首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Sunflower protein isolates and the proteases pepsin and pancreatin were used for the production of protein hydrolysates that inhibit angiotensin-I converting enzyme (ACE). Hydrolysates obtained after 3 h of incubation with pepsin and 3 h with pancreatin were studied. An ACE inhibitory peptide with the sequence Phe-Val-Asn-Pro-Gln-Ala-Gly-Ser was obtained by G-50 gel filtration chromatography and high-performance liquid chromatography C18 reverse phase chromatography. This peptide corresponds to a fragment of helianthinin, the 11S globulin from sunflower seeds, which is the main storage protein in sunflower. These results show that sunflower seed proteins are a potential source of ACE inhibitory peptides when hydrolyzed with pepsin and pancreatin.  相似文献   

2.
Alaska pollack frame protein, which is normally discarded as an industrial byproduct in the processing of fish in plants, was hydrolyzed with pepsin. This was fractionated into five major types of Alaska pollack frame protein hydrolysates (APH-I, 10-30 kDa; APH-II, 5-10 kDa; APH-III, 3-5 kDa; APH-IV, 1-3 kDa; and APH-V, below 1 kDa) using an ultrafiltration membrane bioreactor system. Angiotensin I converting enzyme (ACE) inhibitory activities of the fractionated hydrolysates were investigated, and the fraction that exhibited the highest ACE inhibitory activity was further purified using consecutive chromatographic methods on SP-Sephadex C-25 column, Sephadex G-25 column, and high-performance liquid chromatography (HPLC) on an octadecylsilane column. Finally, we purified a novel ACE inhibitory peptide with an IC50 value of 14.7 microM, and the sequence of the peptide was Phe-Gly-Ala-Ser-Thr-Arg-Gly-Ala. In addition, the ACE inhibition pattern of the peptide was found to be noncompetitive.  相似文献   

3.
Angiotensin I converting enzyme (ACE) inhibitory activity was determined in the soy protein isolate (SPI) digest produced by in vitro pepsin-pancreatin sequential digestion. The inhibitory activity was highest within the first 20 min of pepsin digestion and decreased upon subsequent digestion with pancreatin. An IC(50) value of 0.28 +/- 0.04 mg/mL was determined after 180 min of digestion, while no ACE inhibitory activity was measured for the undigested SPI at 0.73 mg/mL. Chromatographic fractionation of the SPI digest resulted in IC(50) values of active fractions ranging from 0.13 +/- 0.03 to 0.93 +/- 0.08 mg/mL. Although many of the fractions showed ACE inhibition, peptides with lower molecular masses and higher hydrophobicities were most active. The findings show that many different peptides with ACE inhibitory activities were produced after in vitro pepsin-pancreatin digestion of SPI and lead to the speculation that physiological gastrointestinal digestion could also yield ACE inhibitory peptides from SPI.  相似文献   

4.
Dioscorin, the tuber storage protein of yam (Dioscorea alata cv. Tainong No. 1), was purified to homogeneity by DE-52 ion-exchange chromatography. This purified dioscorin was shown by spectrophotometric methods to inhibit angiotensin converting enzyme (ACE) in a dose-dependent manner (12.5-750 microg, respectively, 20.83-62.5% inhibitions) using N-[3-(2-furyl)acryloyl]-Phe-Gly-Gly (FAPGG) as substrates. The 50% inhibition (IC(50)) of ACE activity was 6.404 microM dioscorin (250 microg corresponding to 7.81 nmol) compared to that of 0.00781 microM (0.0095 nmol) for captopril. The commercial bovine serum albumin and casein (bovine milk) showed less ACE inhibitory activity. The use of qualitative TLC also showed dioscorin as ACE inhibitors. Dioscorin showed mixed noncompetitive inhibitions against ACE; when 31.25 microg of dioscorin (0.8 microM) was added, the apparent inhibition constant (K(i)) was 2.738 microM. Pepsin was used for dioscorin hydrolysis at 37 degrees C for different times. It was found that the ACE inhibitory activity was increased from 51.32% to about 75% during 32 h hydrolysis. The smaller peptides were increased with increasing pepsin hydrolytic times. Dioscorin and its hydrolysates might be a potential for hypertension control when people consume yam tuber.  相似文献   

5.
Bovine skin gelatin was hydrolyzed with sequential protease treatments in the order of Alcalase, Pronase E, and collagenase using a three-step ultrafiltration membrane reactor. The molecular weight distributions of the first, second, and third hydrolysates were 4.8-6.6, 3.4-6.6, and 0.9-1.9 kDa, respectively. The angiotensin I converting enzyme (ACE) inhibitory activity of the third hydrolysate (IC(50) = 0.689 mg/mL) was higher than that of the first and second hydrolysates. Two different peptides showing strong ACE inhibitory activity were isolated from the hydrolysate using consecutive chromatographic methods including gel filtration chromatography, ion-exchange chromatography, and reversed-phase high-performance liquid chromatography. The isolated peptides were composed of Gly-Pro-Leu and Gly-Pro-Val and showed IC(50) values of 2.55 and 4.67 microM, respectively.  相似文献   

6.
A series of peptides, derived from an ACE inhibitory peptide (VTVNPYKWLP) found in our previous work, were synthesized. Their half maximal inhibition concentrations (IC(50)) for ACE inhibition have been determined. The effect of amino acid sequence on ACE inhibition was discussed on the basis of IC(50) of the synthetic peptides, and the following characteristics of the ACE inhibitory peptide have been clarified. First, the active portion of this peptide for ACE inhibition is KW. Second, the amino acid sequences near this dipeptide (KW) have a strong effect on the inhibitory activity. Especially, the proline residue in the C-terminal end strongly enhanced ACE inhibition. It should be noted that the IC(50) value of KWLP (5.5 μM) is the same as the ACE inhibitory peptide (VTVNPYKWLP) and that the IC(50) value of KW is 7.8 μM. The stability and absorption efficiency in vivo would be significantly improved by shortening the peptide length from 10 amino acids to four amino acids or two amino acids.  相似文献   

7.
A lung extract rich in angiotensin converting enzyme (ACE) and pure ACE were immobilized by reaction with the activated support 4 BCL glyoxyl-agarose. These immobilized ACE derivatives were used for purification of ACE inhibitory peptides by affinity chromatography. The immobilized lung extract was used to purify inhibitory peptides from sunflower and rapeseed protein hydrolysates that had been obtained by treatment of protein isolates with alcalase. The ACE binding peptides that were retained by the derivatives were specifically released by treatment with the ACE inhibitor captopril and further purified by reverse-phase C18 HPLC chromatography. Inhibitory peptides with IC50 50 and 150 times lower than those of the original sunflower and rapeseed hydrolysates, respectively, were obtained. The derivative prepared using pure ACE was used for purification of ACE inhibitory peptides from the same type of sunflower protein hydrolysate. ACE binding peptides were released from the ACE-agarose derivatives by treatment with 1 M NaCl and had an IC50 a little higher than those obtained using immobilized extract and elution with captopril. Affinity chromatography facilitated the purification of ACE inhibitory peptides and potentially other bioactive peptides present in food proteins.  相似文献   

8.
Angiotensin I-converting enzyme (ACE), a dipeptidyl carboxypeptidase, catalyzes the conversion of Angiotensin I to the potent vasoconstrictor Angiotensin II and plays an important physiological role in regulating blood pressure. Inhibitors of angiotensin 1-converting enzyme derived from food proteins are utilized for pharmaceuticals and physiologically functional foods. ACE inhibitory properties of different enzymatic hydrolysates of glycinin, the major storage protein of soybean, have been demonstrated. The IC50 value for the different enzyme digests ranges from 4.5 to 35 microg of N2. The Protease P hydrolysate contained the most potent suite of ACE inhibitory peptides. The ACE inhibitory activity of the Protease P hydrolysate after fractionation by RP-HPLC and ion-pair chromatography was ascribed to a single peptide. The peptide was homogeneous as evidenced by MALDI-TOF and identified to be a pentapeptide. The sequence was Val-Leu-Ile-Val-Pro. This peptide was synthesized using solid-phase FMOC chemistry. The IC50 for ACE inhibition was 1.69 +/- 0.17 microM. The synthetic peptide was a potent competitive inhibitor of ACE with a Ki of 4.5 +/- 0.25 x 10(-6) M. This peptide was resistant to digestion by proteases of the gastrointestinal tract. The antihypertensive property of this peptide derived from glycinin might find importance in the development of therapeutic functional foods.  相似文献   

9.
Angiotensin I converting enzyme (ACE) inhibitory peptide was isolated from tuna dark muscle hydrolysate prepared by alcalase, neutrase, pepsin, papain, alpha-chymotrypsin, and trypsin, respectively. Among hydrolysates, the pepsin-derived hydrolysate exhibited the highest ACE I inhibitory activity versus those of other enzyme hydrolysates. The structure of the peptide was identified to be Trp-Pro-Glu-Ala-Ala-Glu-Leu-Met-Met-Glu-Val-Asp-Pro (molecular weight 1581 Da) by time of flight mass spectrometry/mass spectrometry analysis, and the IC 50 value of the peptide was 21.6 microM. The Lineweaver-Burk plots revealed that the peptide acts as a noncompetitive inhibitor, and the inhibitor constant ( K i) was calculated as 26.6 microM using the secondary plots. The peptide had an antihypertensive effect according to the time-course measurement after oral administration to spontaneously hypertensive rats. Maximal reduction was detected 3 h after oral administration at a dose of 10 mg/kg of body weight. These results suggest that the peptide derived from tuna dark muscle would be a beneficial ingredient for functional food or pharmaceuticals against hypertension and its related diseases.  相似文献   

10.
To investigate a sourdough-specific peptide, low molecular weight peptides were extracted from sourdough. The peptide fraction was subjected to two kinds of chromatography to separate the peptides. Reverse-phase chromatography of the peptide fraction in the sourdough showed certain specific peptides. The specific peptide fraction was further separated by gel filtration chromatography. Liquid chromatography tandem mass spectrometry analysis identified one of the peptides as VPFGVG (six-mer). This sequence was estimated to occur at the 287-292 position of a low molecular weight glutenin subunit. The peptide (designed as SDP1) was produced by proteases derived from wheat flour. SDP1 showed angiotensin-converting enzyme (ACE) inhibitory activity, and the 50% inhibitory peptide concentration (IC50) was 336 microM. It is possible that the SDP1 peptide partially confers ACE inhibitory activity in sourdough.  相似文献   

11.
The in vitro angiotensin I-converting enyzme (ACE) inhibitory activity of Pacific hake hydrolysates was investigated as a function of hydrolysis conditions, starting material variability, and ultrafiltration. Hake fillets were hydrolyzed using Protamex protease under various conditions of pH, hydrolysis time, and enzyme-to-substrate ratio (% E/S) according to a response surface methodology (RSM) central composite design. The hydrolysate produced at pH 6.5, 125 min, and 3.0% E/S had an IC 50 of 165 +/- 9 microg of total solids/mL. ACE-inhibitory activity was not significantly different (P < 0.05) for hydrolysates produced using higher time-enzyme combinations within the model or from fish of different catches. Ultrafiltration (10 kDa molecular mass cutoff) resulted in an IC50 value of 44 +/- 7 microg of peptides/mL, 2.5 times more potent than the commercial product PeptACE Peptides (IC50 = 114 +/- 8 microg of peptides/mL). These results suggest that hydrolysates prepared with minimal fractionation from Pacific hake, an undervalued fish, may be a commercially competitive source of ACE-inhibitory peptides.  相似文献   

12.
To isolate and characterize novel angiotensin I-converting enzyme (ACE) inhibitory peptide from loach (Misgurnus anguillicaudatus), six proteases, pepsin, α-chymotrypsin, bromelain, papain, alcalase, and Neutrase, were used to hydrolyze loach protein. The hydrolysate (LPH) generated by bromelain [ratio of enzyme to substrate, 3:1000 (w/w)] was found to have the highest ACE inhibitory activity (IC(50), 613.2 ± 8.3 μg/mL). Therefore, it was treated by ultrafiltration to afford fraction of LPH-IV (MW < 2.5 kDa) with an IC(50) of 231.2 ± 3.8 μg/mL, having higher activity than the other fractions. Then, LPH-IV was isolated and purified by consecutive purification steps of gel filtration chromatography and reverse-phase high-performance liquid chromatography to afford a purified peptide with an IC(50) of 18.2 ± 0.9 μg/mL, an increase of 33.7-fold in ACE inhibitory activity as compared with that of LPH. The purified peptide was identified as Ala-His-Leu-Leu (452 Da) by Q-TOF mass spectrometry and amino acid analyzer. An antihypertensive effect in spontaneously hypertensive rats revealed that oral administration of LPH-IV could decrease systolic blood pressure significantly.  相似文献   

13.
Fish protein hydrolysate (FPH) produced by incubation of Pacific hake fillet with 3.00% Protamex at pH 6.5 and 40 degrees C for 125 min demonstrated in vitro ACE-inhibitory activity (IC50 = 165 microg/mL), which was enhanced by ultrafiltration through a 10 kDa molecular weight cutoff membrane (IC50 = 44 microg/mL). However, after simulated gastrointestinal digestion, FPH and ultrafiltrate had similar ACE-inhibitory activity (IC 50 = 90 microg/mL), indicating that FPH peptides act as "pro-drug type" inhibitors and that enrichment by ultrafiltration may be unnecessary. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry confirmed that the molecular weights of major peaks were <1 kDa regardless of ultrafiltration. ACE-inhibitory activities of digested hydrolysates were not significantly affected by preincubation with ACE ( P > 0.05) and exhibited a competitive inhibitory mode. A permeability assay using fully differentiated colorectal adenocarcinoma (Caco-2) cells showed an apical to basolateral transport of peptides that ranged from approximately 2 to 20% after 2 h at 37 degrees C. Pacific hake fillet hydrolysates are a potentially bioavailable source of ACE-inhibitory peptides awaiting further in vivo study.  相似文献   

14.
In the search for novel peptides that inhibit the angiotensin I-converting enzyme (ACE), porcine skeletal troponin was hydrolyzed with pepsin, and the products were subjected to various types of chromatography to isolate active peptides. Glu-Lys-Glu-Arg-Glu-Arg-Gln (EKERERQ) and Lys-Arg-Gln-Lys-Tyr-Asp-Ile (KRQKYDI) were identified as active peptides, and their 50% inhibitory concentrations were found to be 552.5 and 26.2 microM, respectively. These are novel ACE inhibitory peptides, and the activity of KRQKYDI was the strongest among previously reported troponin-originated peptides. KRQKYDI was slowly hydrolyzed by treatment with ACE, and kinetic studies indicated that this peptide was a competitive inhibitor of the enzyme. When KRQKYDI was administered orally to spontaneously hypertensive rats (SHR) at a dose of 10 mg/kg, a temporary antihypertensive activity was observed at 3 and 6 h after administration.  相似文献   

15.
The incubation conditions of wheat germ for angiotensin I-converting enzyme inhibitory activity (ACEI) elevation and peptide accumulation were investigated, and five ACE inhibitory peptides were obtained. The effect of individual factors such as incubation time, temperature, initial pH, and liquid to solid ratio on ACEI and peptide concentration of incubation medium was evaluated, respectively. The combinations of four factors were further optimized using a Box-Behnken design. Under the best incubation condition (pH 4.4 with a liquid to solid ratio 8.14 mL/g at temperature 47 °C, for 7 h), maximum ACEI (92.16%) and peptide concentration (88.12 mg/g) were obtained, which were 6.2- and 2.4-fold, respectively, as compared to the unincubated wheat germ. After they were purified, five ACE inhibitory peptides, VEV, W, NPPSV, QV, and AMY, were identified by liquid chromatography/tandem mass spectrometry. The IC(50) were 115.20, 94.87, 40.56, 26.82, and 5.86 μM, respectively.  相似文献   

16.
海洋生物ACE抑制肽研究进展   总被引:1,自引:0,他引:1  
血管紧张素转化酶(ACE)抑制肽是一类通过抑制ACE活性实现降压作用的多肽类物质。天然来源的ACE抑制肽具有安全性高、毒副作用小、可长期服用等优点,目前已经从陆源性植物蛋白、动物蛋白中发现了多种ACE抑制肽。海洋生物是一类重要的新型生物资源,含有大量的蛋白质类物质,通过降解可得到ACE抑制肽。本文运用生物信息学检索方法,对国内外主要海洋生物ACE抑制肽的研究进行了综述,主要从材料来源、降解酶、氨基酸序列以及IC50值4个方面重点介绍海洋鱼、虾、贝、藻等来源的ACE抑制肽,比较了其可能的区别和特征,并对海洋生物ACE抑制肽应用前景进行了展望,旨在为开发和利用海洋生物蛋白,促进海洋生物活性物质的研发提供指导。  相似文献   

17.
Topoisomerases are targets of several anticancer agents because their inhibition impedes the processes of cell proliferation and differentiation in carcinogenesis. With very limited information available on the inhibitory activities of peptides derived from dietary proteins, the objectives of this study were to employ co-immunoprecipitation to identify inhibitory peptides in soy protein hydrolysates in a single step and to investigate their molecular interactions with topoisomerase II. For this, soy protein isolates were subjected to simulated gastrointestinal digestion with pepsin and pancreatin, and the human topoisomerase II inhibitory peptides were co-immunoprecipitated and identified on a CapLC- Micromass Q-TOF Ultima API system. The inhibitory activity of these peptides from soy isolates toward topoisomerase II was confirmed using three synthetic peptides, FEITPEKNPQ, IETWNPNNKP,and VFDGEL, which have IC 50 values of 2.4, 4.0, and 7.9 mM, respectively. The molecular interactions of these peptides evaluated by molecular docking revealed interaction energies with the topoisomerase II C-terminal domain (CTD) (-186 to -398 kcal/mol) that were smaller than for the ATPase domain (-169 to -357 kcal/mol) and that correlated well with our experimental IC 50 values ( R (2) = 0.99). In conclusion, three peptides released from in vitro gastrointestinal enzyme digestion of soy proteins inhibited human topoisomerase II activity through binding to the active site of the CTD domain.  相似文献   

18.
It has been reported that soybean peptide fractions isolated from Korean fermented soybean paste exert angiotensin I converting enzyme (ACE) inhibitory activity in vitro. In this study, further purification and identification of the most active fraction inhibiting ACE activity were performed, and its antihypertensive activity in vivo was confirmed. Subsequently, a novel ACE inhibitory peptide was isolated by preparative HPLC. The amino acid sequence of the isolated peptide was identified as His-His-Leu (HHL) by Edman degradation. The IC(50) value of the HHL for ACE activity was 2.2 microg/mL in vitro. Moreover, the synthetic tripeptide HHL (spHHL) resulted in a significant decrease of ACE activity in the aorta and led to lowered systolic blood pressure (SBP) in spontaneously hypertensive (SH) rats compared to control. Triple injections of spHHL, 5 mg/kg of body weight/injection resulted in a significant decrease of SBP by 61 mmHg (p < 0.01) after the third injection. These results demonstrated that the ACE inhibitory peptide HHL derived from Korean fermented soybean paste exerted antihypertensive activity in vivo.  相似文献   

19.
为有效利用红娘鱼制备降血压肽,以红娘鱼鱼糜为原料提取蛋白,并对其进行酶解制备降血压肽。以血管紧张素转换酶ACE抑制率和水解度为指标,通过响应面分析法对酶解红娘鱼鱼糜蛋白制备降血压肽的工艺条件进行优化,并对最优条件下制备的酶解产物进行分子量和抗氧化活性测定。结果表明,碱性蛋白酶是制备降血压肽的最适蛋白酶,响应面法优化制备降血压肽的最佳酶解条件为pH值9、酶与底物的比值(酶底比)1.4%、温度54℃、时间2 h,此条件下酶解制得的降血压多肽ACE抑制率理论值为88%,实际值为89.3%;经高效液相色谱(HPLC)分析可得酶解产物相对分子量<2 000 Da。通过测定酶解产物样品的1,1-二苯基-2-三硝基苯肼(DPPH)自由基清除率、羟自由基(·OH)清除率及还原力判定其体外抗氧化活性,结果表明酶解产物具有较强抗氧化活性。本研究结果为红娘鱼的高值化利用提供了数据支持和理论基础。  相似文献   

20.
The L-lysine- and L-arginine-derived Amadori and Heyns products consisting of N-(1-deoxy-d-fructos-1-yl)amino acid and N-(2-deoxy-d-glucos-2-yl)amino acid were prepared by reaction of d-fructose and d-glucose with l-lysine hydrochloride and l-arginine hydrochloride using commercial zinc powder as deprotonating reagent and also as catalyst precursor in a simple synthetic route in high yield. These compounds were screened for angiotensin I-converting enzyme (ACE) inhibitory activity using a high-throughput colorimetric assay (utilizing porcine kidney ACE). The IC(50) values fall in the range of 1030-1175 μM, with N(α)-(1-deoxy-d-fructos-1-yl)arginine showing the best IC(50) value (1030 ± 38 μM). This study demonstrates an improved synthetic method for simple Amadori and Heyns products and their moderate ACE inhibitor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号