首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
植被盖度对典型草原区地表风沙流结构及风蚀量影响   总被引:6,自引:0,他引:6  
选择内蒙古锡林郭勒盟典型草原为研究区域,通过风洞模拟试验开展典型草原植被盖度对土壤风蚀的定量化分析研究,旨在探明不同植被盖度下起动风速、地表风沙流结构及风蚀量影响的规律,从而为该地区制定合理的防风固沙技术提供理论依据。结果表明:起动风速随植被盖度的增加而增大;受植被的影响风沙流结构呈跳跃式分布,近地层的输沙率随植被盖度的增加而减小,最大输沙率的高度层随植被盖度的增加不断上移;不同植被盖度下,风速与总输沙量之间均呈幂函数关系,各风速下总输沙量随着植被盖度的增加而减少。  相似文献   

2.
土壤厚度对天然草地植被盖度和生物量的影响   总被引:5,自引:0,他引:5  
土壤厚度是土壤肥力存在和植物生长的重要物质基础.本文调查了内蒙古东部地区多伦、锡林浩特和巴林左旗3个长期保护天然草地的土壤厚度和植被盖度等植物生长状况.结果表明,天然草地植被盖度、地上生物量和高度随土壤厚度的增加而增大.当土壤厚度小于20 cm时,植被盖度和地上生物量随土壤厚度的降低急剧减小,当土壤厚度小于10 cm时,植被类型为非地带性植被,盖度小于30%,地上生物量小于150 g/m2;当土壤厚度大于20 cm后,植被盖度一般大于80%,地上生物量接近或大于200 g/m2,而且土壤厚度大于20 cm后植被盖度和地上生物量随土壤厚度的继续增大变化平缓.研究区地带性天然草地植被正常生长的最低土壤厚度为20 cm左右.  相似文献   

3.
风沙土开垦中的风蚀研究   总被引:20,自引:2,他引:20       下载免费PDF全文
针对以往对土壤风蚀与土地开垦的关系缺乏定量研究,本文以野外实地采集的风沙土样为实验材料,对土地开垦过程中影响风蚀的两个主要因素-地表破坏与植被破坏分别进行风洞实验,结果表明,土壤风蚀率随地表破坏率的增大呈二次幂函数增加;随植被盖度的减少呈指数增加。综合地表破坏及植被盖度对土壤风蚀的影响,最后得出,土壤风蚀率随土地开垦率的增大呈指数增大。在此基础上提出了风沙土开垦中,有效地防止土壤风蚀需要掌握的临界  相似文献   

4.
为了确定水资源不足地区植被恢复潜力和水土保持林建设目标,在黄土丘陵半干旱区宁夏固原上黄试区,对相同立地条件的16年生人工柠条林进行疏伐,建立不同密度林地,进行林分密度、森林植被水土保持效益和土壤水分关系的定位实验。结果表明:平均基径随密度的增加而减少,二者为线性关系;盖度随密度的增加而增大,盖度与密度为对数关系;林冠截留随密度的增加而增大,二者为指数关系;地表径流随密度的增加而减少,二者为对数关系;泥沙含量随密度的减少而增加,二者关系可用倒S形曲线描述。虽然密度增加,盖度增加,森林植被水土保持效益增强,但是受土壤水资源的限制,柠条林有一个最大恢复限度。当超过限度时,势必会引发或加剧土壤旱化。  相似文献   

5.
摘要:基于公开发表文章中有关东北地区保护性耕作下大豆农田土壤温度和湿度数据,以传统耕作(CT)为对照,免耕(NT)、少耕(RT)、秸秆覆盖(SM)、免耕秸秆覆盖(NTSM)为处理,应用Meta分析方法定量评估保护性耕作措施对东北大豆农田土壤水热状况的影响程度。结果表明:与CT相比,保护性耕作总体上使东北大豆农田0-170cm土层的土壤体积含水量增加了9.2%,使浅层土壤(0-30cm)温度降低了8.2%;不同气候条件下4种保护性耕作措施均能提高土壤湿度;秸秆覆盖可以提高大豆整个生育时期土壤含水量,且在营养生长期对土壤水热的影响最大,土壤温度随秸秆覆盖量的增加而增加;保护性耕作措施降低土壤温度的幅度随着土壤黏粒减少而降低,提高土壤湿度的幅度随土壤深度增加而降低;免耕秸秆覆盖在不同土壤深度的蓄水保墒效果最明显,在0-20cm土层提高了32.9%的土壤湿度。综上,保护性耕作措施较传统耕作具有增湿降温效应,气温、降水、生育时期、秸秆覆盖量、土壤类型及土壤深度均对保护性耕作下大豆农田的土壤水热状况产生影响。  相似文献   

6.
植被是影响土壤侵蚀的重要因子,探讨坡面产沙和泥沙连通性对植被分布的响应对揭示土壤侵蚀过程机理及预测坡面侵蚀具有重要意义。通过室内人工放水冲刷试验,分析3种植被布设位置(坡上、坡中、坡下)在不同冲刷流量(3.2,5.2 L/min)和不同覆盖度(0,30%,50%,70%)下的减沙效益,结合坡面产沙潜力指数探究植被覆盖影响下的泥沙连通性变化特征。结果表明:(1)从不同盖度下的平均减沙效益及其稳定性来看,植被布局的减沙效益随盖度变化,且坡下植被空间分布最优。随冲刷流量增加,不同植被布局间的减沙效益差距缩小;(2)当植被盖度≤30%时,冲刷流量对坡面产沙的影响贡献较大;随盖度增加,植被的影响贡献程度大于冲刷流量,成为影响坡面侵蚀的主要因素;(3)坡面产沙潜力指数在不同植被盖度和分布位置下表现出明显差异。随盖度增加,产沙潜力指数减小,泥沙连通性减弱;坡下布设植被相比坡上和坡中产沙潜力指数最小,泥沙连通性最弱。该指数与产沙量之间存在显著的正相关关系,即产沙潜力越大,泥沙连通性越强,产沙量越大。研究结果可为深入探索土壤侵蚀机理及植被的生态效益提供科学依据,为黄土高原地区的生态建设提供参考。  相似文献   

7.
研究了贺兰山不同海拔梯度土壤活性有机碳(SAOC)的垂直分布特征及其与气候因子、植被特征和土壤特性的关系。结果表明:SAOC随海拔增加而增加,垂直方向随土层深度的增加呈"T"形分布特征,各海拔间差异均显著(P0.05)。相关性分析表明:不同海拔梯度SAOC与土壤有机碳(SOC)、含水量、全氮、植被盖度和多样性指数呈极显著线性正相关(P0.01),与pH、土壤温度和土壤容重呈极显著线性负相关(P0.01),与年降雨量、年均气温、地上和地下生物量无线性相关性(P0.05);SAOC占总有机碳的比例变化范围在7.9%~12.0%之间,以高寒草甸(AM)所占比例最高,草原化荒漠(DS)最低。偏相关分析显示,影响0-20cm土层SAOC最主要的因子是有机碳、多样性指数、植被盖度和年降水量,影响20-40cm土层SAOC的最主要因子是年降雨量和地下生物量,影响40-60cm土层SAOC最主要的因子是植被盖度和地下生物量,影响60-80cm土层SAOC最主要的因子是pH、含水量和地下生物量。综合分析比较可知,有机碳、多样性指数、植被盖度、年降水量、地下生物量、pH和含水量可能是影响SAOC垂直分异的关键因子,而土壤有机碳、全氮、含水量、植被盖度、pH、土壤容重和温度可能是影响SAOC沿海拔梯度分异的关键因子。  相似文献   

8.
风火山流域土壤入渗特征与环境因子的关系分析   总被引:1,自引:0,他引:1  
通过对青藏高原风火山流域2005-2007连续3 a的土壤水分入渗试验,运用回归分析方法和旋转主成分分析法,对影响土壤人渗过程的地温、土壤深度、土壤理化性质、植被盖度、土壤初始含水率等环境因子进行了分析.结果表明,随着植被盖度的增加,土壤入渗能力随之增强.土壤饱和导水率与土壤有机质、全氮、粒度正相关,与之均呈幂函数关系;饱和导水率与土壤初始含水率之间具有负幂函数关系.随着土壤温度从0℃的逐渐升高,土壤饱和入渗率先有微弱下降,然后呈现急剧上升趋势,两者呈二次函数关系.影响高寒草甸土壤水分入渗的环境因子可以归类为土壤质地及其理化属性、土壤疏松程度和亲水有机胶体团粒3个主成分.  相似文献   

9.
拉萨灌丛草甸区土壤温度变化特征   总被引:7,自引:0,他引:7  
土壤温度影响土壤发育与植被状况,是反映脆弱生态系统环境状况的基本参数。本文通过一年的实地观测,分析了拉萨典型灌丛草甸区土壤温度特征及其在海拔梯度与深度层次上的变化规律。结果表明:(1)0~30 cm深度范围,年内土壤日均温变化类似余弦曲线,平均值为2.94℃,年内有147 d土壤低于0℃;一天内土壤温度变化类似正弦曲线,日温差平均为2.80℃,夏季温差大,秋季温差小。(2)土壤年均温与海拔符合线性关系,土壤年均温随海拔的变率为-0.63℃(100 m-1),夏季土壤温度的海拔效应较其他季节明显;且海拔越高,土壤温度波动幅度越大。(3)土壤年均温与深度呈幂函数关系;随深度的增加,土壤温度变率降低。20 cm是土壤温度变化相对稳定的浅土层。  相似文献   

10.
植被覆盖可有效保护地表,抑制产流产沙过程,进而影响坡面养分迁移过程。选取黄土高原典型白羊草和铁杆蒿草地,通过人工模拟降雨试验(雨强60 mm/h,历时60 min,坡度15°),研究植被不同盖度下(10%,20%,30%,45%,60%,80%)坡面径流、泥沙养分特征。结果表明:(1)土壤有机质、全氮和全磷含量均随植被盖度增加呈线性增加(R~2≥0.63),相对于铁杆蒿样地,白羊草样地土壤有机质和全磷含量分别增加28.8%~107.1%和10.6%~25.0%,全氮含量减少2.6%~42.5%。(2)径流中有机质、全氮和全磷浓度随植被盖度的增加而减少0.6%~63.7%,但种间差异不显著(P0.05)。径流中有机质、全氮和全磷量随植被盖度的增加显著降低1.9%~83.9%,且当植被盖度≥20%时,白羊草样地径流中有机质、全氮和全磷的量较铁杆蒿分别显著减少28.4%~66.4%,10.7%~55.8%和3.3%~64.7%。(3)泥沙中有机质、全氮和全磷的量随植被盖度的增加减幅为-59.5%~65.1%,平均减少5.8%,其泥沙中养分的含量白羊草总体低于铁杆蒿。白羊草和铁杆蒿泥沙有机质、全氮和全磷的量随盖度增加分别呈指数函数(R~2≥0.78)和先增后减的下降趋势,其泥沙中养分的量显著减少69.9%~99.3%。(4)白羊草和铁杆蒿样地径流泥沙中有机质、全氮和全磷总量随植被盖度增加分别呈指数函数(R~2≥0.53)和先增后减的下降趋势,且当植被盖度≥45%时,白羊草有机质、全氮和全磷总量较铁杆蒿样地分别减少33.7%~71.8%,50.1%~53.6%和48.1%~64.3%。(5)白羊草和铁杆蒿样地泥沙中有机质、全氮和全磷富集比随盖度的增加呈线性降低(R~2≥0.56)。2种植被土壤有机质和全磷主要随泥沙迁移为主,土壤全氮主要以径流迁移为主。研究成果为植被覆盖影响坡面养分迁移机制提供理论参考。  相似文献   

11.
环境因子与玉米生长对地表温度监测土壤水分的影响   总被引:2,自引:2,他引:0  
针对当前地表温度受太阳辐射、气象因素及作物生长状态影响,对早晨与傍晚土壤水分估算精度较差的问题,该研究在2020年夏玉米生长的拔节期与抽雄期,利用无人机搭载热红外传感器获取09:00、11:00、13:00、15:00以及17:00的地表温度数据,探究了太阳高度角、饱和水汽压差、植被覆盖度三者与地表-空气温差的相关性,提出了综合调整温度,构建了土壤含水率监测模型,分析模型在玉米吐丝期与水泡期的适用性并绘制了土壤含水率分布图。结果表明:1)同一时刻不同灌溉处理的地表温度与土壤含水率呈现负相关性,同一灌溉处理的地表温度日变化呈现上午升温较快下午降温较慢的负偏态分布趋势。2)太阳高度角正弦4次方根、饱和水汽压差、植被覆盖度与地表-空气温差的线性相关系数分别为0.509、0.948、-0.659。3)相比较基于地表温度构建的土壤含水率监测模型,基于综合调整温度的监测模型将决定系数由0.230提高到0.771,标准均方根误差由18.8%降低至10.3%。4)利用综合调整温度监测其他生育期的土壤含水率,决定系数由0.238提高到0.831,标准均方根误差由18.9%降低至9.5%,表明模型在玉米生长季的各个生育期的不同时段均有较强适用性。该研究可为无人机热红外遥感精准监测土壤水分亏缺状况提供参考。  相似文献   

12.
李卫民  周凌云 《土壤通报》2004,35(3):271-274
小麦叶片细胞间隙CO2浓度Cint全天最高值出现在早上,其日变化曲线呈"  "型。Cint日变化在9:00后,大致呈现随施氮量增加而下降的趋势。在午前,低水处理Cint日变化较高水处理要高,午后则下降到较低的位置。各处理Cint时段变化随施氮量增加而下降,土壤水胁迫处理Cint各时期最低。小麦叶片气孔导度(Gs)在中午达到峰值,其日变化呈现"W"字型。4月20日Gs最高。Gs日变化随施氮量的增加而下降;低水叶片Gs在上午相对较高,下午则相反。Gs时段变化,低氮处理相对较高,高水与胁迫处理Gs较其它处理显著降低。  相似文献   

13.
不同灌木树种蒸腾速率时空变异特征及其影响因子的研究   总被引:7,自引:0,他引:7  
在测定4个水土保持灌木树种不同时期蒸腾速率及其影响因子的基础上,对不同树种蒸腾速率的时空变异特征进行了研究,并对蒸腾速率与其影响因子的关系进行了相关分析和多元回归分析。研究结果表明,4种灌木蒸腾速率日变化总趋势为清晨较小,在中午12:00左右基本达到峰值,至18:00左右降至低谷,不同树种日变化有一定差异;旱季4种灌木蒸腾速率的大小顺序为黄荆>黄栌>连翘>绣线菊;雨季4种灌木蒸腾速率的大小顺序为黄荆>绣线菊>连翘>黄栌。4种灌木蒸腾速率的季节变化趋势基本相同,均在5月份呈降低趋势,从6月初又逐渐回升,在7月中旬达到最大值后回落。蒸腾速率在空间上的变化特征是上部最大,中部次之,下部最小。4种灌木的蒸腾速率均与光合有效辐射、气温、空气相对湿度以及气孔导度4个因子呈极显著相关。  相似文献   

14.
利用地面实测资料研究稻田地表反照率,一方面可以更好地刻画以稻田为主要土地利用方式的流域地气之间的能量分配过程;另一方面,可以为陆面模式提供更为准确的参数值,以及为遥感反演的地表反照率提供验证,从而为更好地解释土地利用/覆被变化对全球气候变化的影响机制提供参考。本文利用江苏省农业科学院溧水试验基地四分量仪测得的2016年稻田地表反照率数据,分析了稻田地表反照率特征,并结合同期观测的太阳短波辐射、温度、湿度、风速、风向等气象数据,进行相关性分析,识别影响稻田地表反照率的主要气象因子,为进一步量化地表反照率与温度及湿度等的参数化关系提供参考。结果表明:晴天稻田地表反照率整体上呈"U"型分布,中午较低,下午和上午较高。晴天稻田地表反照率在一天内的变化呈不对称特性,其不对称性主要是由露水和风速、风向引起。太阳高度角较小时,露水的散射作用使得上午时分的地表反照率值较下午高;而太阳高度角较大时,西南风促使作物叶面倾斜,从而使得下午的地表反照率值较上午高。稻田晴天地表反照率值较阴雨天高。地表反照率在晴天与出射短波辐射相关系数最高(0.670,P0.01),在阴天与相对湿度之间的相关程度最高(-0.480,P0.05)。在整个观测期间,稻田生长季内地表反照率呈现先升高后降低的趋势,地表反照率最高值出现在灌浆期到成熟期之间,插秧到分蘖期之间最低,其中灌浆期地表反照率与太阳短波辐射及湿度间的相关程度较高,并且均通过了P0.01显著性检验。分蘖期和拔节期是水稻生长季内地表反照率变化较快的两个生育期,并受气象因素的显著影响。  相似文献   

15.
模拟降雨条件下黑麦草对土壤水分入渗的影响   总被引:1,自引:0,他引:1  
孙佳美  余新晓  樊登星 《土壤》2014,46(6):1115-1120
利用室内模拟降雨实验的方法,设计了不同降雨强度(30 mm/h和60 mm/h)、不同坡度(10°和20°)和不同草地盖度(0、20%、40%、60%、80%和100%)研究黑麦草影响下土壤水分入渗的变化过程。试验结果表明:坡度、降雨强度和黑麦草盖度对土壤水分的入渗均有影响,土壤水分累积入渗量随黑麦草盖度的增加呈增加趋势,二者显著正相关;黑麦草覆盖下的土壤水分累积入渗量变化过程能够用考斯加科夫模型模拟,黑麦草盖度对模型参数有显著影响。各试验条件下,入渗模型参数K值随黑麦草盖度的增加而增加,α值随黑麦草盖度的增加而减小,二者的变化趋势在降雨强度30 mm/h时表现明显,但在降雨60 mm/h时不明显。  相似文献   

16.
果园百喜草覆盖与敷盖对小气候的影响   总被引:1,自引:0,他引:1  
实测分析了果园覆盖与敷盖百喜草的光照、风速、温度、相对湿度时空变化规律。冬季中午1200时桃园比桔园光照强2倍左右,1400时风速大3~4倍,夏季地面最高温度行间裸地比行间百喜草高20.0℃,株间裸地比敷草高10.0℃;冬季桔园覆盖百喜草比裸地高2.4℃,比桃园高1.1℃,夏季降温效应、冬季保温效应非常明显。桔园透光率随高度的变化呈指数关系,株间风速与株高的关系近似于二次曲线,裸地气温随高度升高而降低,百喜草和敷盖地则相反,相对湿度早晚小,中午大,夏季大于冬季;不同处理的相对湿度随高度的分布其增大、减小相间出现。  相似文献   

17.
Soil porosity and organic matter content influence the hydrology, thermal status and productivity of agricultural soils. Shape, size and continuity of soil pores are determined by tillage practices. Thus appropriate tillage and mulch management can conserve residual soil moisture during the post rainy season. This can play a key role in enhancing productivity under the rainfed ecosystem of subhumid region in eastern India. A field study was carried out on a fine loamy soil from 1993–1994 to 1995–1996. Two tillage treatments were conventional ploughing (150 mm depth) and shallow ploughing (90 mm) depth. Each tillage practice was tested with three mulch management viz., no mulch, soil dust mulch and rice (Oryza sativa L.) straw mulch. Soil organic carbon, bulk density, moisture retentivity, soil temperature with productivity and water use pattern of barley (Hordium vulgare L.) were measured.Reduction in ploughing depth resulted in nominal increase in profile (0.0–1.2 m) moisture status, yield, and soil thermal status at 14:00 and water use efficiency (WUE). However, it decreased the magnitude of soil temperature in the morning (07:00). Straw mulch conserved 19–21 mm of moisture in the profile (1.2 m) over the unmulched condition. Both soil dust and rice straw mulching elevated soil thermal status at 07:00 as compared to unmulched condition, but this trend was reversed at 14:00. Straw mulching significantly increased grain yield and WUE over soil dust mulch and unmulched condition. Impact of straw mulch was more pronounced under shallow ploughing depth. Shallow tillage with rice straw mulching is recommended to the farmers to obtain higher level of yield and water use efficiency.  相似文献   

18.
夏玉米冠气温差及其影响因素关系探析   总被引:4,自引:0,他引:4  
测定了夏玉米主要生育期四个不同水分处理的冠层温度、气温、土壤含水率、叶面积指数和株高,分析了冠气温差与土壤含水率、叶面积指数及株高间的关系。结果表明:不同的灌溉水质和灌溉量措施对夏玉米冠气温差有显著的影响;中午12~14时左右H1高度(2/3株高)处的冠气温差较H2高度(H1+50 cm)更能反映作物和土壤的水分特征,可以用此时刻的卫星遥感冠层温度结合地面气象站数据监测作物和土壤的旱情;80~100 cm土层的土壤体积含水率与节水灌溉处理的冠气温差之间存在良好关系(α=0.05),0~80 cm四个土层中以中午20 cm和40 cm处的土壤体积含水率与冠气温差相关关系最好且稳定,可以利用此关系评价作物的缺水状况;充足灌溉下的夏玉米主要生育期的叶面积指数与冠气温差也有显著的相关关系,节水灌溉下二者关系不显著,说明水分充足条件下叶面积指数对冠气温差的影响更大;株高与不同水分处理的冠气温差也有一定的相关关系,冠层2/3高度处二者的相关系数分别为:0.7027(淡水节水处理)、0.4150(淡水充足处理)、0.3683(咸水节水处理)、0.3062(咸水充足处理)。这为区域上遥感反演夏玉米冠气温差进而监测农田蒸散和土壤含水率提供了试验依据。  相似文献   

19.
Live fences have the potential to improve microclimatic conditions, moderate soil CO2 fluxes and function as carbon sinks. We quantified variation in soil CO2 fluxes from livestock silvopastoral systems under the canopies of live fences (LF), formed by Gliricidia sepium trees, or artificial fences (AF). We determined the responses of soil CO2 fluxes to environmental factors, including diurnal and seasonal variations in temperature and relative humidity in each fencing system. Measurements were made from April to June (dry season) and from July to September (rainy season), 2012. Fluxes were similar between the two livestock systems; LF emitted 1.00 μmol CO2/m2/s and AF 1.02 μmol CO2/m2/s. Soil temperatures at 5 cm depth were 3% warmer in AF than in LF, and relative humidity was 16% greater in LF than in AF. Seasonal variation in temperature greatly affected soil CO2 fluxes, which changed seasonally in parallel with temperature of the topsoil and relative humidity at 1 m height, peaking in late summer. Fluxes in LF and AF were greater in the rainy season (1.1 μmol CO2/m2/s, for both systems), when soil temperature was cooler and relative humidity was greatest, than during the dry season (0.9 μmol CO2/m2/s, for both systems). Soil fluxes were larger at night (00:00–06:00 h), when soil temperature was cooler and relative humidity greater, than during the morning (6:00–12:00 h), when soil temperature was warmer and relative humidity was less. The presence of G. sepium trees in LF did not influence soil CO2 fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号