首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
针对犁耕作业时大马力拖拉机驱动轮易产生过度滑转的问题,该研究以大马力拖拉机电液悬挂机组为研究对象,考虑"拖拉机-农具-土壤"系统的强非线性特征,在建立大马力拖拉机犁耕作业机组非线性系统动力学模型的基础上,提出基于滑模变结构控制的大马力拖拉机驱动轮滑转非线性控制方法;并以模糊PID控制为对比,采用Matlab/Simulink验证本文动力学模型的正确性和控制算法的有效性;以Lovol-TG1254型大马力拖拉机为载体,搭建犁耕作业大马力拖拉机驱动轮滑转控制平台,开展田间对比试验,并分析不同控制方法下的滑转控制效果,验证滑模变结构控制算法的控制精度和稳定性。试验结果表明:在2.17m/s的犁耕作业工况下,与模糊PID控制算法相比,滑模变结构控制算法将拖拉机驱动轮滑转率有效控制在最优值0.2,平均绝对值偏差为0.008,减小了约27%,最大偏差为0.028,减小了约49%;耕深、液压缸位移和水平牵引力调节变化量分别减小了27%、36%、42%。该研究提出的基于滑模变结构的大马力拖拉机驱动轮滑转控制方法可实现犁耕作业驱动轮滑转最优目标控制。  相似文献   

2.
基于Gray-EKF算法的智能农业车辆同时定位与地图创建   总被引:1,自引:1,他引:0  
为了提高智能农业车辆在未知环境中同时定位与地图创建精度,将灰色预测理论和扩展卡尔曼滤波融合,提出了基于灰色扩展卡尔曼滤波的同时定位与地图创建算法。算法在传统的扩展卡尔曼滤波基础上,通过改进的滑窗灰色预测理论建立传感器的GM(1,1)观测预测模型,进而完成新息的计算。为了提高观测精度和抗干扰能力,系统使用了三目摄像机作为观测传感器,并提出了一种简易的权值标定算法。试验表明:精度权值标定后的三目摄像机具有较高的测量精度,16组测量数据中有12组的测量误差小于1%,并能减小由于干扰造成的误差。在30个人工路标的停车场环境中,车辆对路标x和y方向的观测误差均值为0.074和0.073m,自身定位误差为0.140m,误差均方差为0.048。在60个人工路标的停车场环境中,车辆对路标x和y方向的观测误差均值为0.061和0.068m,自身定位误差为0.109m,误差均方差为0.038。在60个人工路标的旱地环境中,车辆对路标x和y方向的观测误差均值为0.079和0.077m,自身定位误差为0.122m,误差均方差为0.049。研究认为,与传统的EKF SLAM算法相比,Gray-EKF SLAM算法具有更高的精度。  相似文献   

3.
冲量式谷物流量传感器测产信号处理方法   总被引:7,自引:5,他引:2  
为研究冲量式谷物流量传感器背景振动噪声的提取及剔除方法,以减小背景振动噪声对其测产精度的影响,设计了一套冲量式谷物流量传感器室内标定台架,通过变频调速器控制驱动电机实现输粮搅龙和刮板升运器转速的改变以模拟联合收割机的不同田间工况,并对双板差分冲量式谷物流量传感器的测产信号处理方法进行了研究。通过算术均值滤波初步滤除测量板和参考板输出信号中的随机噪声,通过对参考板滤波输出信号的离散傅里叶变换(discrete Fourier transform,DFT)提取背景噪声的频谱特性,通过测量板和参考板DFT结果的频域差分实现测量板输出信号中背景噪声的剔除,对频域差分结果进行离散傅里叶逆变换(inverse discrete Fourier transform,IDFT)即可得到剔除了背景振动噪声后的传感器输出信号,再对其进行二次算术均值滤波,即得到最终的测产输出信号。通过室内台架标定,建立了谷物籽粒流量与测产输出信号和升运器速度之间的标定模型,并进行了室内模拟测产试验。试验结果表明:谷物流量范围为0.5~2.3 kg/s时,在不同的变频调速器输出频率下,最大测产误差不大于3.1%,测产精度较高且比较稳定,频域差分处理方法能较好地实现双板差分冲量式谷物流量传感器背景振动噪声的剔除。该研究可为冲量式谷物流量传感器测产系统的开发提供参考。  相似文献   

4.
农业机械导航中的航向角度估计算法   总被引:4,自引:4,他引:0  
研究农业机械航向角度的动态测量与估计方法,对其导航定位和导航控制具有重要意义.该文以日本久保田插秧机为研究对象,采用HMR3000电子罗盘和ADXRS300微机械陀螺仪组合进行农业机械航向角度动态测试的研究.提出了基于协方差函数的加窗估计算法,用于在线估计电子罗盘和微机械陀螺的测量方差.在此基础上,提出利用自适应加权融合算法,融合电子罗盘和微机械陀螺信息,实现农业机械航向角度的动态测试与精确估计.试验结果表明,所提出的自适应加权融合估计算法适用于农业机械动态条件下的航向角度测试,具有良好的抗干扰能力,可以平滑和滤除测试噪声,为导航控制提供更为精确和可靠的航向角度估计数据且经济性较好.  相似文献   

5.
农机具自动调平控制系统设计与试验   总被引:3,自引:8,他引:3  
为了使农机具在田间作业时保持水平,该文设计了一种农机具自动调平控制系统。采用拖拉机横向倾角卡尔曼滤波算法融合加速度计和陀螺仪2个传感器数据获得拖拉机实时倾斜角度,直线位移传感器测量调平液压油缸伸长量并建立农机具和拖拉机的相对倾斜角度转换函数,通过控制电磁换向阀实现农机具水平控制。在三轴多功能转台上对拖拉机倾角实时测量算法进行了测试,并在田间对农机具自动调平系统进行了试验,结果表明,拖拉机横滚角传感系统能在动态条件下准确地测量拖拉机实时倾角,在转台上测量角度平均绝对误差≤0.15°,均方根误差≤0.18°,在水田激光平地机作业时测量角度平均绝对误差0.40°;自动调平控制系统能较好地实现平地铲调平控制,平地铲倾斜角度平均绝对误差0.52°,均方根误差0.24°,最大误差1.15°,相对于原水田激光平地机水平控制系统控制精度提高了0.5°。该研究为农机具水平自动调平提供了方法,能够提升农机具作业质量。  相似文献   

6.
该文提出了一个实时拖拉机位置确定系统,该系统由一个六轴惯性测量单元(IMU)和一个Garmin全球定位系统(GPS)组成。在系统中,设计了一个Kalman过滤器来综合两个传感器的信号,以滤去GPS信号中的噪音,融合冗余信息,最后得到一个有较高更新速度的输出信号。此外该系统还能够补偿IMU的偏移误差。通过使用该系统,低价的GPS可以替代高价的GPS,并且保持良好的精确性。试验和融合结果表明该系统确定的拖拉机位置误差比单一使用GPS的系统的误差要大大减小:当拖拉机速度约为1.34m/s时,该系统东向轴的平均偏差为0.48m,而GPS的平均偏差为1.28m;北向轴的偏差从1.48m降为0.32m。系统的更新频率则从原有GPS的1Hz增加到9Hz  相似文献   

7.
拖拉机作业机组模糊综合控制模型及仿真试验   总被引:1,自引:2,他引:1  
拖拉机作业机组是一个复杂的非线性且有惯性的控制系统,系统参数间存在耦合关系,建立精确数学模型进行综合控制比较困难,通过对拖拉机作业机组动态特性的研究,建立了基于发动机负荷率、驱动轮滑转率和作业阻力3参数的综合控制仿真模型,并应用模糊控制技术实现了机组的综合控制。试验结果表明,该仿真模型能够根据作业阻力的变化自动推理输出档位、油门位置或耕深控制信号,由下位机执行机构完成控制,实现了由计算机模拟驾驶员对机组进行综合自动控制。由计算机实现机组综合自动控制,能根据选定的控制策略使发动机按最低油耗曲线运行,获得了很好的动力性和经济性,而且计算机自动控制摆脱了人工经验控制,控制更精确,比人工控制效果好,且控制具可重复性和试验结果具可比性。因此,所设计的拖拉机作业机组模糊综合控制模型对拖拉机作业机组综合自动控制研究有一定的实用和参考价值。  相似文献   

8.
阀控非对称缸电液伺服系统的线性鲁棒观测器设计   总被引:1,自引:1,他引:0  
为了更为有效地诊断电液伺服控制系统的故障,设计良好的状态观测器是至关重要的前提。针对阀控非对称缸电液伺服系统,提出一种线性鲁棒观测器的设计方法。在考虑建模误差、参数变化、外力干扰、过程噪声以及测量噪声等影响因素的前提下,将系统非线性模型进行线性化,并据此设计系统的线性鲁棒观测器。仿真结果表明:小负荷情况下,该文设计的线性观测器具有一定的鲁棒性。  相似文献   

9.
拖拉机自动转向系统容错自适应滑模控制方法   总被引:1,自引:1,他引:0  
为提高拖拉机自动转向系统的可靠性,该文提出了一种具有前轮转角容错检测能力的径向基函数(radial basis function,RBF)网络自适应滑模控制方法。综合考虑拖拉机姿态信息和控制输出,基于卡尔曼滤波算法推导得出拖拉机前轮转角的两个估计值,并结合角度编码器实际测量值设计了前轮转角容错检测输出算法;以容错输出算法的输出值作为状态量,提出一种利用RBF网络进行干扰补偿的前轮角度自适应滑模控制方法,并通过仿真试验验证了算法的有效性。开展了拖拉机前轮转角容错检测和自动控制试验,结果显示:基于侧向加速度的转角预估值最大误差为2.94?,均方根误差为0.81?;基于横摆角速度的转角预估值的最大误差为1.73?,均方根误差为0.12?;当人为施加故障干扰时,算法可以提供容错的转角输出;拖拉机转向控制系统可以快速跟踪期望前轮角度且超调量较小,最大控制误差为0.21?,均方根误差为0.07?。试验结果表明,容错自适应滑模控制方法提高了自动转向控制系统的可靠性和准确性,有助于解决拖拉机前轮转角测量装置故障率高的问题。  相似文献   

10.
联合收割机稻麦收获边界激光在线识别系统设计与试验   总被引:4,自引:4,他引:0  
针对联合收割机收获边界在线识别问题,利用激光无损探测技术,开发了联合收割机收获边界在线识别系统。首先介绍了系统组成、激光传感器选型及工作原理,将传感器输出数据极坐标转换为直角坐标,建立稻麦轮廓特征数学模型。由于收获过程会产生大量的灰尘,会对激光探测距离及信号反射产生影响。通过与作物特征阈值比较,对受灰尘影响的错误数据进行有效识别与剔除。采用移动平均数字滤波算法,消除系统测量噪声。通过信号阶跃变化模式识别算法,实现了收获边界的在线检测,准确推算出联合收割机作业割幅,并进行了田间试验研究。试验结果表明,该系统可实现在线监测,收获边界测量误差不大于12 cm,可为联合收割机智能监控系统的实际应用提供参考。  相似文献   

11.
基于GNSS姿态与电机编码器的农机转向角度测量系统研制   总被引:4,自引:4,他引:0  
陈云  何艳 《农业工程学报》2021,37(10):10-17
典型的农业机械自动驾驶系统需要在车辆转向轮上安装角度传感器测量转向角度,存在安装不便与可靠性差问题。该研究提出一种基于GNSS模块和电机编码器组合的转向轮转向角度测量系统。该系统通过组合利用GNSS姿态测量值与运动模型得到转向轮期望角度,利用电机转向速度和全液压转向阀的传递模型推算转向角度变化值,经卡尔曼滤波融合解算得到车辆转向轮的实时转向角度。与霍尔式绝对角度传感器对比的动态测试结果表明,该系统在直线行驶时的测量标准方差小于0.91°,在转向轮-10°~+10°区间,测量标准方差小于1.0°;直线自动驾驶作业时的导航误差小于2.5 cm,曲线作业自动驾驶的导航误差小于9.0 cm,满足农机自动调头等场景应用。  相似文献   

12.
为解决拖拉机作业过程中因作业阻力波动而导致生产效率降低的问题,该研究以自主开发设计的液压机械无级变速器(Hydraulic Mechanical Continuously Variable Transmission, HMCVT)为研究对象,通过对滑转率区间划分确定了滑转率控制和车速控制的优先级;通过对作业阻力范围划分确定了适合当前阻力状态下的HMCVT传动模式,并以拖拉机最高生产效率为目标制定了HMCVT系统在液压机械传动(HydraulicMechanicalTransmission,HMT)和静液压传动(HydrostaticTransmission,HST)模式下的变速规律,确定了HMT和HST传动模式下的排量比调节曲面。针对油压波动会影响液压泵排量调节精度的问题,提出了基于前馈补偿的滑模控制算法,搭建了HMCVT传动系统和调速策略模型。结果表明,提出的基于滑转率-阻力区间划分的调速控制策略能够在负载或路面条件发生变化时,将驱动轮滑转率约束在容许滑转率区间内;本文制定的变速规律相比于传统动力性变速规律能使拖拉机车速和加速度分别由5.06km/h和0.05 m/s2提升至5.3 km/h和0.15 m/s2,加速度能力更强,可保证拖拉机的生产效率,提高拖拉机对复杂多变作业环境的适应性。  相似文献   

13.
为提高轮式拖拉机自动导航过程中转向控制的精度与稳定性,该研究以雷沃欧豹M704-2H拖拉机作为试验平台,采用电动方向盘作为转向执行机构,分析转向机械间隙对控制精度的影响,针对转向间隙特性设计转向控制算法。首先,为了获得准确的转向角,利用GNSS(global navigation satellite system)与二轮车模型快速标定虚拟轮转角,标定结果表明:虚拟轮转角的最大误差为1.3°,平均误差为0.11°。然后,对转向系统的机械间隙进行分析,设计一种带有间隙补偿的模糊PD(proportional derivative)转向控制算法,并在Simulink中验证算法的可行性。实车试验结果表明,该算法跟踪方波转角信号的响应时间为1.1 s,最大稳态误差为0.65°,平均稳态绝对误差为0.132°。跟踪正弦波转角信号的平均延时为0.5 s,最大误差为1.91°,平均绝对误差为1.09°。与无间隙补偿算法相比,有间隙补偿算法跟踪方波信号最大稳态误差减小了0.022°,平均稳态绝对误差减少了0.112°,角度误差在±0.2°内的时间提升了71%;跟踪正弦波信号最大误差减小了0.68°,平均绝对误差减小0.23°。田间直线导航转向控制试验结果表明,转角跟踪的绝对平均误差为0.61°,最大跟踪误差为2.82°,转向控制跟踪精度较高,稳定性好,满足导航作业需求。  相似文献   

14.
基于拖拉机作业轨迹的农田面积测量   总被引:2,自引:1,他引:2  
为了精确测量拖拉机在农田作业时的作业面积,以评价拖拉机的作业效率。该文选用双星定位(GPS卫星和伽利略卫星)接收机采集定位数据,采用自适应卡尔曼滤波算法提高接收机单点定位精度,利用高斯投影算法将GPS接收机采集经纬度转化成平面坐标来计算面积。选用回耕法、梭形耕法、套耕法3种方法旋耕地块,利用安装拖拉机上的GPS识别出作业轨迹,利用图像处理计算3种方法的有效作业面积、实际作业面积和重漏耕面积。试验表明:卡尔曼滤波提高了GPS单点定位精度;面积测量相对误差为2.09%;地块1(回耕法)漏耕率为14.29%,重耕率为6.19%,地块2(梭形耕法)漏耕率为10.72%,重耕率为5.54%,地块3(套耕法)漏耕率为1.80%,重耕率为6.82%。随测量面积增加,测量精度越高;套耕法效率最高,梭形耕法其次;回耕法的漏耕率最大,作业效率最低。  相似文献   

15.
小麦播种实时监控系统设计与试验   总被引:8,自引:8,他引:0  
为实现小麦播种作业性能实时监控,设计了一种基于CAN总线的小麦精密播种机播种实时监控系统,阐述了系统总体结构,设计了系统硬件和软件,并进行了田间试验。该系统包括传感器信号采集单元、播种监测模块、CAN 模块和播种监测终端,能够实时监测种管状态、机具前进速度和排种轴转速。采用光电传感器和霍尔传感器分别检测排种管落种状态和地轮转速并输出电压或脉冲信号,播种监测模块根据传感器输出的信号,判断排种管播种状态(正常、堵塞和空管),计算出地轮转速和排种轴转速,并计算出机具前进速度,以上信息通过CAN总线传输给播种监测终端并实时显示。试验结果表明,该系统故障状态监测准确率为>98%,堵塞响应时间<0.2 s,空管报警响应时间<0.5 s。系统工作稳定可靠,抗尘、抗震能力强,能够有效监测小麦播种作业性能。该研究成果能满足小麦播种性能实时监测要求,有助于提高小麦播种作业质量。  相似文献   

16.
基于倾角传感器的拖拉机悬挂机组耕深自动测量方法   总被引:8,自引:4,他引:4  
在拖拉机悬挂机组耕深自动控制系统中,位置测量具有重要的作用,该文提出了一种基于倾角传感器自动测量农机具耕深的方法。通过检测提升臂的水平倾角变化,由悬挂机构几何关系和倾角传感器输出特性推导出耕深值与测量电压值之间的线性关系并换算得到实际耕深。与其他传感方式相比,该方法具有封装小、集成度高、安装和维护方便、标定易操作的特点,测量综合精度为±1.4mm;虚拟终端显示装置可直观反映耕作过程中耕深控制的实时状况,为操作者提供有效的判断依据。田间试验结果表明,耕深稳定在-200mm时的标准差为8.19,低于五轮仪测量方式,测量稳定;耕深从-100mm下降到-200mm时响应时间为3.5s,少于五轮仪测量方式,动态特性更好;耕深稳定性变异系数为3.34%,满足农艺要求。论文提出的耕深测量方法、显示界面和自动控制系统对拖拉机设计具有一定的参考意义。  相似文献   

17.
基于卡尔曼滤波的车辆侧偏角软测量   总被引:5,自引:5,他引:0  
针对车辆稳定性控制过程中难以在线测得车辆侧偏角的问题,该文基于参数软测量理论和离散信号滤波理论,并结合卡尔曼滤波和驾驶员—车辆闭环系统模型建立车辆侧偏角软测量模型。该方法通过易测变量横摆角速度和侧向加速度估算车辆侧偏角,以实现车辆侧偏角的状态估计。基于预瞄最优曲率控制理论和预测—跟随理论所建立的二自由度驾驶员—车辆闭环系统建立了软测量模型,并建立其状态方程和观测方程。为进行状态估计,对模型的状态方程和观测方程进行连续系统离散化,得到以横摆角速度和侧向加速度为观测量的系统离散观测方程。通过双移线试验与蛇形试验进行场地试验获取纵向速度、侧向速度、横摆角速度、侧向加速度及车辆侧偏角等试验数据。估计值和试验值比较显示,两者变化趋势一致,误差均值在试验值幅值的10%以内,试验表明,软测量算法能准确估算出车辆侧偏角是可行的。研究结果可为软测量技术在车辆稳定性控制系统上的应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号