的3.3倍。土壤无机磷分级结果表明,不同土地利用下土壤中Ca2-P、Ca8-P、Al-P、Fe-P含量差异显著,而O-P、Ca10-P含量无明显变化,其中Ca2-P、Ca8-P、Al-P、Fe-P的含量,草地与裸地相比分别提高了30%、38%、17%、6.2%;无肥耕地与裸地相比提高了110%、75%、7.7%、-25%,与草地相比提高了62%、27%、-7.8%、-29%。施化肥耕地与无肥耕地相比,土壤中Ca2-P、Ca8-P、Al-P、Fe-P的含量分别提高了13%、153%、124%、92%;施化肥和有机肥耕地与施化肥耕地相比分别提高了341%、357%、136%、69%。对土壤磷的吸附性能测定结果表明,3种土地利用下土壤对磷的吸附能力为:无肥耕地>草地>裸地;耕地的3个处理中施化肥和有机肥可明显提高土壤对磷的吸附能力。  相似文献   

14.
The phosphorus (P) forms in long-term fertilization determine the fate and transport of P in soil. However, the fate of various pools of organic P of added P in the long-term measured with sequential chemical fractionation is not well-understood. Four soil physical aggregates (>250, 125–250, 63–125 and <63 μm) from 0- to 20-cm depth after 35 years of long-term fertilization treatments including control (CK), nitrogen and phosphorus fertilizer (NP) and NP combined with farmyard manure (NPM) under continuous winter wheat were separated using settling tube apparatus. Results showed that the application of long-term P fertilization had no apparent effects on promoting the mass proportion of soil aggregates except for >250 μm, where the NP and NPM treatments significantly increased the mass proportion by 60% and 70% over CK, respectively. Compared with CK, P fertilizer (NP and NPM) treatments significantly increased organic P (Po) contents in each size aggregate. In particular, mean labile Po increased by 35% and 246%, moderately labile Po by 125% and 161%, nonlabile Po by 105% and 170% and total Po (TPo) by 101% and 178%, respectively, under NP and NPM treatments, respectively. There was a significant correlation between soil organic carbon (SOC) and Po fractions. SOC was exponentially positively correlated with labile Po but linearly positively correlated with moderately labile Po, nonlabile Po and TPo fractions among soil aggregates. A reduced C:Po ratio (<100) in soil aggregates among treatment indicates a large amount of available P accumulated in soils, and soil P loss risk in the study site is still high. Our results show that the Po pool measured by sequential chemical fractionation may represent an important, yet often overlooked, source of P in agriculture ecosystems. According to the result, long-term mineral P fertilizer combined with organic amendments better sustains soil structural stability in large aggregates, contributing more Po availability in the moderately labile P followed by labile P in soil aggregates.  相似文献   

15.
长期不同施肥红壤磷素特征和流失风险研究   总被引:13,自引:2,他引:11  
为探索长期施肥对红壤磷素吸附固持的影响,分析不同施肥土壤磷流失风险及影响因素。在南方丘陵区红壤上开展了持续25年的长期定位试验,处理包括:不施肥(CK)、施氮肥(N)、施磷肥(P)、施钾肥(K)、施氮磷钾肥(NPK1)、施2倍量氮磷钾肥(NPK2)、单施有机肥(OM)和氮磷钾配施有机肥(MNPK)。研究了不同施肥下土壤全磷、Olsen-P、Mehlich1-P、CaCl2-P含量及磷吸持指数(PSI)、磷饱和度(DPS)的变化,探讨不同施肥处理土壤对磷的吸附和解吸特征,并分析了土壤磷指标与土壤有机碳、pH、CEC之间的关系。结果表明:长期施用化学磷肥有利于补充土壤磷素,特别是土壤全磷,并使Olesn-P和Mehlich 1-P有增加趋势,而对CaCl2-P影响不显著;施用化肥对DPS影响不显著,单施磷会降低PSI,低量氮磷钾提高了PSI,高量氮磷钾处理与对照差异不显著;长期施用有机肥(猪粪)土壤全磷增加,而Olsen-P、Mehlich 1-P和CaCl2-P则大幅累积, PSI显著降低, DPS显著增加。长期施用化肥处理土壤对新添加磷的吸附较强,长期施用有机肥降低了土壤对新添加磷的吸附;土壤全磷、Olsen-P、Mehlich1-P、CaCl2-P、PSI、DPS及最大吸附容量(Qm)与土壤pH、CEC、土壤总有机碳(TSOC)、土壤水溶性有机碳[冷水提取水溶性有机碳(CWSOC)和热水提取水溶性有机碳(HWSOC)]间相关性较高;土壤磷指标和土壤有机碳、pH、CEC指标之间存在典型相关关系,第1对和第2对典型变量的典型相关系数分别为0.997和0.951,达显著水平。研究表明,施用有机肥是调节土壤磷的供给和保持的重要措施,土壤水溶性有机碳和pH可能是反映红壤磷素供应和流失的关键指标。  相似文献   

16.
长期施肥对黑土磷素积累、形态转化及其有效性影响的研究   总被引:30,自引:8,他引:30  
1980年开始,在小麦大豆玉米轮作制中,研究长期定位施用常量的氮、磷、钾(小麦、玉米施肥量为N150、P2O575、K2O75kg/hm2;大豆为N75、P2O5150、K2O75kg/hm2)和有机肥(马粪,折N75kg/hm2,只在玉米后茬上施用),以及二倍和四倍量对土壤磷素积累、形态变化及磷肥后效的影响。23年研究结果表明,长期不施肥,黑土土壤全磷下降37.4%、速效磷下降了60%;施用磷肥土壤全磷增加53.9%~65.7%、速效磷增加6~15倍。积累的磷素大部分以有效性较高的Ca2-P、Ca8-P、Al-P形态积累在土壤中,施用磷肥可使Ca2-P增加4~15倍,Ca8-P增加4~16倍,Al-P增加1.6~11.8倍,Fe-P增加1.4~4.4倍,O-P增加0.6~1.7倍,Ca10-P增加0.3~0.7倍。所积累在土壤中的磷素具有生物有效性。  相似文献   

17.
长期施肥对黑土农田土壤微生物群落的影响   总被引:21,自引:1,他引:20  
魏巍  许艳丽  朱琳  韩晓增  Li S 《土壤学报》2013,50(2):372-380
基于中国科学院海伦农业生态试验站长期定位试验区,应用实时荧光定量PCR(Real-time PCR)和变性梯度凝胶电泳(DGGE)技术研究了无施肥(NF)、单施N、P化肥(NP)以及化肥配施有机猪粪肥(NPM)等3种长期施肥措施对黑土区玉米田土壤微生物群落密度和结构的影响.Real-time PCR方法定量NF、NP及NPM措施土壤细菌群落基因组DNA质量分别为381、1 351和1 773 ng g-1干土,真菌群落基因组DNA质量分别113.3、127.3和20.6 ng g-1干土,真菌与细菌的比率分别为0.31、0.09和0.01,NPM措施显著低于另两种施肥方式(p<0.05).DGGE方法研究表明,NP和NPM措施不能改善土壤细菌和真菌群落的多样性、均匀性及优势菌优势程度;但主成分分析结果显示NP和NPM措施均可改变土壤细菌和真菌群落的构成,且真菌群落的变化更为显著;聚类分析结果显示NP和NPM措施下细菌群落结构较相近,其相似系数为0.89,真菌群落中NP措施与NF措施相近,相似系数为0.63,高于NP与NPM措施的相似系数0.51.上述结果表明有机猪粪肥的长期施用可以显著降低黑土农田土壤真菌与细菌的比率,且明显地改变土壤细菌和真菌群落的结构.  相似文献   

18.
长期不同施肥对红壤性水稻土磷素及水稻磷营养的影响   总被引:2,自引:0,他引:2  
【目的】合理的土壤磷素管理对作物生产和环境保护具有重要意义。南方双季稻田土壤磷素特征及磷素吸收信息相对缺乏,本文利用江西省稻田土壤质量演变定位监测试验为平台,系统分析长期不同施肥措施下土壤全磷、磷活化系数及水稻磷素吸收量的变化特征和全磷与磷盈亏的响应关系等,为指导磷肥合理施用提供重要科学依据。【方法】从1984年开始在江西省南昌市进行长期定位试验,设置8个处理,分别为不施肥对照(CK),PK、NP、NK、NPK、70%化肥氮+30%有机肥氮(70F+30M)、50%化肥氮+50%有机肥氮(50F+50M)、30%化肥氮+70%有机肥氮(30F+70M)。早稻施用纯N、P2O5和K2O量分别为150、60和150 kg/hm^2,晚稻分别为180、60和150 kg/hm^2。早、晚稻施用的氮、磷、钾化肥均分别为尿素、过磷酸钙和氯化钾,有机肥分别为紫云英(N、P2O5、K2O含量分别为0.30%、0.08%、0.23%)和腐熟猪粪(N、P2O5、K2O含量分别为0.45%、0.19%、0.60%)。除30F+70M处理,其余处理均为等氮磷钾设计。于1984-2012年每年早、晚稻收获期采集秸秆和稻谷计产,并于晚稻收获后,测定土壤全磷和有效磷含量。分析土壤全磷、磷活化系数(PAC)及早、晚稻磷素吸收量随种植年限的变化规律,研究土壤全磷含量与磷累积盈亏的响应关系。【结果】经29年连续试验,NK处理土壤全磷含量以每年4.6 mg/kg的速度下降,而含磷化肥处理土壤全磷含量升高速率为3.3~19.4 mg/(kg·a)。有机无机配施处理(70F+30M、50F+50M和30F+70M)升高速率平均为16.1 mg/(kg·a),是施NPK肥处理的4.89倍。施磷土壤全磷含量平均增至1.07 g/kg (2010-2012平均值),较初始值提高了1.18倍。不施磷肥处理土壤磷活化系数(PCA)由试验初始的4.24%下降至2.5%左右,施磷肥处理则均显著升高,其中有机无机配施处理平均升高至8.51%,平均年升高速率是施NPK处理的2.89倍。早、晚稻磷素吸收量,施磷肥(PK、NP和NPK)和化肥配施有机肥处理(70F+30M、50F+50M和30F+70M)均显著高于CK,提高幅度分别为29.9%~124%和28.6%~103%,均衡施肥(NPK、70F+30M、50F+50M和30F+70M)磷素吸收量显著高于不均衡施肥(PK和NP)处理,前者平均分别较后两者提高了38.7%和32.9%。早、晚稻产量与磷素吸收量呈极显著线性正相关关系,每吸收磷(P) 1 kg,早稻和晚稻产量分别可提高115和106 kg/hm^2。不施肥(CK)条件下,土壤全磷变化与累积磷盈亏间无显著相关关系,施NK肥处理土壤中每亏缺磷100 kg/hm^2,土壤全磷含量降低6.0 mg/kg,施化学磷肥的3个处理,土壤中每盈余磷100 kg/hm^2,平均提高9.3 mg/kg,而3个有机–无机配施处理,土壤中每盈余磷100 kg/hm^2,平均增加63.3 mg/kg,是无机磷肥的6.78倍。【结论】无论是单施化学磷肥,还是有机无机配施均有效提高土壤全磷含量及磷活化系数,且在等磷量投入条件下,有机无机配施较单施化肥的效果更优。建议减少中国南部红壤性稻田土壤的总磷输入量和提高有机肥施用比例,以改善粮食生产和保护环境。  相似文献   

19.
长期施肥措施下土壤有机碳矿化特征研究   总被引:10,自引:2,他引:8  
研究长期不同施肥措施下旱作农田土壤有机碳的矿化特征及其温度敏感性可为加深理解土壤碳循环过程提供理论依据。本文以半干旱黄土区粮-豆轮作体系为研究对象,通过两种不同温度(15℃和25℃)的室内培养试验,分析了长期不同施肥措施下土壤有机碳矿化的动力学特征及其温度敏感性。研究结果表明,土壤有机碳矿化速率在培养初期较高,之后缓慢下降。施肥措施和培养温度对土壤有机碳矿化均具有显著影响。与不施肥对照(CK)相比,在15℃培养条件下,长期单施磷肥(P)、氮磷配施(NP)和氮磷有机肥配施(NPM)处理的土壤有机碳累积矿化量(C_(min))分别增加41%、85%和89%,在25℃培养条件下,分别增加7%、46%和77%。另外,与CK处理相比,P、NP和NPM处理土壤有机碳矿化的温度敏感性(Q_(10))分别降低25%、21%和6%。施肥改变了土壤有机碳矿化的动力学参数,其改变程度与施肥种类和培养温度有关。与CK处理相比,在15℃培养条件下,P、NP和NPM处理的土壤潜在矿化有机碳量(C_p)分别增加29%、65%和48%;在25℃培养条件下,NP和NPM处理的C_p分别增加2%和21%,而P处理则减少36%。不同施肥处理土壤有机碳矿化速率常数(k)在15℃培养条件下变化较小,在25℃培养条件下则有较大幅度的增加。在25℃培养条件下,C_(min)和Cp随土壤有机碳和全氮含量的增加而显著增加。可见,长期施肥显著促进了半干旱黄土区粮-豆轮作体系土壤有机碳的矿化,减弱了土壤有机碳矿化的温度敏感性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号