首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
以田间试验资料为基础,建立了一个农田水量平衡模型,探讨了它对作物根系吸水函数和蒸散公式的敏感性.结果表明.不同的根系吸水函数和蒸散公式对农田水量平衡模型的响应程度差异较大,根据与田间土壤水分实测结果比较,认为用Selim根系吸水函数和Penman-Monteith蒸散公式的组合模式能较好地模拟土壤水分变化过程.  相似文献   

2.
通过田间试验,建立了实用性膜下滴灌棉花根系吸水模型,研究了在作物生长条件下的土壤水分运动,以揭示膜下滴灌棉花根系吸水规律。调查了不同生育期膜下滴灌棉花根系的分布,在棉花宽行及窄行采用根钻取样,将土样冲洗后,测定棉花根长参数,进而建立了棉花根长密度分布函数。根据理论分析和计算,考虑根长密度、土壤含水率及植株蒸腾量,建立了棉花根系一维吸水模型,其形式简单,涉及的参数较少。建立的棉花根系一维吸水模型能够反映棉花根系吸水的实际情况,应用方便,具有实际应用价值。  相似文献   

3.
地下滴灌夏玉米的初步试验研究   总被引:13,自引:1,他引:13       下载免费PDF全文
通过观测地下滴灌夏玉米全生育期不同生长阶段的土壤水分、根系的生长发育状况及其生物量、产量等,研究分析了地下滴灌不同的土壤水分处理条件下的土壤水分运移与分布规律,以及其对夏玉米的根系、产量和生物量的影响关系,建立了根系吸水模型,并研究其节水机理。阶段试验结果表明:地下滴灌可以高效地控制灌溉用水量,对作物的根系、产量及生物量产生直接影响;有可能通过土壤水分调控来影响作物能量的协调、平衡关系,达到最优根冠比,合理提高水的利用率和利用效率。  相似文献   

4.
微根管法监测膜下滴灌棉花根系生长动态   总被引:3,自引:2,他引:1  
为了精细监测膜下滴灌条件下棉花(Gossypium hirsutum L.)细根生长形态,于2014年在巴州灌溉试验站开展大田试验,采用微根管法原位监测棉花根系生长,并与传统网格法作对比。分析棉花根系生长动态,构建微根管法测定的形态参数与网格法所测定形态参数的回归模型。结果表明:花期到吐絮期,利用微根管监测10~20 cm处根系生长得到的棉花根长更新速率为1.844 mm/d,期间棉花老根不断死亡和分解。微根管法与网格法测得的根系深度为50 cm,根长密度随着深度增加先增大后减少,根长密度在20~30 cm处最大。两种方法监测得的根长密度具有较好的线性相关,由微根管法测得的剖面根长密度,可通过线性回归方程换算得到实际的体积根长密度。利用微根管法能可靠地监测棉花根系的生长动态变化,今后的研究可进一步加大微根管监测范围和频率,精细监测细根生长全过程,通过构建根系生长模型分析膜下滴灌条件下棉花根系生长时空动态。  相似文献   

5.
密植条件下玉米冠根生长抑制的因果关系   总被引:8,自引:1,他引:7  
密植条件下玉米地上部及根系生长均受到抑制。以澄海3719(DH3719)为材料,通过种植密度×施氮量2因素4处理田间试验,研究了密植条件下玉米地上部及根系生长受抑制的因果关系。结果表明,高密度群体具有较高的叶面积指数(LAI),但拔节期后单株叶面积、冠根干物重、茎粗、总根长及含氮量均小于低密度种植的植株,生长受到抑制。叶面积与根长的消长变化趋势相同,各生育期不同处理植株的冠根比没有明显差异。吐丝期剪去穗位叶以上连续两个叶片或切去地上部最上层节根均减少了植株体内的氮素累积。尽管剪叶使根系生物量的减少远远低于切根的影响,但剪叶造成植株含氮量的减少多于切根的影响。综合结果表明,密植引起地上部生长空间竞争加剧,使地上部生长受到抑制,从而影响根系生长。  相似文献   

6.
通过盆栽试验,研究不同残膜量(0、90、180、360、540、720、900 kg·hm~(-2))对苗期棉花和玉米生长(干物质、株高和叶面积)、根系形态(根长、根表面积)和根系生理(根系活力、过氧化氢酶CAT、过氧化物酶POD)的影响,并探究对两种作物根系影响差异显著的残膜量临界值。结果表明,在0~540 kg·hm~(-2)残膜量范围内,残膜对苗期棉花的株高和叶面积不会造成显著降低的影响;随着残膜量的增加,苗期玉米株高和叶面积逐渐降低,在90 kg·hm~(-2)残膜梯度下开始显著降低。随着残膜量的增加,苗期棉花和玉米的根长、根表面积以及根系活力、CAT和POD活性呈现先增加后降低的趋势,最大值出现在90~180 kg·hm~(-2)残膜量梯度范围内,最小值出现在900 kg·hm~(-2)残膜量。由于玉米的须根系众多,根系与残膜接触的面积大,导致苗期玉米产生显著差异的残膜量临界值小于苗期棉花。残膜量在90~180 kg·hm~(-2)区间内,残膜会作为一种适度胁迫,作物苗期根系会主动进行适应性的生长,超过该范围残膜会对作物根系的生长造成阻碍作用。  相似文献   

7.
不同灌水水平下CROPGRO棉花模型敏感性和不确定性分析   总被引:1,自引:0,他引:1  
基于过程的作物模型使用大量的品种和土壤参数来模拟作物生长和土壤水分变化。对于新的作物品种或新的环境,这些参数往往需要重新率定,然而许多参数难以通过实测获得。敏感性分析(sensitivity analysis,SA)可以量化模型输入参数对模型输出的影响,通过筛选出敏感性较大的参数进行率定,而把敏感性较小的参数设为固定值,可以极大简化参数率定过程,提高工作效率和模型模拟精度。为了给DSSAT-CROPGRO-Cotton模型应用于新疆地区进行棉花灌溉制度优化提供本地化的模型参数,对该模型进行了敏感性分析和不确定性分析。该文依据新疆石河子的棉花大田试验资料,应用Morris法和扩展傅里叶幅度敏感性检验(extend Fourier amplitude sensitivity test,EFAST)法对DSSAT-CROPGRO-Cotton模型3个灌水处理(60%ETC、80%ETC和100%ETC,ETC为作物蒸发蒸腾量crop evapotranspiration)下6个输出结果(初花天数、成熟天数、籽棉产量、地上干物质量、最大叶面积指数和蒸发蒸腾量)对于品种和土壤参数进行敏感性分析,并比较了2种方法的相关关系,最后对EFAST法的输出结果进行不确定性分析。相关分析结果显示,对于地上干物质量和最大叶面积指数,Morris法和EFAST法相关性介于0.87~0.93,对于模型结果成熟天数、籽棉产量和蒸发蒸腾量,2种方法相关性介于0.66~0.81。敏感性分析和不确定性分析结果显示,模型模拟灌水处理对初花天数无明显差异,且模拟初花天数和最大叶面积指数存在参数敏感性过于单一现象。模型参数敏感性随土层而不同:对于成熟天数,40~80 cm土壤参数的敏感性更强;对于地上干物质量和蒸发蒸腾量,80~120 cm土壤参数的敏感性更强,这可能是由于该地区气候干旱,下层土壤水分充足程度直接影响作物受到水分胁迫的程度,进而影响作物生长发育和蒸发蒸腾量。模型输出结果最大叶面积指数和蒸发蒸腾量存在一定程度的高估。该研究可提高CROPGRO-Cotton模型在新疆地区的模拟效率和模拟精度。  相似文献   

8.
基于最优保留策略遗传算法的玉米小麦优化灌溉模型研究   总被引:2,自引:4,他引:2  
在综合考虑灌溉水量、作物水分需求、作物种植结构、水分生产函数、降雨量、土壤水分平衡、缺水敏感指数、粮食市场价格、农田灌溉用水价格、最低产量需求和灌溉成本等因素的基础上,建立了适合中国国情的基于灌水收益最大的多作物多约束非线性优化灌溉模型,同时应用遗传算法的搜寻功能,对模型的实数编码解空间进行搜索。求解结果显示该模型很好地解决了玉米和小麦联合种植的优化灌溉问题,遗传算法在求解该模型中显示出了较好的搜寻能力,能在很短时间内搜寻到模型的最优解。  相似文献   

9.
考虑地面灌水技术制约的灌溉制度优化   总被引:7,自引:2,他引:7  
制定作物灌溉制度不仅要考虑补充根层土壤水分以满足作物需求,还应考虑灌水方法对灌水量的限制。为研究我国华北地区地面灌溉条件下冬小麦-夏玉米连作的节水灌溉制度,在河北省雄县进行了连续3年不同灌水处理试验,用水量平衡模型ISAREG对各处理进行数值模拟,从而验证了选定的模型和参数。采用该模型模拟了不同水文年冬小麦-夏玉米连作的多种灌溉制度,对各方案的灌水次数、灌水量、降雨和灌溉水量损失以及作物产量等因素进行了对比,并对现行灌溉制度进行了评价。结果显示:雄县现行灌溉定额大大超过了灌溉需水量,主要原因是地面灌水技术的制约,如田面不平、进地流量过小或畦块过大等,造成难以控制小水量灌溉。为研究既能满足作物基本需水要求,又使灌溉水量损失最小的最佳灌水定额,用模拟地面灌溉水流运动的SRFR模型模拟不同生长阶段的灌溉,得到了每次灌溉时不同流量条件下的最小灌水量,以及灌水效率与灌水量的关系,据此提出了与灌水技术改进措施相结合的不同水文年的灌溉制度优化方案。  相似文献   

10.
滴灌条件下的土壤湿润区与作物根系分布和植株生长之间的关系是确定滴灌湿润比的理论依据。以大田膜下滴灌试验为基础,在灌水量相同的情况下,通过调控滴水流量得到不同的土壤湿润区,对不同土壤湿润区下的田间棉花根系分布及株高和叶面积生长均匀性进行了试验研究。结果表明,小的滴水流量形成窄深型土壤湿润区,其土壤水分水平分布均匀性较差,使田间棉花根系分布和植株生长均匀性低;而大的滴水流量形成宽浅型土壤湿润区,其土壤水分水平分布均匀性较好,使田间棉花根系的分布和植株生长均匀性较高;膜下滴灌条件下,宜采用宽浅型土壤湿润区。  相似文献   

11.
北疆膜下滴灌棉花产量及水分生产率对灌水量响应的模拟   总被引:5,自引:6,他引:5  
膜下滴灌技术是一种节水高产的灌溉技术,在新疆棉花种植中得到了广泛的应用。灌溉是影响新疆棉花产量的重要因素。为研究棉花产量和水分生产率对灌水量的响应,该文首先采用2010年和2011年新疆棉花膜下滴灌田间试验数据验证二维土壤水与作物生长耦合模型模拟棉花产量和耗水量可靠性。结果表明,二维土壤水与作物生长耦合模型能够可靠地模拟土壤含水率、叶面积指数、地上部分干物质量、籽棉产量和耗水量。土壤含水率模拟值与实测值的标准均方根误差(normalized root mean square error,n RMSE)为4.6%~23.4%,一致性指数为0.677~0.974;叶面积指数和地上部分干物质量n RMSE分别为6.3%~15.7%和7.2%~14.1%;籽棉产量和耗水量的模拟值与实测值之间相对误差分别仅为1.1%~6.7%和0.3%~9.2%。利用率定和验证后的模型参数进一步模拟10种灌水量情景下的棉花籽棉产量和水分生产率,结果表明籽棉产量随着灌水量的增加而增加,二者呈抛物线关系,而水分生产率则随着灌水量的增加而减小。综合考虑产量和水分生产率,北疆地区膜下滴灌棉花优化灌水量为280~307 mm。该研究可为北疆地区棉花灌水实践提供科学依据。  相似文献   

12.
玉米作物系数无人机遥感协同地面水分监测估算方法研究   总被引:1,自引:1,他引:0  
该文研究不同水分胁迫条件下无人机遥感与地面传感器协同估算玉米作物系数的可行性。利用自主研发的六旋翼无人机遥感平台搭载多光谱传感器获取内蒙古达拉特旗昭君镇试验站不同水分胁迫下大田玉米冠层光谱影像,计算植被指数,采用经气象因子和作物覆盖度校正后的FAO-56双作物系数法计算玉米的作物系数,研究作物系数与简单比值植被指数(simple ratio index,SR)、叶面积指数(leaf area index,LAI)和表层土壤含水率(surface soil moisture,SM)的相关关系,结果表明,作物系数与SR、LAI和SM的相关程度与水分胁迫程度有关,但均呈现出显著或极显著的线性关系,说明了基于这些指标建立作物系数估算模型的可能性。利用逐步回归分析方法建立了作物系数的估算模型,其估算模型,修正的决定系数、均方根误差和归一化的均方根误差分别为0.63、0.21、25.16%。经验证,模型决定系数、均方根误差和归一化的均方根误差分别为0.60、0.21、23.35%。研究结果可为利用无人机多光谱遥感平台进行作物系数估算提供技术参考。  相似文献   

13.
Field experiments were conducted with wheat and summer mungbean on an alluvial sandy loam soil (Typic Ustochrept). Data were obtained concurrently on soil moisture, leaf water potentials and relative humidity above crop canopy, in order to establish correlations between plant water status and soil moisture and aerial environment. In case of wheat, leaf water potentials correlated well with available soil moisture percentage remaining in the root zone as well as relative humidity above the crop canopy, only for the reproductive phase of crop growth. For the vegetative phase of crop growth, no relationships could be established, possibly because of high and non-limiting soil moisture. For mungbean, which is capable of avoiding drought, only 0900 hours leaf water potential correlated with available moisture remaining the root zone. For adapting the regressions for scheduling irrigation, important growth phases have to be considered separately.  相似文献   

14.
【目的】 膜下滴灌 (drip irrigation under mulch film, DI) 技术由于其高效节水的特点在新疆大面积推广使用,然而近期发现应用滴灌技术进行灌溉的作物根系出现了早衰,影响了地上部生长及产量的形成。本研究探讨了目前膜下滴灌技术体系棉花根系生长发育、空间分布的动态变化规律及地上部响应。 【方法】 采用田间试验方法,设置膜下滴灌、漫灌 (flood irrigation under mulch film, FI,对照) 两处理,采用 Monolith 法分 7 次采集根系,DT-Scan 软件测定根系长度,分析不同生育时期棉花根系在土壤空间中的变化特征,同时采集地上部样品并分器官测定干物质量。 【结果】 滴灌棉花根系表现出明显的浅层分布趋势:从播种后 96 d 开始,距地表 10 cm 范围内的根系长度明显大于漫灌处理,而 30—60 cm 土层则正好相反;在播种后 65~96 d 内,滴灌棉花根长增加速率明显低于漫灌;棉花生长发育后期 (播种后 125~160 d),滴灌处理棉花根系显著衰退,且主要集中在 0—40 cm 深度、距滴灌带 30—70 cm 土体范围内,播种后 160 d 与 125 d 相比,0—10 cm 土层下降了 13.8%,而 10—40 cm 衰退幅度更大 (22%),与此同时,漫灌处理除 0—10 cm 土层根长有所下降外 (7.7%),10 cm 以下依然保持增长状态 (10—40 cm 及 40—60 cm 层分别增加了 5.5% 与 10.2%);播种后 125 d,滴灌棉花地上部生长量明显高于漫灌,而根系正好相反,其冠根比较漫灌高,而在播种后 160 d 剧烈下降 (地上部叶片及蕾、铃的大量脱落所致 )。 【结论】 膜下滴灌棉花根系由于浅层分布,根系体积小,而地上部生物量过大,导致其在生长发育后期快速衰退。今后应研究适宜的水肥调控措施,以构建更早、更深的根系系统,控制生殖生长期内棉花的营养生长,实现膜下滴灌棉花的高产稳产。   相似文献   

15.
在灌溉季节,尤其是下游灌区,农田地下水位较高,作物可就地利用部分浅层地下水,从而减少灌溉需水量,达到节水减排的双重目的。大田作物对浅层地下水利用量的估算是合理制定灌溉淋洗制度及控制土壤盐碱化的前提,但其估算存在一定困难。该文假设当农田灌溉、排水等水文气象条件一致时,某一作物对浅层地下水的利用量等于该田块有、无作物(即裸地)2种情况下造成地下水位差异的水量。据此,首先建立了浅层地下水利用量的计算模型,并以某一半干旱灌区为例,利用田间水文模型-DRAINMOD模拟出有、无作物2种条件下农田地下水位变化过程,然后,计算了棉花、小麦轮作期内对浅层地下水的利用量;在此基础上,进一步分析了浅层地下水利用条件下土壤剖面的盐分平衡。结果显示,该文提出的计算模型能够较好的反映大田实际情况;研究时段内,田间地下水埋深平均值为2.1 m,单位面积上作物利用浅层地下水量为305.8 mm,主要发生在作物生长阶段,其中棉花生长季内地下水利用量约为160 mm。盐分平衡计算结果显示,浅层地下水的利用使得水位以上土壤剖面盐分含量增加,但1 m以内根区土壤盐分在降雨和灌溉作用下得到一定的淋洗,未超出作物耐盐极限,不会对产量造成显著影响。研究成果可为相关灌区制定合理的灌溉制度及提高水资源利用效率提供科学依据。  相似文献   

16.
通过田间试验,研究不同滴灌配置对机采棉根系生长、水氮运移和氮肥利用率的影响。设置3种滴灌毛管配置方式:(1)内嵌式滴灌毛管+夹管(EB);(2)内嵌式毛管+侧管(ES);(3)迷宫式毛管+侧管(LS);施氮(N)量均为300 kg/hm~2;同时,以ES处理不施氮肥为对照(CK)。结果表明:滴灌施肥24 h后,土壤水分及硝态氮均主要分布在0—40 cm土层。LS和EB处理水分和硝态氮在作物行下方的根区含量高,ES处理硝态氮分布向宽行偏移。90%以上棉花根系分布在0—30 cm土层,但EB处理根系分布更浅,其超过80%根系分布在15 cm以内土层;ES处理与LS、EB处理相比,根干物质量分别显著降低31.7%和25.5%;ES处理根长密度、根表面积、根体积显著高于LS和EB处理。LS处理显著增加产量和氮肥利用率,较ES处理分别增加9.4%和18.0%;EB处理产量和氮肥利用率也较ES处理分别增加6.5%和8.5%。机采棉使用迷宫式滴灌毛管并在侧管铺设毛管,水分和硝态氮分布与根系分布相匹配,能显著促进棉花根系生长,增加氮吸收量并提高产量和水氮利用效率。  相似文献   

17.
针对苜蓿生长模型ALFAMOD在动态水分平衡模拟和氮素平衡模拟方面的不足,提出一种基于水氮因子的紫花苜蓿生长模拟模型(alfalfa growth simulation model based on water and nitrogen factors,ALFSIM-WN)。该模型以宁夏引黄灌区紫花苜蓿为研究对象,采用模块化设计方法,划分为作物动态模拟子模型、水分平衡模拟子模型和氮素平衡模拟子模型,对紫花苜蓿的产量进行模拟和估算。通过连续2 a(2016-2017)的田间试验,获取气象数据、土壤数据和田间管理数据,利用2016年数据确定了模型参数,并预测了2017年4茬次紫花苜蓿生长期、叶面积指数、土壤水分动态和产量,对模型模拟值和实际观测值进行了对比。结果表明:宁夏引黄灌区紫花苜蓿每年能收割3~4茬,与当地以饲草收割为目的的生长期相符,综合2017年4茬次数据发现模型模拟叶面积指数的平均相对误差在2.3%~17.6%,模拟土壤水分动态的平均相对误差在2.3%~17.6%,产量预测数据的平均相对误差在1.7%~16.2%。叶面积指数、土壤水分动态和产量的均方根误差分别在0.09~0.44、0.009~0.039 cm3/cm3和0.3~2.3 t/hm2。模型模拟精准度较高,说明该模型在宁夏引黄灌区适用性良好,可以作为一个有效的紫花苜蓿生长模拟预测工具在饲草种植中应用。  相似文献   

18.
咸水畦灌农田土壤水热盐动态及油葵生长的试验与模拟   总被引:1,自引:1,他引:0  
为探究中国西北旱区咸水畦灌条件下农田土壤水热盐动态及其对作物生长的影响,采用大田试验和WASH-C模型(Layered Soil Water-Solute-Heat Transport and Crop Growth Model,土壤水热盐迁移和作物生长耦合的模拟模型)模拟相结合的方法,分析油葵全生育期内不同灌水量和矿化度处理下土壤剖面水盐分布特征、温度变化及油葵生长规律。试验设置包括2个灌水量水平(分别为油葵畦灌需水量的100%、50%)和3种畦灌水矿化度(分别为0.7、4.0、8.0 g/L)。结果表明,土壤剖面的水、盐、热分布在根区(0~40 cm)的变动幅度要大于深层(40~100 cm),灌水量越多,水分、盐分变幅越大。随着灌水次数的增加,土壤剖面在0.7 g/L矿化度下出现脱盐现象,4.0、8.0 g/L矿化度下出现积盐现象,并且灌水量越大,相应的脱、积盐率越高。试验前期各层地温变化幅度较后期大,温度变化幅度随土壤深度增加而减小。0.7g/L、100%油葵需水量下的作物LAI和产量最大,8g/L、50%油葵需水量下最小,两处理的LAI分别为8.41、3.80 cm~2/cm~2,产量分别为5.49、3.08t/hm~2,差异显著(P0.05)。模拟结果表明,WASH-C能够较好地模拟各时期土壤中根区、深层含水率的分布特征,所有模拟结果的R2不低于0.53。在咸水矿化度小于等于3g/L的情景模拟下,作物根区不会产生明显的积盐现象。合理的咸水畦灌制度有利于充分利用咸水资源并提高油葵的水分利用效率和产量。  相似文献   

19.
日光温室黄瓜栽培条件下土壤水分动态的数值模拟   总被引:5,自引:1,他引:4  
为研究日光温室黄瓜需水规律,在温室中布设了主要气象因素和土壤水基质势监测装置。根据试验资料拟合得到了黄瓜根系伸展深度及叶面积指数动态曲线,进而获得蒸散与蒸腾模式及黄瓜根系吸水模式,在此基础上,依据土壤水动力学理论,建立了土壤水分动态的数值模型,对黄瓜两个主要生育期土壤水分动态进行了模拟,并就不同灌溉量和土壤不同初始含水率对土壤水分动态的影响进行了数值分析  相似文献   

20.
构建华北地区设施茄子蒸散量估算模型,可为制定其优化灌溉制度提供理论依据。本研究设灌水定额15 mm(W1)、22.5 mm(W2)、30 mm(W3)和37.5 mm(充分灌溉, CK)4个处理,在设施茄子苗期、开花座果期和成熟采摘期土壤含水率分别达田间持水量的70%、80%和70%时进行灌溉,以保证土壤供水充足。基于修正后的Penman-Monteith方程,通过分析CK处理的作物系数与叶面积指数的关系,建立了基于气象数据与叶面积指数的蒸散量估算模型,利用W1、 W2和W3实测蒸散量对其进行验证。结果表明:修正后的Penman-Monteith方程可用于设施参考作物蒸散量的估算,W1、W2和W3蒸散量的实测值与新建模型的模拟值平均相对误差分别为17.81%、18.31%和17.97%。作物系数与叶面积指数呈显著线性关系,可通过叶面积指数确定作物系数。分析W1、W2、W3和CK处理的产量和水分利用效率(WUE)得出, W2与CK产量差异性不显著,而WUE差异性显著,较CK提高31.59%,表明W2兼顾产量和WUE。W2处理下茄子的作物系数,苗期为0.21~0.46,开花座果期为0.62~0.94,成熟采摘期为0.70~0.92。本研究认为,新建模型在估算设施茄子实际蒸散量上具有较好适用性,计算出的作物系数在节水灌溉条件下具有实际应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号