首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intensive farming has contributed to the serious declines in abundance and geographic range suffered by several bumblebee species in Europe and North America. Recent UK agri-environmental policy aims to conserve and restore bumblebee populations by providing foraging habitats on arable field margins. We examined the effectiveness of strategies to achieve this, including sowing seed mixtures of (1) tussocky grass species, (2) wildflowers and (3) pollen- and nectar-rich plants. These were compared to conventionally managed cereal crops. Sampling was undertaken in 32 10 × 10 km squares throughout England, each containing a sample of the different field margin types. Bumblebee abundance in July and August was significantly higher on pollen and nectar margins (86 ± 14 bees per 100 m) compared with wildflower margins (43 ± 14), mature grass margins (6 ± 14) and recently sown grass margins (8 ± 4). Bees were virtually absent from the cereal crop (0.2 ± 0.1). Bumblebee species richness was significantly higher on margins sown with either wildflowers or the pollen and nectar mix. There was evidence that richness of the bumblebee assemblage at the 10 × 10 km square scale was positively correlated with land use heterogeneity, the proportion of grassland, and the abundance and richness of dicotyledon flowers. The abundance of long-tongued bees per margin was explained by the number of pollen and nectar agreements per 10 × 10 km square, together with flower abundance. Future research is required to determine the quantity and location of foraging habitat required to sustain bumblebee populations at the landscape scale.  相似文献   

2.
Habitat destruction and degradation are the major causes for the decline of the endangered grass-feeding beetle Dorcadion fuliginator in Central Europe. In the southern part of the Upper Rhine valley (border region of Switzerland, Germany and France) the habitat suitable for this flightless beetle has been reduced to small remnants of extensively managed dry grassland, usually surrounded by intensively cultivated agricultural fields or settlements. Using a mark-release-resight technique we examined movement patterns in three D. fuliginator populations to obtain basic information on the dispersal ability and longevity of this beetle. Estimated daily survival rates ranged from 88.8% to 90.8% in the populations examined. This corresponds to a mean life span of 10.5 days. Distances moved by D. fuliginator differed among populations. The beetles walked the largest distances in the verges of a field track. Several beetles moved distances of 20-100 m along the track, with a maximum distance of 218 m (a male in 12 days). The shortest displacements were recorded in the bank of the river Rhine, a narrow habitat surrounded by tarmac roads. We also assessed the spatial arrangement of 12 patches with D. fuliginator populations in two regions and estimated the size of each population over 4 years. Data on dispersal, daily survival, population size and spatial arrangement of patches were used to simulate patch-specific migration rates. The simulations suggested that in both areas the beetles regularly moved between neighbouring patches separated by distances shorter than 100 m, whereas patches separated by distances exceeding 500 m are isolated.  相似文献   

3.
We evaluated ground beetle diversity in relation to forest edge between an oak-hornbeam forest and adjacent herbaceous grassland. To test our hypothesis that the diversity of ground beetles was higher in the forest edge than the interior, pitfall trap samples were taken along two forest-grassland transects in northern Hungary. The diversity of ground beetles was significantly higher at the forest edge and in the grassland than in the forest interior. Ground beetle assemblages in the forest interior, forest edge and grassland could be separated from each other by ordination. Indicator species analysis detected five groups of species: habitat generalists, grassland-associated species, forest generalists, forest specialists, and edge-associated species. Rank correlation indicated leaf litter, herb, canopy cover, and prey abundance as the most important factors influencing carabid diversity. The high diversity of the forest edge resulted from the presence of edge-associated species and of species characteristic of adjacent habitats. Forest edges seem to play an important role in maintaining diversity. Serving as source habitats, edges also contribute to the recolonisation by ground beetles after habitat destruction or other disturbance in the adjacent habitats.  相似文献   

4.
提升农田生物多样性是当前生态农业研究的热点问题。为探讨农田防护林的生物多样性保护功能,本研究在辽宁省昌图县金家镇选取8个农田-防护林单元(每个单元即为1个田块),使用陷阱法调查了不同类型林带(完整型、残缺型、消亡型)相邻的农田中,距林带不同距离处(0 m、50 m、100 m、150 m、200 m)地表节肢动物的分布情况,同时记录林带内的植被群落特征。采用方差分析以及群落排序的方法,分析了林带类型、距离梯度以及林带植被结构对农田地表节肢动物分布的影响。研究结果表明:1)与消亡型相比,完整型和残缺型林带相邻的农田物种多度显著较高,物种多样性在各类型林带农田间无显著差异,与完整型及残缺型林带相邻的农田维持着区别于消亡型林带的地表节肢动物群落结构。2)完整型和残缺型林带相邻的农田物种多度梯度变化显著,随距林带距离的增加均呈由低到高的变化趋势;不同类型林带农田中,物种多样性随距林带距离的增加逐渐递减,边缘效应显著。3)林带中草本层物种多度和乔木层盖度是影响农田地表节肢动物群落分布的主要因子,共解释了35.4%的节肢动物数量变异;不同节肢动物物种对林带植被结构的响应存在差异,步甲和蜘蛛作为当地农业景观中主要的天敌类群,与上述林带植被结构因子关系密切:林带内较高的草本层物种多度有利于增加农田中某些步甲常见种的多样性,而较高的乔木层盖度有利于增加蜘蛛目常见科的多样性。研究结果表明,农田防护林作为研究区主要的非耕作生境类型,能够显著提升相邻农田中地表节肢动物的多度,对于物种多样性的提升作用则不明显;林带内草本层物种多度以及乔木层盖度对蜘蛛、步甲等多类天敌多样性保护具有积极作用。因此,加强农业景观中现有林地的改造和提升,如营造适宜盖度的上层林木以及丰富的林下植被,能够提升现有林地的生境质量,进一步发挥其对农田生物多样性的保育功能。  相似文献   

5.
The recent loss of pollinating insects and out-crossing plants in agricultural landscapes has raised concern for the maintenance of ecosystem services. Wild bees have been shown to benefit from garden habitats in urban and suburban areas. We investigated the effects of distance from garden habitats on wild bees and seed set of a native out-crossing plant Campanula persicifolia, in intensively managed agricultural landscapes in Southern Sweden. Bee abundance and species richness, as well as plant seed set, were higher closer to gardens (<15 m) than further away (>140 m). This highlights private gardens as a landscape wide resource for pollinators but also the lack of sufficient pollination of wild plants in contemporary agricultural landscapes.  相似文献   

6.
Declines of West-European farmland biodiversity have been associated with intensive agricultural practices, Central and Eastern European grasslands still harbour a diverse and unique arthropod community. However, our understanding of the effects of farmland management both at local and landscape levels is rather limited there. A paired field approach was used to compare extensively (0.5 cows/ha) and intensively (>1 cows/ha) grazed pastures in 42 fields in three distinct biogeographic regions within Hungary. Spiders belonging to the hunting and web-building communities were sampled using funnel traps. We found no management effect either on richness and abundance or on species composition, which shows that both forms of grazing management at the intensity levels studied support valuable spider fauna. At the local scale plant and litter cover were the two most important variables that significantly affected the communities overall, meaning both the hunting and to some degree the web-building communities. No significant landscape effects were found in the analyses on spider richness and abundance, but community structure was affected by two landscape level factors (grassland patch density and grassland percentage). We suggest that to protect the valuable spider and other fauna of these regions, the recently launched national agri-environmental program should be further supported and enlarged to maintain and reintroduce the traditional grazing management on these semi-natural grasslands.  相似文献   

7.
Elevated pCO2 increases the net primary production, C/N ratio, and C input to the soil and hence provides opportunities to sequester CO2-C in soils to mitigate anthropogenic CO2. The Swiss 9 y grassland FACE (free air carbon-dioxide enrichment) experiment enabled us to explore the potential of elevated pCO2 (60 Pa), plant species (Lolium perenne L. and Trifolium repens L.) and nitrogen fertilization (140 and 540 kg ha−1 y−1) on carbon sequestration and mineralization by a temperate grassland soil. Use of 13C in combination with respired CO2 enabled the identification of the origins of active fractions of soil organic carbon. Elevated pCO2 had no significant effect on total soil carbon, and total soil carbon was also independent of plant species and nitrogen fertilization. However, new (FACE-derived depleted 13C) input of carbon into the soil in the elevated pCO2 treatments was dependent on nitrogen fertilization and plant species. New carbon input into the top 15 cm of soil from L. perennne high nitrogen (LPH), L. perenne low nitrogen (LPL) and T. repens low nitrogen (TRL) treatments during the 9 y elevated pCO2 experiment was 9.3±2.0, 12.1±1.8 and 6.8±2.7 Mg C ha−1, respectively. Fractions of FACE-derived carbon in less protected soil particles >53 μm in size were higher than in <53 μm particles. In addition, elevated pCO2 increased CO2 emission over the 118 d incubation by 55, 61 and 13% from undisturbed soil from LPH, LPL and TRL treatments, respectively; but only by 13, 36, and 18%, respectively, from disturbed soil (without roots). Higher input of new carbon led to increased decomposition of older soil organic matter (priming effect), which was driven by the quantity (mainly roots) of newly input carbon (L. perenne) as well as the quality of old soil carbon (e.g. higher recalcitrance in T. repens). Based on these results, the potential of well managed and established temperate grassland soils to sequester carbon under continued increasing concentrations of atmospheric CO2 appears to be rather limited.  相似文献   

8.
Habitat loss and fragmentation in agricultural landscapes lead to severe declines of abundance and richness of many insect species in the remaining isolated semi-natural habitats. We analysed possible barrier effects of large hedges and corridor effects of narrow grass strips that were hypothesized to affect foraging and dispersal of hymenopterans. We selected calcareous grasslands in the vicinity of Göttingen (Germany), which harbour high Hymenoptera diversity and are starting points for foraging and dispersal in the landscape. We installed pan traps to sample bees (i) on the grasslands; (ii) on grassland edges behind adjacent hedges (potential barriers) and without hedges; (iii) on grass strips in 100 m distance to the grassland, which were connected or unconnected to the grassland; and (iv) unconnected (isolated) grass strips in 300 m and 750 m distance to test for corridor and isolation effects on abundance and species richness of foraging wild bees. Additionally we provided trap nests for bees, wasps and their parasitoids on the grasslands and the strips. Species abundance and richness declined with increasing isolation from grasslands for foraging solitary bees, trap-nesting bees, wasps and parasitoids, but not for foraging bumblebees. Hedges did not confine movement of foraging bees. We found no mitigating effects of (100 m) corridor strips on any of the observed groups. We conclude that conservation of semi-natural habitats as sources of bee and wasp diversity is important and that grass strips act as sinks rather than corridors when high quality patches are nearby.  相似文献   

9.
Pollination has received attention recently due to reported sharp declines of Apis mellifera in several locations, and it has been proposed that diverse native bee communities may be key for continued pollination of economically important crops. However, there is some inconsistency in the literature as to how these communities should best be managed. To address this issue, we collected bees from an intensively managed agricultural region in eastern Australia using blue vane traps. Both linear remnants of vegetation, which form part of a larger corridor network, and adjacent fields of native and exotic pastures, wheat, canola, and lucerne were sampled. A total of 3249 individual bees, representing four families and 36 species were collected. Highly modified environments of nectar-bearing crop supported the most species-rich bee assemblages, and the highest abundance of individual bee species. Distance from the remnants did not limit the body size of species occupying fields (up to 400 m). However, richness of bee assemblages also responded positively to the presence of conservation land in nearby areas, or the number of remnant native trees surrounding traps. Linear remnants of native vegetation contributed to assemblage heterogeneity by adding unique species to the regional pool. Our findings indicate that agricultural industries that currently rely on pollination by A. mellifera should ensure that intensive land use is complemented by untilled areas in the form of conservation land, or farm dams and scattered trees in fields, to support wild pollinators that may act as insurance against further future losses of managed hives.  相似文献   

10.
We investigated how vegetation features and temporal variation influenced web spider richness, abundance and composition along an edge between Araucaria forest and pasture in southern Brazil. Web spiders and vegetation were surveyed four times over a 1-year period, in five 5 × 5 m plots randomised in four locations: 50 m into the pasture, 0, 50 and 250 m into the forest. We collected a total of 836 web spiders (33 morphospecies and six families). We found different web spider assemblages occurring at the pasture edge and forest interior. The richness and abundance of web spiders decreased up to 50 m towards the forest interior in all seasons, and we found a positive influence of vegetation richness on web spider abundance. In conclusion, web spider assemblages are influenced by an edge gradient, this pattern is consistent throughout the year and is strongly related to vegetation features.  相似文献   

11.
In this study we compared ground beetles (Carabidae) from a range of different forest fragments along an urbanization gradient in Brussels, Belgium. We address the following questions: (i) How does the degree of urbanization in the surrounding habitat affect forest beetles, and does it interact with the effects of patch size and distance to forest edge? (ii) Do these factors have a different effect at the level of individual species, habitat affinity groups or total community? During 2002 we sampled 13 forest plots in 10 forest patches, ranging in size from 5.27 to 4383 ha. The beetles were captured using transects of pitfall traps from the edge to a distance of 100 m into each woodland and identified to species level. Effects of urbanization, forest size and forest edge were evaluated on total species number, abundance and habitat affinity groups and ten abundant, widespread model carabid species. Overall, the effects of urbanization, forest size and edge effects slightly influenced total species richness and abundance but appeared to have a major effect on ground beetle assemblages through species specific responses. More urbanized sites had significantly fewer forest specialists and more generalist species. Large forest fragments were favoured by forest specialist species while generalist species and species frequently associated with forest (forest generalists) dominated the smaller forests. Forest edges mainly harboured generalist species while forest specialist species were more frequent into the forests if the forest patches were large enough, otherwise they disappeared due to the destruction or impoverishment of their habitat. Our results show the importance of differentiating between habitat affinity, especially habitat generalists versus specialists, the latter having a higher value in nature conservation, and merely the quantity of species represented in human-dominated areas.  相似文献   

12.
In the grassland/forest ecotone of North America, many areas are experiencing afforestation and subsequent shifts in ecosystem carbon (C) stocks. Ecosystem scientists commonly employ a suite of techniques to examine how such land use changes can impact soil organic matter (SOM) forms and dynamics. This study employs four such techniques to compare SOM in grassland (Bromus inermis) and recently forested (∼35 year, Ulmus spp. and Quercus spp.) sites with similar soil types and long-term histories in Kansas, USA. The work examines C and nitrogen (N) parameters in labile and recalcitrant SOM fractions isolated via size and density fractionation, acid hydrolysis, and long-term incubations. Size fractionation highlighted differences between grassland and forested areas. N concentration of forested soils’ 63-212 μm fraction was higher than corresponding grassland soils’ values (3.0±0.3 vs. 2.3±0.3 mg gfraction−1, P<0.05), and N concentration of grassland soils’ 212-2000 μm fraction was higher than forested soils (3.0±0.4 vs. 2.3±0.2 mg gfraction−1, P<0.05). Similar trends were observed for these same fractions for C concentration; forested soils exhibited 1.3 times the C concentration in the 63-212 μm fraction compared to this fraction in grassland soils. Fractions separated via density separation and acid hydrolysis exhibited no differences in [C], [N], δ15N, or δ13C when compared across land use types. Plant litterfall from forested sites possessed significantly greater N concentrations than that from grassland sites (12.41±0.10 vs. 11.62±0.19 mg glitter−1). Long-term incubations revealed no differences in C or N dynamics between grassland and forested soils. δ13C and δ15N values of the smallest size and the heavier density fractions, likely representing older and more recalcitrant SOM, were enriched compared to younger and more labile SOM fractions; δ15N of forested soils’ 212-2000 μm fraction were higher than corresponding grassland soils (1.7±0.3‰ vs. 0.5±0.4‰). δ13C values of acid hydrolysis fractions likely reflect preferential losses of 13C-depleted compounds during hydrolysis. Though C and N data from size fractions were most effective at exhibiting differences between grassland and forested soils, no technique conclusively indicates consistent changes in SOM dynamics with forest growth on these soils. The study also highlights some of the challenges associated with describing SOM parameters, particularly δ13C, in SOM fractions isolated by acid hydrolysis.  相似文献   

13.
Since the second half of the 20th century, the intensification of land-use practices and the associated decline in semi-natural habitats have been the major drivers of farmland biodiversity loss. In many marginal agricultural systems, a structural transformation of farms, from small and traditional to large and intensive, has also been observed. We unravelled the impact of farm size and slope on plant, orthopteran and butterfly diversity in 132 hay meadows in a region of the Italian Alps. We defined three farm size classes representing different levels of intensification and used mixed models to test the influence of farm size along with topographic slope. The diversity of plants, orthopterans and butterflies declined with management intensity at the field scale, which mainly depended on farm size and grassland topography. We found a positive effect of slope and a negative influence of farm size on species richness of the three taxonomic groups. Large farms were strongly associated with higher production of organic fertilizers and higher soil fertility than small traditional farms, irrespective of meadow slope. At the regional scale, we found that large farms managed flatter meadows (slope = 9.0) than small traditional farms (slope = 13.5), contributing to the abandonment of steep species-rich grassland areas. Regional stakeholders should consider targeted conservation schemes to prevent the ongoing substitution of small farms with large intensive farms. A complementary solution could be to target future conservation measures to support farms with low production of organic fertilizers and to reward the maintenance of the current management of steep meadows.  相似文献   

14.
在甘肃河西走廊黑河中游荒漠绿洲过渡区,天然沙质草地被相继转变为农田和防风固沙人工林,但目前尚缺乏不同土地利用/管理方式下地面节肢动物群落对土壤盐渍化响应的系统研究。以天然沙质草地转变的人工梭梭灌木林、人工杨树林、人工樟子松林和农田为研究对象,以天然草地为对照,基于5种研究样地表层土壤盐分及其组成和地面节肢动物群落的观测数据,采用RDA(Redundancy analysis)排序分析等方法,研究了不同土地利用/管理方式下地面节肢动物个体数量和类群丰富度对土壤盐分环境变化的响应机制。主要结果为:(1)土地利用变化与管理措施相互作用驱动了地面节肢动物群落的演变过程,天然草地植被转变为人工林和农田20多年后,显著降低了地面节肢动物群落的数量而对类群丰富度无显著影响。(2)地面节肢动物群落的变化受土壤pH、Na+、Mg2+、Cl-离子的共同影响,其中土壤pH、Na+和Mg2+离子对动物群落变化的贡献率最大,是关键生态因子。(3)动物个体数量随土壤pH的增加而增加,随Mg2+、Cl-离子浓度的增加而下降。研究表明,土地利用变化引起的土壤盐分环境改变是驱动地面节肢动物群落演变的重要因素之一。  相似文献   

15.
Coastal habitats near urban centres in North Atlantic estuaries often support substantial numbers of wintering waterfowl, but little is known of the effects of landscape setting and urbanisation on habitat use. We conducted surveys of waterfowl at 32 wintering sites in Narragansett Bay, Rhode Island, to identify characteristics that may influence habitat use. Sites were chosen along a gradient of urbanisation and reflected the dominant habitat types used by waterfowl in the Bay. Mean waterfowl abundance was 206.7 ± 209.5 birds per site, and sites in the inner part of the estuary had higher overall waterfowl abundances (r2 = 0.40, p = 0.021). Species richness ranged from 3.2 to 13.0 and decreased with increasing hunting activity (r2 = 0.36, p = 0.040). Hunting activity and habitat characteristics (e.g., latitude, shoreline configuration, prey density) explained 13-27% of the variation in waterfowl abundance and species richness among sites, but landscape characteristics (e.g., surrounding residential development, vegetated land, or wetland surrounding the sites and the extent of wetland edge) explained an additional 1-26%. The landscape characteristics extent of adjacent residential development and vegetated upland were the most common variables entering into the models; most species were more abundant at sites with more adjacent vegetated upland and less adjacent residential development. Our results suggest that landscape setting may be influencing the distribution of wintering waterfowl, and should be considered when developing strategies for the conservation for these species in urban North Atlantic estuaries.  相似文献   

16.
We sampled the carabid beetles in 22 forests managed by six different silvicultural systems, defined by treatment and tree species composition: even-aged conifer, even-aged beech, even-aged oak, uneven-aged conifer, uneven-aged beech and group mixed (beech + conifer). In each of these forests, we placed pitfall traps in young, medium-aged and mature stands (3 stages). We evaluated the effect of treatment, tree species composition, silvicultural system, stage and habitat type (silvicultural system + stage) on indicators of community conservation value and ecological structure. The species composition and the ecological structure of carabid beetles of the managed stands were then compared to that of nine unmanaged stands (without tree exploitation). In the managed forests, species richness was highest in large young stands (3-10 years old) and in forests managed by even-aged systems (with large clear-cuts), mainly due to eurytopic and opportunist carabid species with high dispersal abilities. Oak and beech, uneven-aged, and mature stands were mainly inhabited by typical forest species, and even-aged conifer stands mainly by ubiquitous species. Several typical forest species recorded in unmanaged stands were lacking from the managed forests. Large scale clear-cutting allows open-habitat species to enter the forest, which increases the species richness at a landscape level but can disfavour typical forest species by competition. Long rotations should be implemented and more areas left unmanaged in Belgium, in order to help typical forest species to re-colonise managed forests.  相似文献   

17.
In alpine environments, climate change may alter vegetation composition as well as the quantity and quality of plant litter, which in turn may affect microbial community composition and functioning. In this study, we analyzed soil microbial community composition and its activity along a vegetation gradient (900-1900 m above sea level (a.s.l.)) in the Austrian Limestone Alps. Soil pH and C:N ratios were significantly different under different plant communities and ranged from 3.9 to 6.1 and from 29 to 17, respectively. The highest amounts of microbial biomass, estimated by the sum of microbial phospholipid fatty acids (total PLFAs), were found at sites with high pH and low C:N ratio, i.e. in alpine grassland and beech forest sites (3.9 ± 0.05 and 3.4 ± 0.7 μmol per g organic carbon (OC), respectively), and the lowest amounts were found at sites with low pH and high C:N ratio, i.e. sites with high percentage of conifers and acidophilic vegetation (around 2 μmol (g OC)−1). Total and bacterial PLFAs as well as microbial activity (dimethyl sulphoxide reduction) did not show consistent altitudinal trends. The fungal PLFA 18:2ω6,9 was significantly higher in the forest sites (between 9.2 and 6.7 mol%) compared to the shrubland and grassland sites (between 4.5 and 2.3 mol%). A similar trend was found for ergosterol contents. As a consequence, the bacterial to fungal biomass ratio increased significantly from forest sites to shrubland and grassland sites. Expected future upward migration of the tree line in alpine environments in response to climate warming will therefore increase the abundance of fungi in these ecosystems.  相似文献   

18.
The addition of leaf litter to soil influences both the nutrients and polyphenols of soil. It is likely that contrasting nutrient and polyphenolic composition of different plant litters may affect plant growth, mycorrhizal and soil arthropod communities. We report results from a microcosm experiment of effects of incorporation of three single leaf litter species and a mixture of all three on pitch pine seedling growth, their ectomycorrhizal community and soil arthropod community. The three litter species (pine, oak and huckleberry) represent co-dominant species within the New Jersey pine barrens ecosystem. We show that the leaf litters have different composition of nutrients and polyphenols, with rooting matrix containing pine litter having lower inorganic nitrogen content (1.6 μg g−1) than oak (19.9 μg g−1) and huckleberry (4.4 μg g−1), but oak litter having the highest extractable phosphorus (13.3 cf. 0-0.08 μg g−1) and total phenol content and lowest condensed tannin content. These differences were imparted to rooting matrix of homogenized humic (Oa) layer of pine barrens soil to which milled leaf litter was added and used in the microcosms. Pitch pine seedlings grew significantly better in un-amended rooting matrix (0.33±0.02 g) than any of the litter treatments (0.15±0.02-0.17±0.01 g) and tissue P concentrations tracked phosphate concentrations in the rooting matrix. Total P accumulation into plant tissue was higher in oak than control, attributable to a significantly higher (P<0.05) accumulation in roots (3.3±0.19 mg g−1) compared to other species (1.1±0.04-2.3±0.08 mg g−1). No relationship was seen between tissue N concentration and soil N, but seedlings growing in huckleberry litter amended soil accumulated less N than control. The effect of leaf litters on the ectomycorrhizal community composition were determined by PCA (first two axes accounted for 81% of the variance) and stepwise multiple regression analysis. These analyses showed that huckleberry leaf litter had a significant impact on mycorrhizal community composition with morphotypes Cg and DB being more abundant in the presence of huckleberry litter (178±13 cf. 68±15-106±15 for Cg and 141±11 cf. 88±23-111±18 for DB) and its influence of elevating nitrate nitrogen, organic nitrogen, total phenols and protein precipitation content of the rooting matrix. Mycorrhizal morphotypes BS and SB were significantly more abundant in the community where these soil factors were low in the absence of leaf litter addition. Total ectomycorrhizal abundance was negatively related to hydrolysable tannin concentration in the rooting matrix (r2=0.132, P<0.05). There was no influence of leaf litter type on mite density (dominated by non-burrowing phthiracarids), but collembolan density (dominated by Folsomia spp) showed a greater than threefold reduction in population density in the presence of leaf litter (F=6.47, P<0.05). Collembolan density was positively correlated with mycorrhizal morphotypes GS and SB (P<0.05) and negatively related to morphotypes DB (P<0.05) and soil extractable NH4-N (P<0.05), suggesting a possible selection of fungal species in their diet and a relationship between collembola and nitrification.  相似文献   

19.
Loss of semi-natural grasslands and reduction of habitat diversity are considered major potential threats to arthropod diversity in agricultural landscapes. The main aim of this study was to investigate how area and habitat diversity, mediated by shrub encroachment after grassland abandonment, affect species richness of orthopterans in island-like grasslands, and how contrasting mobility might alter species richness response to both factors. We selected 35 isolated patches in landscapes dominated by arable land (durum wheat) in order to obtain two statistically uncorrelated gradients: (i) one in habitat area ranging from 0.2 to 55 ha and (ii) one in habitat diversity ranging from patches dominated by one habitat (either open grasslands or shrublands) to patches with a mosaic of different habitats. Habitat loss due to land-use conversion into arable fields was associated with a substantial loss of species with a positive species-area relationship (SAR), with sedentary species having a steeper and stronger SAR than mobile species. Halting habitat loss is, therefore, needed to avoid further species extinctions. Shrub encroachment, triggered by abandonment, presented a hump-shaped relationship with habitat diversity. An increase in habitat diversity enhanced species richness irrespective of patch area and mobility. Maintaining or enhancing habitat diversity, by cutting or burning small sectors and by reintroducing extensive sheep grazing into abandoned grassland, are suggested as complementary strategies to mitigate further decline of orthopteran diversity in the remnant patches. This would be equally important in both small and large patches.  相似文献   

20.
While the importance of nearby terrestrial habitats is gaining recognition in contemporary wetland management strategies, it is rarely recognized that different wetlands are often diverse in their functions of meeting the annual or life-cycle requirements of many species, and that migration between these wetlands is also critical. Using radio-telemetry, we examined terrestrial habitat use and movements of 53 eastern long-necked turtles (Chelodina longicollis) in an area of southeast Australia characterized by spatially diverse and temporally variable wetlands. Male and female C. longicollis exhibited a high degree of dependence on terrestrial habitat, the majority (95%) of individuals using sites within 375 m of the wetland. Turtles also associated with more than one wetland, using permanent lakes during droughts and moving en masse to nearby temporary wetlands after flooding. Turtles used 2.4 ± 0.1 (range = 1-5) wetlands separated by 427 ± 62 (range = 40-1470) m and moved between these wetlands 2.6 ± 0.3 (range = 0-12) times over the course of a year. A literature review revealed that several species of reptiles from diverse taxonomic groups move between wetlands separated by a mean minimum and maximum distance of 499-1518 m. A high proportion of studies attributed movements to seasonal migrations (55%) and periodic drought (37%). In such cases we argue that the different wetlands offer complimentary resources and that managing wetlands as isolated units, even with generous terrestrial buffer zones, would not likely conserve core habitats needed to maintain local abundance or persistence of populations over the long term. Core management units should instead reflect heterogeneous groups of wetlands together with terrestrial buffer zones and travel corridors between wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号