首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
非洲栽培稻作为重要的水稻种质资源,其基因渗入系可以为普通栽培稻的遗传背景提供新的有利基因,如果能将这些优良基因引入普通栽培稻中,可为水稻分子设计育种提供新的基因资源。本研究以非洲栽培稻基因渗入系YIL60与轮回亲本中9B(Z9B)杂交衍生的包含188个株系的F2和F2:3群体为材料,对粒形性状包括粒长、粒宽、籽粒长宽比、千粒重,剑叶形态性状包括剑叶长、剑叶宽进行数量性状点位(QTL)检测。结果共检测到16个QTL,包括2个粒长QTL、3个粒宽QTL、2个籽粒长宽比QTL、2个千粒重QTL、1个剑叶长QTL、6个剑叶宽QTL,分布于第1、第6、第7、第10和第11号染色体上,贡献率为2.25%~25.64%;有4个多效性QTL区间,有4个QTL qGW7-1、qFLL10、qFLW10、qTGW7在F2和F2:3群体中被重复检测到,其中在第7号染色体RM3859-RM3394区间检测到同时控制粒长、粒宽、籽粒长宽比和千粒重的QTL,贡献率最高达17.10%,是一个来源于非洲栽培稻的新粒形QTL。本研究为进一步开展粒形、剑叶形态性状基因的精细定位、克隆和分子标记辅助育种工作奠定了一定的理论基础。  相似文献   

2.
以我国高产籼稻特青和美国优质粳稻Lemont为亲本培育的双向回交导入系为材料,采用单核苷酸多态性标记定位源相关性状(剑叶长、剑叶宽、剑叶面积、叶干重和比叶重)和库相关性状(穗总粒数、千粒重和穗实粒重)的QTL.特青剑叶长、穗总粒数和穗实粒重显著大于Lemont,剑叶宽则显著小于Lemont.双向导入系群体检测到影响源、库相关性状的QTL 62个,平均每个QTL解释群体表型变异的9.0%,变幅为3.0% ~27.9%.Lemont背景导入系在第2、3、4、6、9和11等6个染色体的区段同时定位到影响源、库相关性状QTL 17个,占Lemont背景导入系定位QTL总数的50%.特青背景导入系在第1、3、4、8和12等5个染色体区段同时定位到影响源、库相关性状的QTL 13个,占特青背景导入系定位QTL总数的28.3%.Lemont背景下绝大多数位点导入特青等位基因均增加性状值,而特青背景绝大多数位点导入Lemont等位基因都减小性状值.两个背景共同检测到影响源、库相关性状的QTL有18个,占定位到62个QTL的29.0%,表明源、库相关性状QTL定位存在明显的遗传背景效应.发现第3染色体影响剑叶长、剑叶面积、叶片干重、每穗总粒数和穗实粒重的35576704 ~36341768区间和第4染色体影响比叶重、穗总粒数和穗实粒重的4560663 ~13503095区间,在以往不同群体中均被检测到,是影响水稻源、库相关性状的重要染色体区域,对标记辅助选择培育源、库协调的超高产水稻品种具有重要的应用价值.  相似文献   

3.
本文利用旱稻品种IRAT109和水稻品种越富的花培DH群体的116个株系为作图群体,采用混合线性模型QTL定位方法,在水、旱2个土壤水分环境下对粒长(GL)、粒宽(GB)、长宽比(LWR)和垩白率(C)4项外观品质性状和糙米率(BR)、精米率(MR)、整精米率(HR)3项碾磨品质性状进行QTL定位及QTL与环境互作分析。在水、旱2种条件下对DH群体差异显著性分析结果表明,糙米率、精米率和长宽比差异不显著,而整精米率、粒长、粒宽、垩白率差异极显著。外观品质性状在水、旱栽培条件下变化较大,即在旱种环境下稻米粒形变小(粒长、粒宽减小)、变细(长宽比增大)垩白率大幅度下降。碾磨品质性状在双亲间均有差异,其中整精米率差异较大;且在两种土壤水分环境条件下均有变化,即在旱栽条件下两亲本的糙米率和精米率均降低,IRAT109分别减少了5.8%和5.5%,越富分别减少了11.7%和11.5%。共检测到11个加性效应QTL与稻米外观和碾磨品质性状7项指标有关,分别位于第1、3、5、6、7、10、11染色体上,单个QTL对性状的贡献率在3.15~21.42%之间,位于第1、7 染色体上2个控制整精米率的QTL存在显著环境互作,单个QTL与环境互作效应的贡献率分别为9.59%和13.58%。在第1染色体RM295标记附近同时检测到5个QTL,Qgc1a 、Qgc1b 、Qlwr1、QMr1b和QHr1,分别控制粒长、长宽比、精米率和整精米率,且该QTLs簇在2个环境下能稳定地被检测到。同时,还检测到10对上位性QTLs,所有上位性QTL都发生在不同染色体之间,其中,控制整精米率的4对QTL与土壤水分环境显著互作,其环境互作贡献率分别为14.29%、12.28%、10.56%和13.47%。控制粒长、粒宽、长宽比的6个加性QTL(Qgc1a、Qgc1b、Qgc5、Qgw6、Qlwr1、Qlwr10)与环境之间互作较小,在品质育种中可利用分子标记对其进行辅助选择,提高育种效率;而对于基因型×环境互作效应大的整精米率、垩白率应在特定环境(如土壤缺水条件)下进行选择,在特定水分胁迫条件选择目标亲本,并将抗旱基因导入该亲本方可选到品质较优的抗旱品种。  相似文献   

4.
本研究旨在排除主效QTL效应的基础上检测控制水稻产量性状的微效QTL。前期应用中156/谷梅2号重组自交系(RIL)群体在第7染色体RM2-RM214区间上检测到控制抽穗期和产量性状的主效QTL,本研究挑选在此区间呈谷梅2号基因型的两个株系,配组衍生新的RIL群体,检测控制水稻产量性状的QTL。共检测到25个产量性状Q...  相似文献   

5.
普通野生稻稻米加工品质和外观品质性状QTL定位   总被引:5,自引:0,他引:5  
本研究利用一套以籼稻品种“特青”为遗传背景的云南元江普通野生稻(Oryza rufipogon Griff.)渗入系为材料,采用单标记回归分析和渗入片段叠代法,对出糙率、整精米率、垩白粒率、垩白度、长宽比等5个品质性状的QTL进行了分析,初步定位了16个QTL,有10个QTL来自野生稻的等位基因能改良群体的品质性状。在第5染色体RM289附近检测到了同时影响长宽比、垩白粒率QTL,来自野生稻的等位基因能增加长宽比、降低垩白粒率,贡献率也较高。在第8染色体RM152附近检测到降低垩白粒率和垩白度的QTL,其贡献率分别为14%和9%。本研究结果不仅为品质性状分子标记辅助选择提供参考,而且充分显示了利用野生稻的优异基因改良栽培稻品质性状的巨大潜力。  相似文献   

6.
以271份具有优质水稻(Oryza sativa L.)越富遗传背景及旱稻IRAT109导入片段的导入系群体为材料,在北京、海南两地水、旱田环境下调查精米粒长、粒宽、粒厚、长宽比和垩白率5个性状,研究旱田栽培对外观品质的影响,进行QTL定位及QTL与水分环境的互作分析.结果表明,粒长、粒宽、长宽比和垩白率易受土壤水分的影响,粒厚比较稳定.水分胁迫使稻米粒长、粒宽变小,长宽比增大,垩白率减少.利用QTLNetwork软件,5个性状共检测到30个加性QTL和4对上位性QTL.6个加性QTL(qGL7、qGT2、qGT4、qLWR2、qC2和qC8)和2对上位QTL(qGL3-qGL7和qGL7-qGL10)的贡献率大于10%.21个QTL与前人研究结果相一致.外观品质性状QTL在染色体上多呈成簇分布,第2染色体RM492~RM1211、第3染色体RM6832~RM3166和第6染色体RM587-RM1163区段是外观品质QTL相对集中分布区域.41%的QTL存在水分环境互作.根据不同性状对干旱胁迫的反应特点,选择水、旱田贡献率大且稳定的QTL,或具有旱田特异性的QTL,进行标记辅助聚合育种是培育抗旱、优质稻的一个有效途径.  相似文献   

7.
为研究水稻抗倒伏相关性状的遗传机制,以典型的籼粳交(窄叶青8号/京系17)的F1花培加倍单倍体分离群体为材料,通过水培法在齐穗期考查了与水稻抗倒伏相关的根基粗、总根数、最大根长、根干物重和根冠比等地下部根系性状及分蘖数、株高、株周长、单蘖直茎和地上部干物重等地上部性状。利用该群体的分子连锁图谱进行QTL区间作图分析,除分蘖数、地上部干物重外,其它8个性状共检测到13个相关的QTL。其中与根基粗、根冠比、株周长、单蘖直茎相关的QTL各1个,分别位于第8、第1、第7和第8染色体上。与总根数、最大根长、根干物重相关的QTL各2个,分别位于第1和第2、第1和第6、第1和第12染色体上。与株高相关的QTL共3个,分别位于第1、第4和第8染色体上。相关分析表明,各根系性状相互之间存在着极显著正相关;除根冠比外,其它根系性状与地上部分蘖数、株高、株周长、单蘖直径和地上部干物重之间也存在显著或极显著正相关。多元回归分析表明,除分蘖数外,地下部根系性状与其它地上部性状存在着显著线性效应。本研究为深入理解水稻抗倒伏因子的遗传基础及制定抗倒伏性育种策略等提供了理论依据。  相似文献   

8.
抽穗期(headingdata,HD)和株高(plantheight,PH)是水稻(Oryza sativaL.)非常重要的农艺性状。本研究利用金23B(Jin23B)和青谷矮1号(QGA-1)构建的BC3F1群体及其衍生的BC3F2群体通过分子标记定位水稻抽穗期和株高的QTL(quantitativetraitlocus)。构建的遗传连锁图包含105对SSR标记和8对InDel标记,图谱较好地覆盖了水稻12条染色体。两年来共定位到了9个抽穗期相关QTLs,6个株高相关的QTLs,其中抽穗期和株高最大效应都来源于第7染色体。抽穗期QTLqHD7-3在2011年LOD为37.07,可以解释的表型贡献率为41.05%,加性效应为11.68;株高QTLqPH7-2在2011年LOD为43.73,可以解释的表型贡献率为54.17%,加性效应为21.60;2012年LOD为42.66,可以解释的表型贡献率为54.39%,加性效应为19.95。qHD7-3和qPH7-2位于同一区域RM214-RM5543之间,Ghd7也位于这一区间,该QTL可能是Ghd7的等位基因。抽穗期QTLqHD2定位于第2染色体上标记ZH282和RM71之间,在两年内都能检测到,其LOD值分别为4.56和4.99,可解释的表型贡献率分别为4.31%和7.99%。株高QTLqPH4定位于第4染色体上标记RM241和RM317之间,其两年内的LOD分别为2.89和2.67,解释的表型贡献率为9.42%和8.78%。抽穗期QTL qHD2和株高QTL qPH4所定位的区间没有相关的基因或QTL报道,这两个QTL可能含有控制抽穗期和株高的新基因。本研究通过遗传定位证明了株高和抽穗期是由主效QTL和微效QTL共同控制的,并发掘了新的抽穗期和株高的QTL,为育种家利用分子标记辅助选择培育新品种提供更多的选择。  相似文献   

9.
粒重是水稻产量性状的主要构成因子及影响稻米品质的重要因素之一。本研究针对第1染色体上对千粒重具有重要作用的QTL进行精细定位。利用从珍汕97/密阳46重组自交系高代群体中挑选出在第1染色体短臂RM151-RM10404、RM151-RM10425和RM1344-RM5359区间呈杂合而背景基本纯合的5个剩余杂合体(Residual Heterozygous Line,RHL),衍生5个F2:3群体(RHL群体),对千粒重QTL进一步分析,在RM151-RM1344区间检测到控制千粒重的QTL qtgw1,其增效等位基因均来自母本珍汕97。应用SSR标记检测,从其中一个RHL衍生群体中筛选到分离区间为RM151-RM3746,RM151-RM10402和RM10381-RM10425的4个单株,衍生4个F2群体(FF群体),利用该群体将QTL qtgw1定位在RM10376-RM10404之间。从其中一个F2群体筛选到分离区间为RM10381-RM10402,RM10390-RM10425和RM1344-RM10425的3个单株,衍生3个F2群体(L群体),根据3个L群体QTL分析结果,将千粒重QTL qtgw1定位在RM10381-RM10404,物理距离约246.6 kb。  相似文献   

10.
为了定位与发掘水稻产量性状高配合力数量性状座位(QTL),本研究按照不完全双列杂交(NCⅡ)设计,以泸恢8285与扬恢34杂交构建的重组自交系群体(RIL),分别与泸98A、Ⅱ-32A、冈46A杂交构建的双列杂交群体作为试验材料,在德阳、遂宁和泸州3种环境下对单株生物量、收获指数、单株产量、有效穗数、每穗颖花数、每穗实粒数、结实率和千粒重等性状的一般配合力进行QTL定位。结果表明,3种环境下共检测到50个QTL,单个QTL对表型的贡献率变幅在3.26%~34.26%之间,其中qEP2-2、qSP2-2、qFGP2-2、qTGW1和qTGW2 5个QTL在3种环境下均有检出,qHI3、qEP7、qSP7、qSSR12-1和qTGW3-2 5个QTL在2种环境下检出,其他的QTL仅在其中1种环境下检出。此外,有27个QTL增效等位基因来自泸恢8258。本研究结果为进一步开展相关基因的精细定位、克隆和分子辅助选择育种奠定了基础。  相似文献   

11.
玉米叶夹角和叶向值的QTL定位   总被引:4,自引:0,他引:4  
叶夹角和叶向值是评价玉米株型的重要指标。本研究以甜玉米自交系组合T14×T4的F2为作图群体,构建了包含192个SSR标记位点的遗传连锁图谱,覆盖玉米基因组1260cM,平均图距6.56cM。通过测定F2、F2:3家系的叶夹角和叶向值,应用复合区间作图法在两个世代中共检测到26个QTL,其中14个与叶夹角相关的QTL,分别位于第2、5、6、7和8染色体上,单个QTL可解释的表型变异为3.3%~26.2%;12个与叶向值相关的QTL,分布于第1、2、3、7和10染色体上,单个QTL可解释的表型变异为3.1%~20.7%。在第2、3、5染色体上分别检测到1、1、2个同时在F2、F2:3家系都稳定表达的QTL,分别落在区间bnlg1329~bnlg1613、umc1148~umc2275和umc1097~umc1692,可作为相关数量性状基因的候选基因。发现1个同时控制叶夹角和叶向值性状的QTL,位于第2染色体上的bnlg1017-umc2129区间,对两性状的表型贡献率分别为10.8%和10.6%。本研究的结果有望为玉米耐密型育种及分子辅助选择育种提供一定的理论依据。  相似文献   

12.
研究大粒型水稻材料对粒型相关基因的挖掘具有重要作用,同时也能为水稻超高产育种提供优质的种质资源。本研究以大粒型水稻材料lg1与9311杂交衍生的F2遗传分离群体为对象,分别采用2014年、2015年的粒型数据和2年的联合粒型数据,对控制其粒长、粒宽及粒厚的QTL进行初步定位。结果表明,3种情况下共定位到22个相关QTL,其中5个粒长QTL、9个粒宽QTL、8个粒厚QTL,分布于第1、第2、第3、第4、第5、第8和第11号染色体上。3种情况下均检测到QTL的有3个,即粒长QTL q GL-2-1、粒宽QTL q GW-5-1和粒厚QTL q GT-5-1,3个QTL增效等位基因均来自于亲本lg1;此外,有7个QTL在2014年、2015年和2年的联合数据定位中均被检测到,12个QTL只在1年或2年的联合数据定位中被检测到。q GL-2-1、q GW-2-3和q GT-2-3处于同一标记区间RM5812~RM13174,推测可能受同一粒型基因控制,是新的粒型QTL位点。主效QTL q GL-1-2和q GW-11-1可能是新的控制粒型QTL位点,其余检测到的QTL所在的大部分标记区间已有粒型QTL被定位或克隆。本研究结果为大粒水稻lg1粒型基因的精细定位及克隆奠定了基础。  相似文献   

13.
陆地棉矮秆突变体株高和纤维品质的QTL定位及相关性研究   总被引:2,自引:0,他引:2  
Ari1327是美国引进种质Ari971经60Co γ射线照射后得到的矮化突变体,以陆地棉遗传标准系TM-1为母本和Ari1327组配杂交组合,利用该组合产生的F2群体对株高和纤维品质性状进行QTL分析,共检测到4个与株高相关的QTL,分别位于Chr.3、Chr.11、Chr.14和LG6上,4个位点可解释的联合表型贡...  相似文献   

14.
供氮和不供氮条件下玉米穗部性状的QTL定位   总被引:3,自引:0,他引:3  
【目的】分析供氮(+N)和不供氮(-N)2种条件下玉米穗部性状QTL定位结果的差异,挖掘在-N条件下特异表达的主效QTL,为玉米的氮高效分子育种提供理论依据。 【方法】以优良玉米自交系许178(氮高效)×K12(氮低效)衍生的150个F7代重组自交系(recombinant inbred lines,RILs)为试验材料,在+N和-N 2种处理条件下进行2年的田间试验,对玉米的穗长、穗粗、穗行数、行粒数和单株产量共5个穗部性状进行表性鉴定。使用基于混合线性模型(mixed liner model,MLM)的最佳线性无偏预测法(best linear unbiased prediction,BLUP),结合2年的表型数据,估计各家系各性状在不同氮水平下的育种值。然后利用QTL IciMapping V4.0软件的完备区间作图法(inclusive composite interval mapping,ICIM)对这5个性状的育种值进行+N和-N条件下的QTL分析。 【结果】玉米的穗长、穗粗和穗行数在不同氮水平下差异不大,而行粒数和单株产量在-N条件下呈现出显著降低的结果。两种氮水平下共定位到20个穗部性状QTL,其中+N条件下定位到11个QTL,包括穗长2个、穗粗1个、穗行数2个、行粒数1个和单株产量5个。-N条件下定位到9个QTL,包括穗长1个、穗粗1个、穗行数2个、行粒数1个和单株产量4个。这些QTL分布在除第2染色体以外的其余染色体上。两种氮水平下定位到5个“一致性QTL”,分别为qEL7a,qED7a,qRNE9b,qGYP1a和qGYP6a,这5个“一致性QTL”具有较高的表型贡献率,在不同氮水平下的贡献率均超过了10.00%。在-N条件下共发现4个特异表达的QTL,分别为qRNE9a,qKNR6a,qGYP3a和qGYP8a,其中qRNE9a和qGYP3a是贡献率超过10.00%的主效QTL。无论是在+N还是-N条件下,都发现了控制不同性状的基因之间紧密连锁或是同一个基因的一因多效现象,这与穗部各性状间的高度相关性表现一致。 【结论】控制玉米穗部性状的基因在不同氮水平下的特异性表达直接导致了玉米穗部性状表型上的差异。5个“一致性”主效QTL和2个在不供氮条件下特异表达的主效QTL,均有利于提高玉米抵抗低氮胁迫的能力。研究中发现的几个控制玉米穗部性状的QTL富集区可能存在一些关键基因,值得进一步研究。  相似文献   

15.
以超级杂交稻协优9308(协青早B/中恢9308)衍生的234个重组自交系(RIL)为材料,在正常水分和20%聚乙二醇(PEG-6000)模拟水分胁迫处理下对水稻苗期最长根长、总根长、根表面积、根体积、根平均直径、根尖数、根鲜重和根冠比进行QTL定位分析。采用复合区间作图法,共检测到影响8个根部性状的21个QTL,单个QTL可解释的表型变异介于4.80%~11.35%。其中,正常水分条件下检测到7个QTL,分布在第2、3、9、10、11染色体上;水分胁迫条件下检测到14个QTL,分布在第2、3、5、6、9染色体上。不同水分条件下检测到的QTL位点差异很大,表明不同水分条件下的遗传机制不同。在第3和第6染色体上各检测到1个根部性状的QTL簇,尤其在第3染色体RM6283-RM7370区间发现苗期根系性状与抗旱性及产量相关性状之间存在连锁关系,利用这些QTL紧密连锁的分子标记进行辅助选择,可望同时对多个相关性状进行遗传改良。  相似文献   

16.
高歌  杨媛  郑军  张红伟 《核农学报》2022,36(8):1530-1536
为了探索玉米株高的遗传机制,定位玉米株高的数量性状位点(QTL),本研究以玉米自交系PH4CV为轮回亲本,以郑58为供体亲本,构建BC1F3:4分离群体,在4个环境下对该群体进行玉米株高表型鉴定。表型分析结果表明,基因型之间差异极显著,且不同环境之间的株高相关性极显著,说明不同环境之间的株高变异具有共同的遗传基础。利用包含5.5万个单核苷酸多态性标记(SNPs)的基因芯片进行基因型鉴定,并结合基因型和表型数据进行全基因组关联分析。在错误发现率(FDR)为0.05时,检测到10个显著性SNPs,这些显著性SNPs主要位于第2号染色体上,-log10(P)值最大的标记为Chr2_194690794。利用线性回归模型对显著SNPs进行表型贡献率及效应分析,发现位于第2号染色体的标记Chr2_194690794效应值最大,贡献率最高,来源于PH4CV的基因型的正效应。利用BC1F5:6群体进行基因型和表型鉴定,进一步确认了标记Chr2_194690794与株高QTL的连锁关系,表明在第2号染色体上存在1个控制株高的QTL。本研究为玉米株高QTL的精细定位奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号