首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cd、Pb、Cu、Zn、As复合污染对龙须草生长的影响   总被引:3,自引:2,他引:3  
本文研究了不同处理水平下Cd、Pb、Cu、Zn、As复合污染对龙须草生长的影响。结果表明,龙须草地下部对重金属的抗性大于地上部。在接近土壤环境质量二级标准上限值时,龙须草生长正常,减产幅度<10%;在含Cd5mgkg-1、Pb600mgkg-1、Cu125mgkg-1、Zn300mgkg-1、As50mgkg-1的复合污染土壤上,龙须草地下部干重与对照相比较差异性不显著(α=0.01);在含矿毒水河水污染土壤和尾矿砂污染水稻土壤上,龙须草地下部干重与对照相当,且地上部干重分别为对照的61.58%和40.64%。这些说明龙须草在土壤重金属复合污染修复中具有良好的应用前景。  相似文献   

2.
通过室内土培试验,研究了不同浓度的Cd、Pb、Cu、Zn、As等5种重金属复合污染对水稻苗的联合生理毒性效应,并对其临界值进行了探讨。结果表明:5种重金属污染对水稻苗的联合生理毒性效应随其污染浓度的增加而显著增强,剂量—效应关系明显。除处理(1)外,其余各处理对水稻苗体的诸项生长指标的抑制均达到了极显著的程度(P<0.01),且对根长的抑制明显大于苗长。随着复合重金属污染浓度的增大,水稻苗叶片中叶绿素含量急剧减少;丙二醛(MDA)含量迅速增加;POD和SOD酶活性呈先升后降的变化趋势。铅锌尾矿和矿毒水污染对水稻苗生长和各项生理生化指标的影响也均达到了极显著程度,但在二者污染下,POD和SOD酶活性均高于对照,铅锌尾矿的毒性效应大于矿毒水。以酶活性为参考指标,可以将土壤环境质量二级标准上限值设定为土壤中Cd、Pb、Cu、Zn、As等5种重金属对该水稻品种的临界毒性效应值。  相似文献   

3.
重金属Cd、Zn、Cu、Pb复合污染对土壤微生物和酶活性的影响   总被引:20,自引:4,他引:16  
通过野外土样采集及室内测定,研究了云南东川铜矿区土壤酶和微生物特征,并采用盆栽试验研究了重金属Cd、Zn、Cu、Pb复合污染对土壤微生物和酶活性的影响。结果表明,距离矿口越近,土壤有机质、有效N、P、K的含量、土壤pH值亦越低,土壤酶活性和土壤微生物数量、微生物生物量C和N受到的抑制程度也增强,其中土壤酶中的酸性磷酸酶和过氧化氢酶,土壤微生物中的细菌对重金属污染较为敏感。盆栽试验中,Cd、Zn、Cu、Pb复合污染使白菜(Brassica rapapekinensis)生物量明显下降,且随复合污染程度的增加,白菜生物量下降幅度增加。Cd与Zn、Cu、Pb,Zn与Cd、Cu、Pb,Cu与Cd、Zn、Pb的复合效应机制为协同效应,而Pb与Cd、Zn、Cu的复合效应机制为拮抗效应。重金属Cu、Zn、Pb、Cd复合污染使土壤酶活性显著降低,但低量的Cd、Zn、Cu、Pb复合污染刺激了细菌、真菌、放线菌、微生物生物量C和N。重金属Cd、Zn、Cu、Pb对土壤酶活性和土壤微生物数量及微生物生物量C和N的复合效应机制表现出协同和拮抗效应。  相似文献   

4.
单一重金属胁迫对灯心草生长及生理生化指标的影响   总被引:15,自引:0,他引:15  
通过盆栽试验研究了不同浓度处理水平的Cu、Cd、Pb、Zn、As五种重金属单一胁迫对灯心草生长及其生理生化特性的的影响。结果表明:种植灯心草土壤中的Cd、Pb、Cu三种重金属临界值可分别设定为10mg kg-1、100 mg kg-1、100mg kg-1。灯心草不适合在Zn污染的土壤中种植,土壤中As临界值尚需作进一步的研究来确定。各单一重金属胁迫对灯心草叶绿素的合成均有很大程度的抑制作用,剂量-效应关系明显。灯心草三种保护酶对于不同浓度处理水平重金属胁迫的响应不同:在土壤环境质量低浓度设置范围内三种酶有较好的协同效应能共同抵御重金属胁迫造成的膜伤害,表现出较强的自我调节能力。而在高浓度处理水平时,三种酶活性呈现不同的变化趋势。灯心草生理生化指标对重金属胁迫的响应存在元素种类之间的差异。各单一重金属对灯心草生长抑制及生理毒害效应大小排序为:Zn>As>Cu>Pb>Cd。  相似文献   

5.
铜锌铅复合污染土壤上香薷植物的生长和重金属吸收动态   总被引:6,自引:0,他引:6  
翁高艺  孙小峰  吴龙华  骆永明 《土壤》2006,38(5):602-608
盆栽试验研究了海州香薷和紫花香薷在Cu、Zn、Pb复合污染泥沙土上的重金属耐性与吸收动态。结果发现,在Cu、Zn、Pb全量分别为223、1068、232mg/kg的土壤上,两种香薷植物地上部生物量随生长时间的延长其增长趋势明显,其中叶片积累的生物量略高于茎秆积累的生物量;在整个生长期中重金属含量呈现动态变化,重金属吸收量有增加趋势。  相似文献   

6.
贵州省地道药材GAP基地土壤重金属含量及污染评价   总被引:4,自引:0,他引:4  
秦樊鑫  张明时  张丹  胡继伟  黄先飞  张松 《土壤》2008,40(1):135-140
对贵州省11个地道中药材GAP基地土壤中的5种重金属含量进行调查分析,分别以国家土壤环境质量二级标准和区域土壤重金属背景值作为标准对其单项和综合污染指数进行分析评价.结果表明:调查区域内各基地重金属含量水平差异很大,土壤重金属含量的变异系数6.6%~70.4%.调查区域内基地土壤受到了不同程度的污染,部分土壤达不到国家环境质量二级标准的要求.以国家土壤环境质量二级标准作为评价标准的评价结果为:单项污染指数最大2.5,综合污染指数最大1.9,受污染基地占27.3%.以区域土壤重金属背景值作为标准评价结果为:单项污染指数最大4.3,综合污染指数最大3.3,受污染基地占54.5%.在重金属污染因子中,Cd是主要污染因子,其次是Cu、Hg、As.  相似文献   

7.
龙须草生长对重金属污染土壤的影响   总被引:1,自引:1,他引:0  
为了探明龙须草种植对重金属污染土壤的影响,利用盆栽培养试验研究某矿业废弃地污染土壤对龙须草生长的影响,分析了龙须草生长90d,180d,270d和360d时土壤营养成分、重金属镉铅含量、微生物生物量和酶活性等的变化,以不种植龙须草为对照。结果表明,随着龙须草的生长,土壤镉铅总量和有效态含量均呈下降趋势,生长1a后土壤镉铅的有效态含量分别下降了28%和15%,但与对照相比无显著差异。土壤营养成分、微生物生物量和酶活性呈上升趋势,且与对照差异显著。与试验前相比,龙须草生长组有机质含量提高了1.5倍,全氮、全磷、全钾、速效磷和速效钾含量分别上升了7.6%,3.1%,10.2%,11.4%和11.2%。土壤微生物生物量碳、氮、磷、土壤转化酶、脲酶、酸性磷酸酶和过氧化氢酶活性分别增加了0.9倍,1.1倍,3.0倍,1.1倍,0.4倍,0.3倍和0.5倍。各指标相关性分析表明,土壤营养成分、微生物生物量和酶活性之间呈正相关,而与重金属含量呈负相关。说明龙须草对重金属污染土壤有一定的修复作用,具有较大的应用潜力。  相似文献   

8.
郑州农区土壤重金属污染与蔬菜质量相关性探析   总被引:21,自引:0,他引:21  
以单因子污染指数和综合污染指数为评价方法,对郑州市郊区3种不同灌溉方式农田土壤进行重金属(Hg、Cr、Cd、Pb、As、Cu、Zn)污染监测和蔬菜质量调查。结果发现,郑州市郊区的土壤均未超过GB15618—1995《土壤环境质量标准》二级标准限值;部分蔬菜已受到重金属的污染,含量超过国家食品卫生蔬菜类标准;土壤中的Zn、Cu、Cd、Cr污染与多数蔬菜的污染呈显著的正相关,而Pb、Hg污染在多数蔬菜中均表现为与土壤污染无相关性。  相似文献   

9.
随着经济和社会的发展,土壤重金属污染对粮食安全及人类的身体健康构成了巨大的威胁,而目前对于土壤重金属污染的治理主要以植物修复为主。为了寻找适宜修复Cu、Pb复合污染土壤的牧草,采用盆栽试验法,将试验的植物设置9组处理:1组对照组(CK),不添加任何重金属盐;4组单一污染,即单一Cu低(Cu1,200 mg×kg-1)、高浓度(Cu2 400 mg×kg-1),单一Pb低(Pb1 300 mg×kg-1)、高浓度(Pb2 800 mg×kg-1);4组Cu、Pb复合污染(Cu1Pb1、Cu1Pb2、Cu2Pb1、Cu_2Pb_2)。通过比较紫花苜蓿(Medicago sativa)、黑麦草(Lolium perenne)、狼尾草(Pennisetum alopecuroides)的适应能力和富集特征,研究了这3种常见牧草植物对受Cu、Pb复合污染土壤的修复效果。结果表明:1)紫花苜蓿地上部和根部生物量均在Pb1处理组时最大,显著高于其他处理组;黑麦草地上部生物量在Cu1Pb1处理组最大,根部生物量在Pb1处理组最大;狼尾草地上部生物量在Cu_2Pb_2处理组最大,根部生物量在Cu2处理组最大。2)Cu单一污染下,狼尾草抗性系数最大;Pb单一污染下,紫花苜蓿抗性系数最大;Cu-Pb复合污染下,狼尾草的抗性系数较大。高浓度Cu处理组3种牧草植物的地上部生物量、根部生物量和抗性系数均呈现:狼尾草黑麦草紫花苜蓿,且狼尾草显著大于黑麦草和紫花苜蓿。3)种植3种牧草植物后,土壤重金属Cu、Pb含量均有所降低。在一定浓度下,土壤Cu-Pb重金属间会相互促进对方在牧草植物中的吸收。4)3种牧草中紫花苜蓿地上部对Cu的富集系数在Cu_2Pb_2处理组最大,达1.61;黑麦草根部对Cu的富集系数在Cu_2Pb_2处理组最大,达3.80;3种牧草地上部和根部对Pb的富集系数只在黑麦草根部的Cu1Pb1处理组时大于1,达1.46。5)黑麦草对Pb的吸收能力较强,且主要积累在根系;紫花苜蓿对Cu-Pb复合污染综合修复效果最好。紫花苜蓿和黑麦草分别在Cu-Pb复合污染和Pb单一污染土壤中对Pb的转运系数大于1,分别为2.72和2.06,反映其对土壤中的Pb具有富集潜力。综合表明,黑麦草对重金属Pb具有较强的耐性,在Pb单一污染土壤的植物修复及尾矿废弃地的植被重建中,可优先作为选择的材料;紫花苜蓿对重金属Cu、Pb均具有较强的耐性,在重金属Cu单一或Cu-Pb复合污染土壤的植物修复及尾矿废弃地的植被重建中,可优先作为选择的材料。  相似文献   

10.
重金属Cd、Zn、Cu和Pb复合污染对土壤生物活性的影响   总被引:6,自引:0,他引:6  
通过野外土样采集及室内培养试验(25℃),研究了云南东川铜矿区土壤酶和微生物特征,以及模拟重金属Cd、Zn、Cu、Pb复合污染对土壤微生物和酶活性的影响。结果表明,矿区土壤(距矿口0~800 m)重金属污染严重,Pb、Cd、Zn、Cu全量和有效含量是对照土壤(距矿口10 000 m)的3.7~141.0倍和2.2~773.2倍;距矿口越近,土壤有机质、有效氮、有效磷和速效钾含量及土壤pH亦越低,土壤酶活性和土壤微生物数量、微生物生物量碳和氮受到的抑制程度也显著增强。与对照土壤相比,距矿口0~800 m的土壤蔗糖酶、脲酶、酸性磷酸酶、过氧化氢酶和脱氢酶活性分别降低25.5%~47.3%、22.6%~74.2%、30.9%~83.1%、16.7%~69.1%和34.6%~92.3%;细菌、放线菌和真菌数量分别较对照下降30.5%~80.1%、8.1%~49.9%和3.3%~8.3%。土壤酶中的酸性磷酸酶和过氧化氢酶,土壤微生物中的细菌对重金属污染较为敏感。恒温(25℃)培养试验中,低量的Cd、Zn、Cu、Pb复合污染刺激了土壤酶活性和细菌、真菌、放线菌、微生物生物量碳和氮的数量,但高量的Cu、Zn、Pb、Cd复合污染使土壤酶活性、细菌、真菌、放线菌、微生物生物量碳和氮均显著下降。重金属Cd、Zn、Cu、Pb之间存在着一定的协同或拮抗作用,Cd、Zn、Cu和Pb之间在微生物生物量碳和氮上表现出明显的协同效应,Pb与Cd、Zn、Cu对细菌数量的复合效应机制为拮抗效应,Cd、Zn、Cu和Pb对真菌数量和放线菌数量的复合效应机制表现为协同效应和拮抗效应并存。  相似文献   

11.
Abstract

The phytotoxicity of five nonessential elements (Co, V, Ti, Ag, Cr) to higher plants was studied in solution culture experiments with bush beans (Phaseolus vulgaris L. C.V. Improved Tendergreen). All, but in varying degrees, tended to concentrate in roots with a decreasing gradient to stems and leaves. Cobalt was one of the more mobile of the five trace metals. Its toxicity was expressed as severe chlorosis; 43 (with 10‐5 M) and 142 (with 10‐4 M) μg Co/g dry weight in leaves resulted in severe chlorosis. Vanadium as 10‐4 M vanadate resulted in smaller plants but not in chlorosis. Leaf, stem, and root V, respectively, were 13, 8, and 881 μg/g dry weight. Titanium was somewhat mobile with considerable yield decrease at 10‐4 M; leaf, stem, and root Ti concentrations, respectively, were 202, 48, and 2420 μg/g. Symptoms were chlorosis, necrotic spots on leaves, and stunting. Silver was very lethal at 10‐4 M AgNO3; at 10‐5 M yields were greatly decreased, but plants were grown without symptoms. Leaf, stem, and root concentrations of Ag for this treatment, respectively, were 5.8, 5.1, and 1760 μg/g dry weight. Plants grown with 10‐5 N Cr2O7 were decreased in yield by about 25% with or without EDTA (ethylenediamine tetraacetic acid) while the same level of Cr2(SO4)3 was essentially without effect. For the two salts, the leaf, stem, root concentrations for Cr, respectively were 2.2 and 1.3, 0.7 and 0. 7, and 140 and 104 μg/g. Most of the trace metals studied here had interactions in the uptake and/or distribution of other elements.  相似文献   

12.
Appropriate compost standards are being considered in Canada. Five aspects of compost safety and quality are being evaluated; probably the most controversial aspect is the standards for metals in compost. In order to assist in the development of appropriate standards, the authors began an extensive research project in October, 1993 to determine the bioavailability of metals from compost and compost-metal mixtures. Swiss chard was grown in compost-amended soils or compost in a growth room using five treatments of increasing percentages of compost in the media (0, 25 percent, 50 percent, 75 percent, 100 percent compost (v/v)). A Truro loamy sand and a race-track manure-biosolids compost (RTM-biosolids) supplemented with a high metal biosolids were used in a completely randomized design with five replicates. Dry matter yield, metal content in plant tissue, and total metal uptake were evaluated as well as the total and DTPA-extractable metal content in the compost-soil mixes. The results of this and five other experiments conducted by the authors will help determine whether the suggested limits for As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Se and Zn in composts are appropriate.  相似文献   

13.
Abstract

The seasonal patterns of foliage nutrient concentrations and contents were monitored for two growing seasons in an 11‐year—old Pinus el1iottii stand. In the first growing season after needle initiation, N, P, K, Mg, and Zn concentrations decreased, but this was followed by an increase in the fall and winter months. Another drop in concentration of all elements, except P, occurred in the second growing season. Decreases in total contents indicated that this drop was a result of translocation to other tissues. In contrast to the mobile elements, the concentration and fascicle contents of Ca, Mn, and Al increased with aging of the needles.

Between‐tree variability was least for N, P, and Zn and the N, K, Mg, Mn, and Zn in the current foliage had consistently lower variation than that in the 1‐year‐old foliage. Between‐tree variation for K was lower in the winter than the spring.

For pine foliage, recommended sampling period for N, P, Mg, and Zn is mid to late summer and for the other elements it is late fall to late winter.

There are several sources of variation that influence the level of nutrients in tree foliage. The most important of these, apart from the tree nutrient status, are seasonal fluctuations, variation between trees, and age of needles . Smaller sources of variation are associated with position of the needles within the crown, diurnal changes, year to year variation, and analytical errors1,2. These variables must be studied in order to develop suitable sampling techniques and in Pinus this has been undertaken for P. banksiana 1, P. taeda 3, P. strobus 4, P. resinosa 4, P. sylvestris 5, and P. radiata 6,7. However, foliage sampling has not been studied in detail for slash pine (Pinus elliottii Englem var. elliottii) and earlier studies with other pines have been largely confined to temperate or cool climates.

This study reports the variation in elemental concentrations with season, age of foliage, and between slash pine trees growing in a subtropical climate in Florida.  相似文献   

14.
A general method is described for determining 16 mycotoxins in mixed feeds and other food products used in the manufacture of these feedstuffs. The mycotoxins are extracted and cleaned up by extracting with solvents of different pH. Thin layer chromatography is used to separate the toxins; toxins are then quantitated by the limit detection method. The minimum detectable concentration of mycotoxins in various products is: aflatoxin B1 or G1, 4--5 micrograms/kg; ochratoxin A or ethyl ester A 140--145 micrograms/kg; citrinin 600--750 micrograms/kg; zearalenone, 410--500 micrograms/kg; sterigmatocystin, 140--145 micrograms/kg; diacetoxyscirpenol, 2400--2600 micrograms/kg; T-2 toxin, 800--950 micrograms/kg; patulin, 750--800 micrograms/kg; penitrem A 14,000--14,500 micrograms/kg; penicillic acid 3400--3650 micrograms/kg.  相似文献   

15.
Abstract

The objectives of this study were 1) to recommend reference values (RVs) and tolerance limits (TLs) for representative Brazilian soils and 2) to propose a model to calculate natural contents of cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in a soil from the silt, clay, manganese (Mn), iron (Fe), and cation exchange capacity (CEC) values. A set of 256 soil samples was classified by similarity in seven groups, and the concentrations corresponding to the upper quarter of data collected were then calculated. These concentrations are proposed as RVs for Brazilian soils. Additionally, TLs were obtained for each group from the antilog expression (m+2s), where m=mean value and s=standard deviation of data transformed in log10. The classification functions of discriminant analysis proved to be suitable to allocate new samples in the established groups. Thus, it is possible to evaluate soils under anthropic activity and, by comparison with reference values, to be aware of pollution risks in a given area.  相似文献   

16.
The importance of dietary sulforaphane in helping maintain good health continues to gain support within the health-care community and awareness among U.S. consumers. In addition to the traditional avenue for obtaining sulforaphane, namely, the consumption of appropriate cruciferous vegetables, other consumer products containing added glucoraphanin, the natural precursor to sulforaphane, are now appearing in the United States. Crucifer seeds are a likely source for obtaining glucoraphanin, owing to a higher concentration of glucoraphanin and the relative ease of processing seeds as compared to vegetative parts. Seeds of several commonly consumed crucifers were analyzed not only for glucoraphanin but also for components that might have negative health implications, such as certain indole-containing glucosinolates and erucic acid-containing lipids. Glucoraphanin, 4-hydroxyglucobrassicin, other glucosinolates, and lipid erucic acid were quantified in seeds of 33 commercially available cultivars of broccoli, 4 cultivars each of kohlrabi, radish, cauliflower, Brussels sprouts, kale, and cabbage, and 2 cultivars of raab.  相似文献   

17.
The effects of cooking, roasting, and fermentation on the composition and protein properties of grain legumes and the characteristics of dough and bread incorporated with legume flours were determined to identify an appropriate pretreatment. Oligosaccharide content of legumes was reduced by 76.2–96.9% by fermentation, 44.0–64.0% by roasting, and 28.4–70.1% by cooking. Cooking and roasting decreased protein solubility but improved in vitro protein digestibility. Mixograph absorption of wheat and legume flour blends increased from 50–52% for raw legumes to 68–76, 62–64, and 74–80% for cooked, roasted, and fermented ones, respectively. Bread dough with cooked or roasted legume flour was less sticky than that with raw or fermented legume flour. Loaf volume of bread baked from wheat and raw or roasted legume flour blends with or without gluten addition was consistently highest for chickpeas, less for peas and lentils, and lowest for soybeans. Roasted legume flour exhibited more appealing aroma and greater loaf volume of bread than cooked legume flour, and it appears to be the most appropriate preprocessing method for incorporation into bread.  相似文献   

18.
A new HPLC procedure based on hydrophilic interaction chromatography (HILIC) has been developed for the simultaneous determination of carnosine, anserine, balenine, creatine, and creatinine in meat. This is the first time that HILIC has been directly applied to the study of meat components, having the advantage of not requiring complex cleanup and/or sample derivatization procedures. The chromatographic separation has been developed using a silica column (4.6 x 150 mm, 3 microm), and the proposed methodology is simple, reliable, and fast (<13 min per sample). The method has been validated in terms of linearity, repeatability, reproducibility, and recovery and represents an interesting alternative to methods currently in use for determining the mentioned compounds and other polar substances. The detection limits are 5.64, 8.23, 3.66, 3.99, and 0.06 microg/mL for carnosine, anserine, balenine, creatine, and creatinine, respectively.  相似文献   

19.
The distribution of zinc, manganese, copper, cobalt, and nickel in Andosols was investigated. Sixty nine soil samples were collected from different horizons of an Andosols profile in Miyakonojo Basin in south Kyushu, Japan, The total contents of heavy metals were determined by digestion and four extraction solutions, 1 M NH4Ac (ammonium acetate) pH 4.5, 0.1 M HCl, 0.01 M EDTA (ethylenediaminetetraacetic acid) pH 6.5, and 0.005 M DTPA (diethylenetri-aminepentaacetic acid) pH 7.3 were used to determine the contents of available Zn, Mn, Cu, Co, and Ni in Andosols in relation to the organic carbon content. The results of the extraction analysis showed that by the use of 0.1 M H Cl high value of extracted heavy metals in the upper layers of the humus horizons were obtained while EDTA extraction yielded a large amount of the above mentioned metals in the high humus horizons. The extractable heavy metals contents were high and these metals closely related to the organic carbon content mostly in the humus horizons in the profile. Where, biocycling process may play an important role in the concentration of heavy metals. Based on the study, it was found that the total content of Zn increased towards the C horizons or pumice layers in the soil profile. Such a trend was also found in the case of the Mn content. While the Cu content in the humus horizons was much higher in the upper part of each humus horizon. According to this study the distribution of heavy metals, Cu (organic matter complexes) in the Andosols profile was more stable than that of Zn (organic matter complexes) in soils. It was shown that Zn in the surface humus horizon was enriched but that some amount was leached under buried conditions. The same phenomenon was also observed in the distribution of Mn in the profile. The movement of Co and Ni in the soil profile was limited, as evidenced by the sharp reduction in the concentrations of these two metals in buried soils.

Hence, it is concluded that the distribution of Zn, Mn, Cu, Co, and Ni was considerably higher in the humus horizons of the Andosols profiles.  相似文献   

20.
The literature on the fluxes of six heavy metals in temperate forest ecosystems is reviewed. Special attention is given to wet and dry deposition and internal flux, to metal budgets for ecosystems and soils, to concentrations in aqueous compartments of the ecosystem and to speciation in soil solutions. Metal fluxes are discussed in relation to pollution load, soil type, tree species and land use. The mobility of Cu and Pb is strongly dependent on the solubility of organic matter. These metals are commonly accumulated in forest soils. Zinc, Cd and Ni are greatly influenced by soil acidity and are often lost in considerable amounts from acidified soils. Chromium is often at balance in forest ecosystems. Implications for metal solubility and budgets in forest soils are discussed in connection with an increase in soil acidification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号